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Abstract: Deterioration of bridge infrastructure is a serious concern to transport and government
agencies as it declines serviceability and reliability of bridges and jeopardizes public safety. Main-
tenance and rehabilitation needs of bridge infrastructure are periodically monitored and assessed,
typically every two years. Existing inspection techniques, such as visual inspection, are time-
consuming, subjective, and often incomplete. Non-destructive testing (NDT) using Unmanned Aerial
Vehicles (UAVs) have been gaining momentum for bridge monitoring in the recent years, particularly
due to enhanced accessibility and cost efficiency, deterrence of traffic closure, and improved safety
during inspection. The primary objective of this study is to conduct a comprehensive review of
the application of UAVs in bridge condition monitoring, used in conjunction with remote sensing
technologies. Remote sensing technologies such as visual imagery, infrared thermography, LiDAR,
and other sensors, integrated with UAVs for data acquisition are analyzed in depth. This study
compiled sixty-five journal and conference papers published in the last two decades scrutinizing
NDT-based UAV systems. In addition to comparison of stand-alone and integrated NDT-UAV
methods, the facilitation of bridge inspection using UAVs is thoroughly discussed in the present
article in terms of ease of use, accuracy, cost-efficiency, employed data collection tools, and simulation
platforms. Additionally, challenges and future perspectives of the reviewed UAV-NDT technologies
are highlighted.

Keywords: unmanned aerial vehicles; drones; condition monitoring; remote sensing; non-destructive
testing; remotely piloted aircraft

1. Introduction

Highway transportation system is a vital element of civil infrastructure, and widely
regarded as a key component of the built environment in modern society. Bridge infras-
tructure, in addition to serving the crucial function of connecting highways, is the most
vulnerable constituent of the transportation system. This is often attributed to their ex-
posure to harsh environmental settings as well as heavy loads and traffic volumes that
bridges need to sustain. Departments of Transportation are required to manage bridges
under time and budget constraints [1]. The safety and serviceability of bridge infrastructure
is monitored through periodic inspections, typically conducted at least once every two
years. Studies conducted by the U.S. Department of Transportation indicate that out of
the 607,380 bridges, nearly 67,000 are classified as structurally deficient whereas approx-
imately 85,000 are considered functionally obsolete [2]. Moreover, close to 89% of the
budget approved for the construction and maintenance of bridge infrastructure in 2010
was reserved for the rehabilitation of existing bridges [3]. Consequently, the development
of low cost, fast, and non-disruptive solutions for bridge monitoring is a vital issue for
several transportation agencies.

Traditional inspection techniques, namely visual inspection, have multiple disad-
vantages. These are laborious and associated with incomplete assessment due to poor
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accessibility to critical segments of the bridge, cause traffic disruption, and entail subjectiv-
ity in evaluation, among others [4]. Studies have identified these limitations and explored
innovative and promising bridge inspection technologies to tackle these challenges. These
emerging technologies include non-destructive or non-contact methods such as ground
penetrating radars, photogrammetry, laser scanning technology, infrared thermography,
sensors, machine vision, and unmanned aerial vehicles (UAVs) [4–8]. These techniques
enable remote extraction of useful information of the bridge structural health at numerous
locations and orientations. Additionally, precise simulations, charts, models, and render-
ings depicting the bridge health can be obtained while simultaneously safeguarding the
safety of bridge inspection officials. Abu Dabous and Feroz detailed the current state of
literature of non-invasive techniques for concrete bridge condition monitoring including
defect detection, rebar corrosion, delamination, and cracking [4].

Non-destructive analysis using UAVs have been gaining momentum for bridge mon-
itoring in the recent years, particularly due to improved accessibility and cost efficiency,
avoidance of traffic closure, as well as reduced safety hazards during the inspection pro-
cess [9,10]. They are often deployed in instances where the infrastructure has limited
accessibility, characterized by their height and/or location. Several industries, including
defense, transportation, archaeology, and precision agriculture, have adopted UAVs for
practical applications, whereas industries like structure and construction have only recently
begun to realize the prospects of UAVs in engineering applications [11].

2. Related Work

Researchers have acknowledged the increasing interest in drones for various applica-
tions related to civil engineering disciplines [12]. Studies have explored the viability and
usefulness of aerial inspection for civil infrastructure monitoring, construction manage-
ment and safety, traffic monitoring and surveillance, geotechnical site reconnaissance, and
post-disaster inspection, among others. Sony et al. reviewed smart sensing tools including
cameras, drones, smartphones, and robotic sensors for supervision, retrofitting, and man-
agement of large-scale structures [13]. Another study presented the UAV practices adopted
for the United States bridge inspection programs [14]. Rakha and Gorodetsky studied
the existing practices associated with building inspection using thermal imaging aided by
unmanned aerial systems [15]. Similarly, Zhou and Gheisari summarized the construction
applications of aerial systems, particularly their viability in building maintenance and
inspection, damage appraisal, site reconnaissance, and progress monitoring [16]. Another
study examined the progress of autonomous robotic platforms and sensors, including
unmanned aerial and submersible systems, for the structural health monitoring of bridges.
Lastly, Jeong et al. reviewed the suitability of UAVs and associated image processing
algorithms for the bridge inspection and damage quantification [17]. Table 1 summarizes
existing review studies conducted to identify the current state of literature related to UAV
applications in the realm of civil engineering.

Table 1. Previous review work related to the application of UAVs in bridge condition monitoring.

Ref. Year Scope of Study No. of Studies Reviewed Period of Study

[18] 2015
UAV-based

visual bridge
inspection

33 1991–2014

[19] 2017

Classification,
manufacturing,

design, and
application of

UAVs

408 1952–2017
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Table 1. Cont.

Ref. Year Scope of Study No. of Studies Reviewed Period of Study

[13] 2018

Structural health
monitoring

using
smartphones,

UAVs, cameras,
and robotic

sensors

141 2007–2018

[14] 2018

Civilian and
civil engineering
applications of

UAVs

169 1991–2018

[15] 2018

UAV based
thermal imaging
practices and its

application in
building

inspection

92 2003–2017

[16] 2018 Construction
applications 54 2008–2018

[20] 2019

Automated
visual inspection

technologies
such as drones
following the

PRISMA
guidelines

53 2000–2018

[12] 2019
Civil

infrastructure
application

135 N/A

[17] 2020

Image
processing

algorithms for
UAV-based

bridge
inspection and

damage
quantification

techniques

N/A N/A

[21] 2020

Autonomous
robotic

platforms for
non-destructive

testing and
bridge

monitoring

242 2007–2020

Existing literature have analyzed the general aspects of UAV applications associated
with construction industry and built environment [13,14,16]. Recent research have also
focused on analysis algorithms based on data collected using UAVs [17]. To the author’s
knowledge, the existing literature lacks a specialized review that considers all aspects
of integrating remote sensing techniques and the associated hardware on-board UAVs
that can potentially be used for bridge condition assessment, including data collection
and processing methods, cost facets, UAV performance factors, and software platforms.
Hence, this review paper is intended to address the paradigm shift in bridge inspection and
condition monitoring arising from the utilization of UAV-based remote sensing. This study
aims to address key research aspects including UAV-based non-destructive inspection, data
acquisition methods, data processing techniques, cost considerations, UAV performance
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factors and simulation platforms. This endeavor is a continuation of previous research
work and compliments the review conducted with regards to bridge inspection using
non-contact testing (NCT) technologies [4]. The structure of this article shown in Figure
1 includes the following main elements: first, an introduction of previous work followed
by the research methodology. The methodology highlights the review scope and protocol
and presents details of studies’ selection criteria and quality assurance. Secondly, an in-
depth critical analysis of the application of UAV-based non-destructive bridge monitoring
is conducted. Numerous non-destructive testing (NDT) techniques, including infrared
thermography (IRT), Light Detection and Ranging (LiDAR) technology, visual imaging (VI),
and other sensors used in confluence with drones are discussed. These include the analysis
of stand-alone as well as integrated NDT-UAV systems. Subsequently, data acquisition,
processing and the software platforms utilized are summarized, followed by the analysis
of factors affecting UAV performance. Finally, the paper concludes with challenges and
limitations facing the application of UAV-based methods for bridge condition monitoring,
as well as future recommendations for research and development.

Figure 1. Structure of the article depicting the main elements of the study.

3. Research Method
3.1. Scope of the Review

The present review focuses on identifying the current state of literature in non-
destructive bridge inspection and monitoring using UAV systems, and addresses a recom-
mended future expansion of previous work that explored terrestrial non-contact technolo-
gies [4]. This study explores non-destructive technologies (NDTs) that can be mounted on
UAVs for bridge monitoring and data collection including infrared systems, VI devices,
LiDAR, and other sensors. Sixty-five conference and journal articles published worldwide,
during the study period of 2000 to 2020, were analyzed. Figure 2 illustrates the distribution
of the compiled NDT-based UAV studies over the course of the study period. Evidently,
interest in this domain of research has been increasing recently; 80% of the reviewed studies
were conducted in the past three years.
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Figure 2. Yearly distribution of NDT-UAV technologies used for bridge condition assessment.

Figure 3 provides an overview of the region-based distribution of the compiled articles
and provides the publisher count. North America had the highest number of publications
during the study period (twenty-eight articles), majority of them being conducted in the
United States, followed by Europe (nineteen articles) and Asia (fifteen articles). The figure
illustrates the publishing house portraying the descending order of the number of studies
published dealing with the UAV applications in bridge monitoring. It can be observed
that ASCE is the leading publisher in this category with thirteen published papers, nine
of which were conducted in North America, three in Europe, and one in Asia. This is
followed by IEEE with ten published articles and Elsevier and MDPI with nine articles each.
Appendix A illustrates the research data extracted from the compiled studies including
year of publication, publication type, type of utilized NDT technique, method of validation,
test object, type of measurement, data acquisition tools, software platforms, and data
processing algorithms including artificial intelligence or machine learning techniques.

3.2. Research Questions

The fundamental objective of this review is to identify and evaluate published studies
that tackle the application of UAVs in bridge condition assessment. To accomplish this, five
specific research questions have been formulated: (1) What are the different applications
of UAVs in bridge condition assessment? (2) Which particular NDT techniques are used
in tandem with UAVs for the condition assessment? (3) What are the numerous factors
affecting the UAV performance during monitoring? (4) How should the data collection and
analyses be conducted? and (5) What are the strengths and limitations of UAV deployment
for bridge monitoring?
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Figure 3. Region-based distribution and publisher count of compiled NDT-UAV studies.

3.3. Review Protocol

Figure 4 illustrates the protocol followed during the compilation process of the review
study database. The studies were retrieved primarily from Google Scholar, Scopus, and
Web of Science databases. The studies compiled for this review were extracted using a
combination of the following search keywords: “Unmanned Aerial Vehicles”, “Unmanned
Aerial Systems”, “Drones”, “Remotely Piloted Aircrafts”, “Aerial Vehicles”, “Aerial Sys-
tems”, “Non-contact Technologies”, “Non-destructive Technologies”, “Bridge Inspection”,
“Bridge Monitoring”, “Structural Health Monitoring”, “Bridge Condition Monitoring”,
“Bridge Damage Quantification”, and “Bridge Deterioration”. The keywords were initially
identified based on the authors’ knowledge of the research area. Subsequent to the retrieval
of the first set of articles, additional keywords from the extracted studies were used to
retrieve more articles. The two-step technique for identifying keywords was adopted
to obtain a comprehensive set of relevant articles in this field of research. Preliminary
search revealed close to 700 studies on this topic. Screening of irrelevant/duplicate studies
retained a total of one hundred and fifty-five articles relevant to the scope of work. Finally,
after abstract and full-text screening, sixty-five articles were selected for review.

Figure 4. Flow diagram outlining the review protocol.
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4. Bridge Survey Using Unmanned Aerial Vehicles

UAVs can be defined as aircrafts that operate or function without an on-board pi-
lot. Although they are also widely known as drones, remote piloted aircrafts (RPA), or
unmanned aerial systems (UAS), there are subtle differences between each terminology.
Drones typically refer to any remotely controlled vehicle including submarines or surface-
based autonomous vehicles, whereas a UAV is an aircraft capable of flying remotely
or autonomously over long distances with the aid of a control device transmitting live
feed [22]. On the other hand, UAS refers to the complete system that encompasses UAVs
and drones, the ancillary units, as well as the operator on ground. Initially used in military
applications, they have been gradually moving towards commercial and consumer use
over the past decade which has provided several opportunities for built environment disci-
plines [23]. UAVs equipped with NDTs or remote sensing mechanisms offer inspection and
monitoring capabilities for engineers, decision makers, stakeholders, and owners of bridge
infrastructure to survey and document structural condition, assess safety performance, and
deploy mitigation and rehabilitation strategies if and when necessary. On the basis of the
articles reviewed in this study, the NDT technologies frequently incorporated with drones
for bridge inspection are presented in this section. Visual imaging techniques, consisting of
photo and video cameras, were the most commonly used NDT techniques for drone-based
data acquisition, followed by IRT, LiDAR, and sensors (refer to Figure 2). The present
section also discusses studies that explored the comparison and integration of multiple
NDT-UAV systems. The initial analysis of the current study attempted to identify the
major areas of application of the NDT-UAV in monitoring bridge condition. The analysis
indicated that majority of the applications focused on the detection of cracks on bridge
structures. Geometric measurement of bridge elements was another important application,
followed by general inspection, defect quantification, and identification of moisture ingress.
Delamination detection, damage localization, displacement measurement, identification
of spalled surfaces, risk assessment, and maintenance of a progress log are other useful
function NDT-UAVs can serve. Figure 5 gives an overview of the NDT-UAV applications
in bridge condition monitoring.

Figure 5. NDT-UAV applications in bridge condition monitoring.
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4.1. Visual Imagery

Visual imagery, analogous with photogrammetry, deals with the acquisition of graph-
ics, videos, and other visual information. These are usually acquired with the aid of still
image cameras, video cameras, mobile phones, and so on. Figure 6 illustrates data collec-
tion using a UAV mounted with visual imagery equipment and a sample of the acquired
data. Majority of the studies utilized visual imagery for data acquisition onboard drones.
One such study proposed 3D scene reconstruction to eliminate perspective and geometry
distortion arising from UAV-based imagery of non-fat regions as well as to facilitate crack
localization [24]. At short distances, the cracks observed on the 3D model (including
narrow cracks) corresponded to the original cracks on the structure. A similar distribution
was obtained for the relative error of crack identification when comparing the developed
approach with images acquired using hand-held DSLR. Duque et al. assessed the feasibility
of a VI-UAV system for bridge damage detection and quantification [9]. The accuracy of
the pixel- and photogrammetry-based quantification of crack lengths, thicknesses, and
rust stain were observed to be comparable to field measurements. However, the study
noted that the pixel-based approach required capturing images aligned to the damage for
accurate results, whereas the photogrammetric method was time consuming with regards
to 3D model generation. Similarly, Dorafshan et al. reported that although the number of
cracks identified by UAV inspection was comparable to human inspection, UAV experi-
ments were time-consuming and returned more false positives [25]. On the other hand,
a study by Zhong et al. demonstrated that concrete crack measurement using airborne
images acquired via a VI-UAV system was more reliable compared to those obtained
from traditional counterparts, like static images and crack width measurement device [26].
Similarly, Seo et al. reported that VI-UAV based bridge condition monitoring was efficient
at damage identification while simultaneously being more cost-effective compared to tradi-
tional techniques [27]. The study followed a five-stage inspection methodology, including
bridge information review, site risk assessment, drone pre-flight setup, drone-enabled
bridge inspection, and damage identification.

Figure 6. VI-UAV equipment and a sample of acquired data.

Jalinoos et al. utilized a camera-borne drone for post hazard damage evaluation of
bridge infrastructure exposed to extreme geologic and hydraulic events [28]. The proposed
approach reported high accuracy in detecting the simulated translation, rotation, and
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settlement of bridge structure. The results indicated average absolute differences between
measured and estimated values of 0.7 cm, 1 cm, and 1.4 cm in the direction of translation,
rotation, and settlement, respectively. A similar study employed UAVs for bridge scour
damage assessment arising from flood exposure. Hackl et al. demonstrated that abutment
scour and overflow can be accurately modelled using UAV photogrammetry [29]. Another
study recommended a system capable of quantifying scours with considerable accuracy
and minimized implementation costs [30]. Seo et al. compared the usefulness of images
acquired from aerial inspection versus traditional visual inspection report in detecting
concrete cracks, spalling, salt deposit and moisture damage [10]. The study observed that
UAV-enabled deterioration detection was more accurate and certain damages were not
reported in the visual inspection report, especially moisture-related damage on bridge
girder. A VI-UAV based framework for the detection of excessive corrosion on steel bridges
was developed by Marchewka et al. [31]. The development of a rust color model of the
corroded surface indicated 96% accuracy. However, it was noted that long-term studies
would be required to firmly validate the proposed method. A video-based UAS for the
displacement monitoring of bridge structure was explored [32]. The proposed approach
eliminated the disadvantages associated with field stationary cameras including finding
an optimal location to install the camera with sufficient line of-sight. Experimentation on
a railroad bridge indicated accurate results, resulting in a root mean square (RMS) error
of 2.14 mm. Another study proved that RGB cameras on aerial systems have damage
detection capabilities similar to visual inspections [33].

Another study explored autonomous flight control of a video camera-borne UAV
for crack detection [34]. The study also developed an adaptive control method which
ensures that stable performance is maintained in instances where the payload of the UAV
is changed. A similar study of autonomous bridge inspection was conducted by Tomiczek
et al. utilizing a camera-mounted UAV embedded with laser range finder and optical flow
sensor [35]. The study recommended 3D reconstruction of particular damages rather than
full-scale models to enhance accuracy as well as to reduce data storage necessities and
time constraint issues. Morgenthal et al. developed a framework for the automation of
UAV-enabled condition monitoring [36]. High-resolution geo-referenced 3D models were
generated using photogrammetry, autonomous flight control and machine learning based
feature detection. The recommended approach was capable of mapping crack patterns and
identifying the effects of load on the structure. Few studies verified the accuracy of VI-UAV
based results compared to LiDAR [37–39]. Khaloo et al. compared image-based UAV with
TLS for inspection documentation and damage detection [37]. The results indicated that
3D model generated from LiDAR demonstrated low point density, incomplete data and
poor resolution compared to the VI-UAV. This was attributed to the limited positions, in
terms of level and stable terrain, available for LiDAR deployment, which inhibited full
coverage of the bridge structure. Additionally, recurrently changing scanning positions
of the LiDAR equipment made the data collection procedure time-consuming. These
observations corroborated with the study conducted by Chen et al. that compared VI-
UAV and terrestrial laser scanner (TLS) based bridge inspection [38]. However, the study
reported longer durations of data processing associated with the UAV data.

4.2. Infrared Thermography

IRT is an NCT technology capable of sub-surface damage detection [4,40]. Figure 7
illustrates an IRT-based UAV system and a sample of the IRT data acquired. This technique
distinguishes between delaminated and non-delaminated concrete/pavement surfaces
based on the temperature gradient of the surfaces under natural (passive thermography)
or artificial (passive thermography) heat exposure. Areas above delamination will be iden-
tified as hotter than corresponding areas above sound concrete as delamination disrupts
heat transfer. Very few studies explored the utilization of thermography-based UAVs in
bridge condition monitoring. One such study acquired thermal images of two in-service
concrete bridge decks using a low altitude aircraft mounted with an IR camera [41]. The
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areas of subsurface defects identified by the IRT-UAV system were validated against tra-
ditional techniques such as half-cell potential (HCP) and hammer sounding. The results
indicated that hammer sounding was approximately 9% more accurate in delamination
detection compared to IRT-UAVs. On the other hand, the proposed system demonstrated 6
to 8% higher accuracy when detecting subsurface defects compared to HCP which was
attributed to the latter’s capability of only detecting areas with advanced corrosion activity.
Another study analyzed the usefulness of airborne IRT systems for passive thermography
of artificial delamination on a concrete bridge deck specimen [42]. The absolute contrast
generated by IRT-UAVs were observed to be slightly less intense when compared to a
handheld IRT camera. However, similar to the handheld system, the IRT-UAV was proven
to be capable of identifying delamination up to 4 cm deep and having width–depth ratios
not less than 1.9. The study also indicated that delamination was observed more clearly in
instances where the width–depth ratio was larger due to higher temperature difference
being generated.

Figure 7. Typical IR-UAV equipment and sample thermography data.

4.3. Other Sensors

Unlike the previously explored technologies, the sensors detailed in this section
require physical contact with the bridge structure. Sensor-embedded UAVs function as
flying sensors that enable precise measurements when the system comes in contact of the
target inspection surface. Figure 8 gives an example of a sensor-embedded UAV and the
resulting data acquired. One such study analyzed a UAV system mounted with a reflector
prism, the position of which was tracked using a laser-tracking total station, for beam
deflection analysis [43]. The study also noted that measurements from different inspections
can be compared against each other due to the integration of total station in the system
enabling same reference frame for various target structures. A similar study successfully
deployed autonomous aerial platform embedded with a reflector prism for contact-based
bridge monitoring [44]. Computational fluid dynamic (CFD)-based aerodynamic analysis
of the ceiling effect was utilized to optimize the UAV design. The ceiling effect was used to
the advantage of the UAV to establish contact and conduct the inspection activities.
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Figure 8. Contact based data acquisition using sensor-embedded UAV [43].

Another study deployed UAVs embedded with laser Doppler vibrometer (LDV) to
measure dynamic bridge displacement [45]. The proposed system eliminated calibration
requirements, creating a noncontact, reference-free moving vibrometers. Signal differ-
ences of 5% (peak) and 10% (RMS) were observed between linear variable differential
transducers (LVDTs) and the flying LDV, showing close correlation between the proposed
and traditional methods. Moreu et al. developed an aerial tap testing system to identify
areas of deterioration [46]. The system was capable of remotely impacting the surface
and processing the acoustic data for condition monitoring. However, it was noted that
drone sounds interfered with the acoustic data of the tap testing procedure and may have
marginally impacted the accuracy of the results. Another study focused on inspecting
piers and floor slab of a bridge using UAV-based hammering test [47]. The methodology
proposed identifying defects by assessing the resonant frequency of the bridge surface. The
study also focused on countering the contact force resulting from the hammering test on
the UAV as well as enabling autonomous flight control.

4.4. Comparative and Integrated Studies

Stand-alone techniques, although satisfactory in performance, have the disadvantage
of flagging false positives in damage detection [4,48]. Integration of various NCT technolo-
gies can potentially enhance confidence in identifying and quantifying deterioration as
well as improving the reliability of the bridge condition rating process. The technologies
can work in tandem with each other, enhancing detection rate and mitigating limitations.
Escobar-Wolf et al. studied the potential of integrating visible and IR cameras for dam-
age evaluation [49]. Although stand-alone IRT-UAV system (validated against hammer
sounding tests) provided satisfactory results, integration with photogrammetry enhanced
performance by eliminating wrongfully mapped delamination regions. However, the study
noted that defects detected by the IR system had higher probability of arising from actual
delamination, unlike those observed by both IR and visible camera, which may arise from
fluctuations in the surface material properties. Another study presented the feasibility
of incorporating UAV-borne visual and thermal cameras, as well as laser scanners, to
develop a comprehensive condition monitoring system [50]. The UAV-VI enabled crack



Remote Sens. 2021, 13, 1809 12 of 38

monitoring and structure texture modelling, whereas the IR sensors allowed detection
and classification of humidity-related damage. LiDAR sensors on the other hand were
particularly useful for surface reconstruction and deformation detection.

Another study mounted color and IR cameras on a UAV for subsurface delamination
detection and quantification [51]. The integrated approach was found to be advantageous
at rapid identification of damage location. However, the estimation of delamination sizes
was not sufficiently accurate, leading to the conclusion that the proposed methodology may
be more suited as a complementary detection technique for ground-based systems. Yoon et.
al embedded a UAV system with vision sensor and 1D LiDAR for bridge inspection [52]. A
1D LiDAR utilizes a still laser beam to compute the distance from the sensor to the obstacle
on a single axe. The LiDAR sensor was integrated with the purpose of obtaining camera
to target distance measurement. The study identified missing regions and damage spots
within 10 cm accuracy. The approach detected cracks unnoticed during visual inspection
and obtained more precise damage localization results.

5. Factors Affecting UAV Performance

UAV operations are characterized by several factors, including equipment characteris-
tics, pilot protocols, object properties, environment, and safety regulations, that must be
considered before their integration into the airspace. Clear understanding of these factors
is essential to facilitate safe and efficient operations.

5.1. Equipment Characteristics

Size and design of the aerial system, payload capacity, battery capacity, and control
range, including the distance and duration for safe flight, are some of the equipment-related
factors affecting UAV performance [53]. The application it is used for guides the relative
significance of the performance factors. Optimizing the flight path and selection of control
locations are reliant on these factors as well as on the shape and size of the target bridge. The
three typical designs of UAVs are fixed-wing, rotorcraft, and vertical take-off and landing
(VTOL) vehicles [12]. Fixed-wing drones operate similar to conventional aircrafts, in terms
of varying airframes as well. Similarly, rotorcraft UAVs are comparable to helicopters, with
rotating propellers connected to the aircraft frame. A variation of this type is the multirotor
UAV which has multiple propellors extending from the main body boosting the drone
flight. Lastly, VTOL UAVs fuse fixed wing and multirotor designs, where the aircraft is
vertically propelled and then fly horizontally. Fixed-wing UAVs can efficiently cover large
distances, whereas multirotor UAVs are agile and offer good stability, enabling complex
3D mapping. Rotorcrafts, on the other hand, are challenging for manual flight compared to
multirotors which allow easier control, has increased lift capacity, allowing redundancy in
the event of motor malfunction. Instability or increased movement of the UAV can result
in measurement errors. The platform must be capable of stabilizing itself (for instance,
against turbulent winds) when conducting close-range inspections. Typically, the flight
duration, often dependent on the payload and battery capacity, is a critical factor to be
maximized for any application. On the other hand, flight duration can also be reliant on
camera resolution and desired survey quality for surveying applications. This is due to
the fact that a shorter flight path is required for those cameras capable of acquiring higher
resolution images. Another factor affecting the flight duration is the conveyed capacity.
Although UAVs can typically bear payloads higher than that specified by the manufacturer,
surpassing the maximum capacity can considerably affect UAV performance resulting in
unstable and shorter flights, due to greater energy expended. Several studies used gimbals
to improve stability and measurement accuracy of aerial platforms [28,37,51]. In order to
optimize the payload capacity of the UAV, cameras, and sensors with in-built gimbal may
be considered.
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5.2. Pilot Capabilities

The quality of the obtained data is critically dependent on the pilot’s capabilities
and comfort during flight operation [53]. The pilot is not permitted to operate UAVs
under the influence of alcohol or drugs as well as certain medications or has underlying
medical ailments such as epilepsy, hyperventilation, stress, fatigue, dehydration, and
heatstroke [54]. Operation under any of these circumstances can result in disruption of
smooth operations and loss of perceptual field. The pilot is obliged to complete a physical
self-assessment prior to every flight. Often regulations necessitate an assisting observer to
reassess the flight paths and safeguard the drone operations. Additionally, education and
training of the pilots is essential as this affects the drone control, communication between
the on-field team as well as compliance with the safety regulations. The Federal Aviation
Administration in 2016 reported that the largest percentage of drone accidents occurred as
a result of error on the behalf of the pilot [55]. This primarily stemmed from uncertainty
about legal constraints, poor understanding of clearance requirements, and lack of risk
mitigation strategies in place.

5.3. Bridge Material and Geometry

Although UAV-based damage identification is applicable to versatile materials (steel,
timber, and concrete), numerous bridge elements (deck, abutments, trusses, girders, etc.)
and wide range of damage types, steel and timber truss bridges are considered as difficult
bridges to be digitized by drone-assisted photogrammetry [27,31]. Tomiczek et al. reported
better performance of UAVs when inspecting prestressed concrete girder spans compared
to steel girder spans [35]. Possible reasons were attributed to the magnetometer on the UAV
being affected by the steel material as well as a lack of texture on the painted steel girders,
which may have inhibited the detection potential of the optical flow sensor. It was further
noted that certain geometries, such as low-clearance spans with tight girder spacing, may
result in low light conditions which was another factor affecting the capabilities of the
optical flow sensor. Such instances also have the potential to affect the precise estimation
of velocity and position of the aerial systems, thereby deterring autonomous flying under
particular geometries. Another study quantified the range of maximum crack to camera
distance for the identification of fatigue cracks as 0.3 m (poor-lit conditions) to 1.1 m
(well-lit conditions) [25]. Seo et al. suggested rigorous flight planning to avert image
overexposure and avoid obstacles as well as attaching flashlights to the system to improve
the illumination of poorly lit geometries, such as bridge decks [10]. To combat the loss of
GPS data in certain geometries, geotagging position estimation method was utilized [56].

5.4. Environment

Environmental factors, typically weather condition or path obstructions, are some
pivotal factors influencing UAV performance for bridge condition monitoring [53]. Pre-
cipitation would render the drone inoperable. Gusts of wind, in particular, can highly
impact drone stability, resulting in turbulence and compromised data quality, especially
in the case of small and light-weight UAVs. Additionally, the mode of flight may switch
from automatic to manual which requires trained personnel. One such study maneuvered
small UAV weighing 2.5 kg in wind speeds up to 6.7 m/s. Trees, electric wires or other
obstacles in the UAV path can hinder the operator’s line of sight as well as affect aircraft
safety, which may warrant the addition of control points and flight-route segments [35].
Another study identified excessive windy conditions and overexposure of visual camera to
sun or snow as some of the factors affecting UAV performance [27]. Poor GPS connectivity
and windy conditions can also result in the loss of autonomous control and acquisition
of unclear or fuzzy data leading to difficulties in damage detection [25,35]. Additionally,
when flying close to the ground surface, the UAV imaging quality could be affected by
the dust particles [57]. Another study recommended wind speeds less than 24.1 km/h for
safe operation of UAVs [10]. Appropriate ambient temperature during image acquisition is
vital, as extreme cold can affect the aircraft battery performance, thereby reducing flight
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duration [24,29]. Additionally, it was recommended to conduct the site experiment on
cloudy days or in the early hours of the morning to ensure consistent illumination. Salaan
et al. developed a UAV encompassed in a passive rotating spherical shell which was
capable of withstanding wind speeds up to nearly 36 km/h [58]. The developed system
was able to identify 0.1 mm cracks at 0.5 m distances, recover from collisions up to 5 km/h
as well as provide complete overhead view enabling data acquisition at any part of the
bridge.

5.5. Safety Regulations

The primary obstacle facing the rapid development of UAVs for commercial activities
is related to their safety case. In the past decade, a myriad of regulatory agencies supported
the implementation of safety regulations to be followed during the operation of UAVs.
In 2011, the International Civil Aviation Organization (ICAO) mandated UAVs to apply
appropriate government rules and exhibit safety levels comparable to that of manned
aerial systems [59]. The Federal Aviation Administration in the United States produced a
framework in 2012 enabling commercial usage of UAVs. Meanwhile, the United Nations
created an advisory group in 2015, consisting of the United States, France, and China, and
industrial organizations to establish international safety regulations to be implemented
during unmanned aerial flights [60]. Several countries, including Australia, Brazil, Canada,
France, Hong Kong, India, Indonesia, Japan, Malaysia, The Philippines, Republic of Ireland,
Singapore, South Africa, South Korea, Thailand, United Kingdom, United States, and
Uruguay have initiated some form of regulatory framework for aerial systems [61–66].
These regulations stipulate UAV weight and altitude restrictions, safe distances to be
maintained from built structures, traffic, and human populace, as well as limit their
operations to daytime and within Visual Line of Sight. Many of these regulations also
require obtaining pilot licensure and approvals from local authorities before flight. Drone
operations over certain areas such as nuclear power plants, penitentiaries, military sites,
airports etc., are restricted. However, it should be noted that some of these regulations
may be waived under the right circumstances. Overcoming regulatory hurdles, several
scientific and engineering professionals have explored the integration of UAV technology
into their respective disciplines. These regulations need to be thoroughly deliberated before
deploying UAVs as some of these restrictions including traffic related restrictions may
affect the data collection process of sections adjacent to roadways, which in turn may
require bridge inspectors to apply mitigative measures to avoid incomplete datasets.

6. Data Collection Planning

Calì and Ambu explored elliptical and cylindrical data acquisitions patterns [67]. The
results showed that optimal 3D modelling was possible when using cylindrical camera grid.
Additionally, the Structure-From-Motion (SfM) algorithms utilized in the study enhanced
the accuracy of 3D reconstruction of bridge structure containing extended longitudinal
form, geometric peculiarities, and inclined attributes. Another study investigated the
usefulness of visual servoing control tactic, capable of differentiating translation and
orientation aspects, for autonomous flight of video camera-borne UAV [68]. The data
acquired using the proposed technique demonstrated the potential for the detection of
cracks as small as 0.1 mm.

Several studies explored autonomous flight [34,36,44,47,69,70]. GPS is commonly used
for autonomous flight control. However, they offer poor reliability as satellite connection
could be interrupted in certain areas such as at the bottom of bridge decks. Bolourian
and Hammad explored automated 3D path planning technique for a LiDAR-borne UAV
system to minimize flight time while maximizing visibility and avoiding obstacles [70].
Integrating Genetic Algorithm and A* algorithm enabled prioritizing regions with high
risk levels while simultaneously realizing accurate and time-efficient data acquisition.
Another study achieved autonomous flight control by constructing a broader coordinate
system based on the assimilation of two photographic images which enabled UAV position
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measurement [34]. Similarly, autonomous flight path was configured using a simple 3D
model and satisfying several constraints including collision avoidance, complete structural
coverage, sufficient and quality dataset compilation, and optimized flight routes [36].
Another study embedded autopilot components based on GPS signal into a multirotor
design [43]. However, to avoid the loss of position information and potential collision
under restricted locations, integration of other position estimation sensors such as optical
flow or visual odometry was considered.

7. Data Analysis Methods

Few studies focused on developing adequate data processing techniques to comple-
ment the UAV-based data acquisition. These studies evaluated the usefulness of computer
algorithms with data obtained from drones (primarily VI-UAVs) to quantify defects and
extract accurate information that will promote bridge management decisions. This is partic-
ularly important as environmental disturbances such as unbalanced lighting, noises issuing
from the drone hardware, and drone shakiness results in hazy and low-quality images.
One such study developed a custom software named DEEP (DEfect detection by Enhanced
image Processing) which utilizes red-green-blue (RGB) color code based image processing
to assess the damage expansion [71]. When compared with CAD-based computing, close
correlation between the results was observed. However, it was noted that the CAD-based
technique was slightly more accurate whereas the RGB method was faster. Akbar et al.
used speeded up robust features (SURF) algorithm to stitch images captured by an aerial
platform [72]. The proposed methodology was capable of executing image stitching even
when wind gusts or calibration issues resulted in angular displacement of the drone.

Another study compared the usefulness of various edge detection algorithms (per-
formed in spatial and frequency domains) for defect detection in UAV-based image ac-
quisition scenarios [73]. The study indicated that damage identification using LoG filter
in the spatial domain demonstrated highest accuracy (92%), detected fine cracks (up to
0.2 mm) and had the quickest processing time (1.18 s per image). The image processing
results in the frequency domain was noisier and processing time was longer compared to
the spatial domain. Lei et al. developed a technique based on the crack central point to
improve the accuracy and denoising ability of traditional edge detection algorithms [74].
The proposed method was capable of extracting crack information quickly and accurately
from small datasets. Moreover, this method demonstrated higher adaptability to different
datasets. Ellenberg et al. used post-processing algorithms such as homography and lens
distortion correction for deformation quantification, change detection, and crack pattern
detection [75].

A recent study related to structural performance used fiducial markers and optical flow
tracking to automate bridge displacement measurement [76]. The proposed data collection
strategy involved acquiring data of portions of the structure at a time which enabled
maximizing image resolution, increasing accessibility as well as reducing atmospheric
effects and distortion. Reliable results were obtained with error less than 1.6% and modal
assurance criteria higher than 0.925. Another recent study investigated deflection detection
using Deformation Area Difference (DAD) method, reliant on the synergy between bending
moment and curvature [69]. Data obtained from VI-UAV demonstrated higher precision
for deflection measurement (0.1186 mm) compared to TLS (0.236 mm) but was observed to
be less precise than levelling (0.064 mm) and displacement sensors (0.0329 mm). Results
also indicated that noise level and deflection size adversely impacted damage detection
capabilities of the proposed technique. Moreover, damage localization was difficult closer
to the support structures. Lattanzi et al. conducted 3D image reconstruction using dense
structure from motion (DSfM) [77]. DSfM was found to be particularly useful for structures
requiring complicated reconstruction. However, the technique demonstrated distortion
and low accuracy for areas with low-image texture or planar surfaces. Another study
developed a semi-automated framework for 3D bridge modelling based on rule-based
classification for the creation of labelled models from photogrammetric point clouds [78].
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Voxel structure and global graph optimization distinguished structural components based
on geometric characteristics, whereas classification tree identified structural features. The
error associated with reconstruction was as low as 0.4%.

Few studies integrated AI or machine learning algorithms for improved data process-
ing capabilities. Kim et al. used deep learning convolutional neural networks for detection
and measurement of crack geometry via image classification and localization [79]. The
algorithm was sufficiently accurate generating a relative error up to 2%. However, the
study noted that shadows and intensity of incident light affected the crack quantification
process which could remedied by utilizing lighting equipment or post processing tech-
niques. Another study compared the corrosion sizes obtained from K-means, static, and
manual measurements [75]. Although, K-means clustering algorithm was observed to
be the least labor intensive, static, and manual measurements reported higher accuracy.
K-means was also used to distinguish the objective thresholds of drone-based thermal
data [41], and for crack detection using image segmentation [74]. Convolutional neural
network (CNN) was also found to be useful for crack detection, capable of performing
under varying light, surface finish, and humidity conditions [80]. Another study utilized
region-based CNN for damage identification and localization [52].

8. Cost Considerations

Over the course of the last decade, technological enhancements have made UAV
systems more accessible, improved functionalities, while simultaneously reduced costs.
A wide array of UAV systems at varying price ranges are available in the market to cater
to the increasing demand arising from civilian applications. The UAV specialization and
performance attributes including UAV design, payload capacity, battery capability, flight
duration, data processing facilities, sensor compatibility, etc., influence the costs associated
with the aerial systems. The cost of commercial UAVs can range between less than USD 50
to more than USD 50,000 based on the level of specialization, complexity, and integrity of
the system [12]. Improved capabilities and sensor integration enabling collision avoidance,
attitude, altitude, and position control can result in further cost accumulation. Few studies
tallied the costs of UAV-enabled bridge monitoring and reported varying results. One such
study compared the expenses associated with Fracture Critical Member inspections using
UAV and Under-Bridge Inspection Truck (UBIT) [66]. Although the hourly cost of UBIT
inspection was twice that incurred by UAV, the latter required more time for complete
bridge inspection compared to the former, which resulted in UAV inspection being 130%
more expensive than UBIT (USD 3600 and USD 1564, respectively). On the other hand,
10% lower cost was incurred to inspect bridge elements using a small UAV compared to
Under-Bridge Inspection Truck (UBIV) [81]. Wells et al. reported 66% cost savings when
utilizing UAV-based inspection compared to traditional methods [57]. The former required
USD 20,000 and just 5 days on site, whereas the latter amounted to nearly USD 59,000 and
8 days of inspection on site. Similarly, another study reported 46% faster and 61% more
cost-effective inspection due to UAV deployment [82]. This disparity can be attributed
to the fact that cost and time-saving benefits of UAVs are applicable only for large-scale
bridge inspection projects. Additionally, more studies are required to quantify the cost
implications of wide variety of bridge superstructure types, and other factors including site
conditions, this comparison may not be representative for all routine bridge inspections.

9. Simulation Platforms

Various simulation and data processing platforms are available to process the infor-
mation acquired from the NDT-UAV systems. Figure 9 illustrates the frequently utilized
software for UAV-based bridge condition monitoring. Matlab was observed to be the
most widely used software package, particularly employed for its image processing al-
gorithms and capabilities including image stitching and enhancement, edge detection,
entropy definition, intensity adjustment, pixel extraction and clustering, computation of
coordinates, among others [9,26,53,73,75]. Agisoft Photoscan and Pix4Dmapper were other
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commonly used software, particularly proficient at 3D modelling and reconstruction. The
former, useful to process LiDAR and photogrammetry data, was used for data quality
assessment, damage analysis including the quantification of crack length, thickness and
defect area, and assessment of translation movement [27,28,35,36,78]. On the other hand,
Pix4Dmapper was primarily utilized for 3D model generation based on RGB, thermal,
or multispectral images [36,38,41,83]. CAD-based software was often utilized for defect
evaluation, 3D modelling, geometric measurement, as well as extraction of design informa-
tion [9,79]. Meshlab and Revit allowed 3D processing and generated renderings providing
geometric information [53,70,77,83]. OpenCV, OpenMVG, and OpenMVS were used for the
estimation of photogrammetric camera calibration parameters, sparse point cloud recon-
struction and dense point cloud reconstruction, respectively [24,29,38,77]. ImageJ offered
data enhancement capabilities including noise reduction and thermal enrichment, as well
as provided image analysis algorithms for damage quantification [41,84]. Other efficient
photogrammetric software packages useful for bridge 3D modelling include ContextCap-
ture, RealityCapture, and PhotoModeler, capable of representing real-world conditions in
the form of 3D reality meshes [18,82].

Figure 9. Types of simulation platforms and corresponding number of studies.

10. Conclusions and Future Recommendations

Transportation agencies and government stakeholders are in need of technologies that
can tackle the challenges posed by traditional methods while simultaneously delivering
reliable data. Mitigating risk of accidents during bridge inspection process and accessibility
advantages have driven research towards the implementation of UAVs. UAVs have proven
improved accessibility and cost efficiency, avoidance of traffic closure, as well as reduced
safety hazards during the inspection process. The present review analyzed novel research
studies dedicated to the application of UAVs in the realm of bridge condition monitoring,
with focus on the possibility of utilizing non-destructive technologies with the UAV data
collection process. The study critically analyzed the performance of UAVs equipped with
NDTs, including infrared systems, visual imaging devices, LiDAR, and other sensors.
Based on the data extracted from sixty-five Scopus-indexed conference and journal articles,
it can be deduced that a significant number of studies carried out in this field utilized visual
imagery for UAV-based data collection and processing. This can be attributed to robustness
of established imaging tools and the popularity of UAV systems with integrated cameras.
Although UAVs offer several advantages over traditional inspection techniques, they are
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also incumbered with inherent limitations and several challenges for researchers to further
consider and investigate improvements. These challenges include:

1. Lack of standard UAV-based inspection procedures compared to the standard visual
inspection procedures documented in bridge inspection manuals.

2. UAV path obstructions and unfavourable weather conditions, including gusts of wind
and precipitation, can disallow safe and stable operations.

3. Equipment constraints such as battery life and payload limitations can affect flight
duration and path planning.

4. UAV safety or performance may be compromised due to network instability or GPS-
denied conditions.

5. Line of sight constraints often necessitate the requirement of visual observers or
surveillance technology when inspecting remote bridge elements.

Data acquisition, processing and related bridge condition rating using UAV require
analysis and validation. The emerging science and technologies related to internet of things
and artificial intelligent applications can play vital role in this prospective.

In summary, the conclusions and recommendations of the current study can be sum-
marized as follows:

1. The review highlighted a dearth in utilizing specific NDT technologies such as the
LiDAR with UAV for data collection.

2. Drone assisted thermal imagery is useful for the detection of subsurface anomalies.
Standard procedures/guidelines for thermography-UAV based condition monitoring
of bridges are still limited in the literature.

3. Additional studies required to comprehensively characterize surface and subsurface
defects simultaneously which may be achieved by equipping UAVs with multiple
sensors such as LiDAR, thermal and optical cameras. Additionally, assimilation of
inertial and spatial sensors can generate georeferenced 3D data.

4. Rigorous research required to enhance drone performance under varying weather and
illumination conditions. It is critical to identify the relation between drone altitude
and damage detection accuracy.

5. GPS-free stabilization of UAVs and the utilization of advanced onboard visual and
obstacle avoidance sensors such as multidirectional vision stability sensors as well as
collision-tolerant design need to explored further in the context of bridge monitoring.

6. Detailed cost–benefit analysis to clearly quantify and outline the expenses associated
with UAV operation.

7. More studies are needed to quantify savings associated with time and assess reduc-
tion in safety risks related to UAV implementation compared to traditional visual
inspection.

8. Investigation of potential of incorporation of UAV within inspection guidelines in
bridge inspection manuals with specific standard procedures for data collection and
analysis.

9. Studying the applicability of drone-based inspection for various bridge types, materi-
als, and geometries.

10. Future studies need to further explore potential of emerging technologies such as AI
and IoT techniques for autonomous data collection and processing. Examining real
time data processing and also feasibility assessment of remote inspections using 5G
connectivity should be explored.
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Appendix A

Table A1. Summarized research data extracted from selected studies.

Reference Year Publication Type Type of Technology Validation Test Object Type of Measurement Data Acquisition Tools Software Algorithm

[66] 2019 Journal VI-UAV Bridge in
Ashton, Idaho Fatigue cracks

DJI Mavic Pro
sUAS/Camera/Hands-

on (Under-Bridge
Inspection Truck

(UBIT))

-

[71] 2020 Journal VI-UAV CAD-aided
evaluation

5 Railway
Bridges//Italy

Inspecting Bridge
Defects

Aibot X6 (flying
hexacopter)//DOMUS

Bridge Management
System (BMS)

(management tool)

DEEP
(DEfect

detection by
Enhanced

image
Processing)
developed

by the
authors

The condition
evaluation

algorithm//color-
based

algorithm

[68] 2007 Journal VI-UAV Visual
inspection

Viaduct in
France

Inspecting Bridge
Defects

Camera//UAV//on-
site

experiment
-

[72] 2017 Journal VI-UAV

A sample
structure was

built to be
used/

Real-world
concrete
structure

Defects such as the
displacements and

cracks

4K resolution
camera//UAV

(Phantom
Professional-3)

-

Speeded up robust
features (SURF)-based

feature detection
algorithm//random

sample consensus
algorithm//image

processing
algorithm//The scale-

invariant feature
transform

algorithm//Image
stitching

algorithm//random
sample consensus

(RANSAC) algorithm
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Table A1. Cont.

Reference Year Publication Type Type of Technology Validation Test Object Type of Measurement Data Acquisition Tools Software Algorithm

[26] 2018 Journal VI-UAV

Static
images;
Digital
display

crack width
measure-

ment
device

Concrete
Structures Cracks Camera//Laser Rang

Finder//UAV//IMETRUM MATLAB

[34] 2019 Journal VI-UAV - - Two USB cameras
(Logicool C920)//UAV -

[73] 2019 Journal VI-UAV Ground
truth

Concrete
panels (At lab) Crack detection

Camera//UAV//Digi-
Sense data logging light

meter with NIST
MATLAB

Edge detection was
carried out by six

filters in the spatial
(Roberts, Prewitt,

Sobel, and Laplacian
of Gaussian) and

frequency
(Butterworth and

Gaussian)
domains/image

processing
algorithms/Edge

detection
algorithm/crack

detection algorithm
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Table A1. Cont.

Reference Year Publication Type Type of Technology Validation Test Object Type of Measurement Data Acquisition Tools Software Algorithm

[51] 2016 Journal IRT-UAV, VI-UAV

Rolling cart
with

infrared and
color

cameras

Bridge Deck Detection of
delamination//Cracks

GoPro Hero 3+ silver
edition color camera

and a FLIR Tau 2
uncooled core IR cam-
era//UAV//Infrared
and color cameras was

used to validate the
results obtained by the

UAV.

Microsoft
ICE

FLIR a325sc
delamination

detection
algorithm/The UAV

algorithm/The
identification

algorithm

[9] 2018 Journal VI-UAV Measuring
tape

Timber arch
bridge

Crack lengths,
thicknesses, and rust

stain

UAV (Dà-Jiang
Innovations (DJI,

Shenzhen, Guangdong)
Phantom 4)

MATLAB/
AutoCAD

sharpness estimation
algorithm developed

by Birdal (2011)

[35] 2019 Journal VI-UAV Visual
inspection

Eight bridge
inspections in
North Florida

Routine Inspections,
Special Inspections, and

Damage Inspections.
Camera/UAV Agisoft

PhotoScan

[75] 2015 Journal VI-UAV
Concrete

Structures (At
lab)

Deformation/
Corrosion/Crack

Camera (Sony NEX
7)/GoPro camera/UAV
(Da-Jiang Innovations

(DJI) Phantom)

MATLAB/Paint

K-means
algorithm/post-

processing
algo-

rithms/calibration
algorithm/crack

identification
algorithm/texture

identification
algorithms/camera

calibration
algorithm/crack

detection algorithm
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Table A1. Cont.

Reference Year Publication Type Type of Technology Validation Test Object Type of Measurement Data Acquisition Tools Software Algorithm

[53] 2019 Journal VI-UAV
Bridge in
Eugene,
Oregon.

Conventional bridge
inspection/Crack

Camera/UAS (DJI
Mavic Pro)/Evaluation
(Interview, Nationwide

survey)

Revit/BIM
360 Glue/
MATLAB/
Notepad++

image processing
algorithm/machine
learning algorithm

[58] 2016 Journal VI-UAV

Concrete-type
slab bridges
and concrete

and steel
box-girder
bridges in

Japan

Inspecting Bridge
Defects

Rotor-type UAV
(quadcopter)/PRSS

UAV

VICON
TRACKER

[42] 2019 Journal IRT-UAV Handheld IR
camera

Concrete
Specimen

Detection of
Delamination

Professional handheld
IR camera

(H-IRC)/UAV mounted
with an IR camera

(UAV-IRC)

-

[56] 2017 Journal VI-UAV Bridge in
Japan

Detection of
delamination/Cracks

360-degree spherical
camera/UAV with a

multi-rotor
(multicopter)/large-
sized two-wheeled

multi-copter

3D CAD/2D
CAD

algorithm of position
estimation using

RICOH THETA/the
registration algorithm

[27] 2018 Journal VI-UAV
Historical
inspection

reports

Timber girder
bridge

structure in
USA

Cracking, spalling,
corrosion, and moisture

on the bridge

UAV (Dà-Jiāng
Innovations (DJI)

Phantom 4)
PhotoScan
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Table A1. Cont.

Reference Year Publication Type Type of Technology Validation Test Object Type of Measurement Data Acquisition Tools Software Algorithm

[28] 2020 Journal VI-UAV
Based on

coordinate
values

Model
mockup

bridge (Scale
1:10)

Dimensions

Digital single lens reflex
(DSLR)

camera/Hexacopter
UAS

Ground Sta-
tion/Agisoft

Photoscan

[25] 2018 Journal VI-UAV Human
inspections

Model
mock/Fall

River Bridge
in Ashton,

Idaho

Fatigue Crack Detection

Nikon L830
Camera/GoPro

camera/UAS (Mavic,
Inspire & Phantom)

-

[10] 2018 Journal VI-UAV

Glulam,
three-span

timber girder
bridge in
Keystone,

South Dakota

concrete cracks,
spalling, and moisture
on concrete decking,
and salt deposit and
moisture on timber

girders

UAV (Dà-Jiāng
Innovations (DJI)

Phantom 4)
-

[36] 2019 Journal VI-UAV
Railway
bridge in
Germany

Damage patterns such
as cracks Camera/UAV

Agisoft
Photoscan/

Pix4Dmapper/
Colmap/

WebODM

MVS
algorithm/tailored

point cloud analysis
algo-

rithms/clustering
algorithm/Pseudo-

algorithm/SfM
algo-

rithm/automated
object recognition

algorithms
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Table A1. Cont.

Reference Year Publication Type Type of Technology Validation Test Object Type of Measurement Data Acquisition Tools Software Algorithm

[31] 2020 Journal VI-UAV Steel bridges
in USA

Rust distributed/local
observation/Macro-

observation
Camera/UAV -

The
segmentation/Edge
detector algorithm,

such as Prewitt, Sobel
or Canny Edge

Detector/lens contour
extraction algorithm

[24] 2019 Journal VI-UAV

Vernier
caliper, crack

ruler,
hand-held

DSLR

Bridge Deck cracks Camera/UAV openMVS/C++

[70] 2020 Journal TLS-UAV
Bridge in
Alberta,
Canada

Bridge surface defects
such as cracks

LiDAR-equipped UAV
(MIT RANGE/Bigone 8

Hsepro LiDAR)

Unity 3D/
CSiBridge

/Revit 2017

Genetic Algorithm
(GA) and A*

algorithm, path
length matrix

calculation

[30] 2017 Journal VI-UAV

Reinforced
concrete
bridges

(Boğaçayı
Bridge in
Antalya,
Turkey)

Bridge modelling Camera/UAV SAP2000 Three-Dimensional
Finite Element model

[74] 2018 Journal VI-UAV

concrete
cracks

inspection
experiment

cracks Quadrotor UAV -

Edge detection
algorithms such as
Canny algorithm,
Prewitt algorithm,

and Sobel
algorithm/Robert

algorithm/The LoG
algorithm/K-means
clustering algorithm
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Table A1. Cont.

Reference Year Publication Type Type of Technology Validation Test Object Type of Measurement Data Acquisition Tools Software Algorithm

[45] 2019 Journal Sensor-UAV

linear
variable

differential
transducers

(LVDTs)

Railroad
bridges

Transverse bridge
displacement
measurement

Vibrometer
sensor/OFV-534 LDV

by Polytec/UAS
-

Algorithms based on
trigonometric
principles to

compensate for the
motion of the

vibrometer

[83] 2019 Journal VI-UAV

Bridge over
the Basento

river in
Potenza, Italy

3D modelling

Camera/commercial
UAV DJI Mavic

Pro/photographic
sensors/laser scanner

Photoscan/
Pix4d/MeshLab
/Rhinoceros

v6/
Mesh2Surface

Structure from
Motion

(SFM)/SIFT/Poisson
disk/Poisson surface

reconstruction

[46] 2018 Journal Sensor-UAV Manual tap
testing

Railroad
bridge

structural

Structural integrity of
concrete.

TASCAMDR-44 WL
digital recorder/Four

external
microphones/UAV (DJI

Phantom multirotor)

-

The machine learning
algorithm/variety of
structural integrity

algorithm

[41] 2017 Journal IRT-UAV, VI-UAV
Hammer
sounding;

HCP testing

Concrete
bridge decks Cracks

IRT camera (FLIR Vue
Pro)/UAV/IPad Mini 4

device

Matlab/FLIR/
ImageJ/Pix4D

map-
per/Excel

Stitching
algorithm/k-means

clustering
algorithm/image

segmentation
algorithm

[47] 2018 Journal Sensor-UAV Floor slab of a
bridge

Bridge surface defects
such as cracks

8 Rotor UAV/3 DoF
manipulator/Camera

Architecture
(Developed

by the
authors)
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Table A1. Cont.

Reference Year Publication Type Type of Technology Validation Test Object Type of Measurement Data Acquisition Tools Software Algorithm

[32] 2018 Journal VI-UAV

Pinned-
connected
steel truss

bridge

Displacement
Measurement

6 DOF camera
motion/UAS (DJI

Phantom 3
Professional)

-

Template-matching
algorithms/optical
flow-based tracking

algorithm

[38] 2019 Journal VI-UAV TLS

Boyne Viaduct
Bridge in
Drogheda,

Ireland

3D Reconstruc-
tions/Damage

Evaluation

12-megapixel digital
camera/UAV (DJI
Phantom 4)/Laser

scanner

VisualSFM/
OpenMVG/
PhotoScan/

Pix4D/
PhotoScan

The iterative closest
point (ICP) algo-

rithm/Autoclustering
algorithm, such as k-
means or DBSCAN.

[37] 2017 Journal VI-UAV TLS

Placer River
Bridge in

North
America

3D Reconstructions
Camera (Sony

NEX-7)/UAV (DJI S800
airframe)

GCS
software
/Agisoft

Photoscan/

Hierarchical Dense
Structure-from-

Motion
algorithm/Fast

Approximate Nearest
Neighbours (FANN)

algorithm/the
eight-point

algorithm/global
pixel-wise

image-matching
algorithm/Semi-
global Matching

(SGM)/Perspective-n-
Point (PnP)
algorithm

[33] 2014 Journal VI-UAV
X-box
Kinect,

TRITOP

Pedestrian
bridge

Bridge surface defects
such as cracks and

deformation

Camera/UAV (Parrot
AR 2.0)/Apple iPod

touch
Matlab

A computational
algorithm/Kinect

MATLAB algorithm/
Unmanned aerial
vehicle MATLAB
algorithm/image

processing algorithm
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[29] 2018 Journal VI-UAV Bridge in
Switzerland. 3D Reconstructions

12.4-megapixel
Zenmuse X3

camera/UAV (DJI
Inspire 1)

OpenCV/
OpenFOAM/
openMVG/
openMVS/
Blender/

swiftSnap/
ParaView

Patch-Match
algorithm/Structure
from Motion (SfM)
photogrammetric

algo-
rithms/implemented
surface reconstruction

algorithm

[57] 2017 Journal VI-UAV Four bridges General bridge
inspections

Camera/SenseFly albris
UAS/Rope access

inspection
-

[76] 2019 Journal VI-UAV

Little Golden
Gate Bridge in

Mahomet,
USA

Displacement data Camera/UAV -

Natural excitation
technique for the

eigen-system
realization algorithm

(NeXT
ERA)/Levenberg–

Marquardt
Algorithm/marker
detection algorithm

[50] 2017 Journal IRT-UAV, VI-UAV,
TLS-UAV

Segmental
box-girder

bridge

Digital 3D
reconstruction UAS/LiDAR sensor

WebGIS/
PostGIS/

PostgreSQL

Structure-from-
motion

algo-
rithms/automated

crack-detection
algorithms
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[79] 2018 Journal VI-UAV Old concrete
bridge Crack Identification Camera/UAV (Inspire 2

with Zenmuse X5S)

Pix4D Map-
per/AutoCAD

2017

Deep learning
algorithm/vector
machine (SVM)

algorithm/image
pyramid algorithm

the region of interest
(ROI) algorithm/the

Sobel edge
detection/The CNN
training algorithm

using Cifar-10
data/crack

quantification
algorithm

[44] 2020 Journal VI-UAV, TLS-UAV

Navas bridge
at

Algodonales,
Cadiz, Spain

General bridge
inspection UAV (DJI 2312E rotors)

Architecture
Diagram
Software

[69] 2020 Journal VI-UAV

Laser
scanner,

terrestrial
photogram-
metry, total

station,
levelling,
displace-

ment
sensors

Bridge in
Altrier,

Luxembourg
Damage localisation

Drone DJI Matrice
600/camera Fujifilm

GFX50S /laser scanner
(Leica P20)/total station
(Leica TS30 and Leica
TS60)/levelling (Leica

DNA 03)/displacement
sensors (Two

displacement sensors
from

HBM)/Photogrammetry
(full-frame camera

Nikon D800)

Elcovision
10/Sofistik
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[67] 2018 Journal VI-UAV
TLS, total

station-
theodolites

Bridge of the
Saracens in

Adrano, Italy
(Ancient

arched brick)

Reconstruction of 3D
surfaces

Camera (GoPro Hero
4)/UAV Hexacopter

with Lipo 4S cells

Pix4Mapper/
Pix4Dmapper

version 3/
MeshLab/

Flying
software

(Arducopter
3.1.5)

ICP
algorithm/Structure-
From-Motion (SfM)

algorithms/Area
Based Matching

(ABM)

[39] 2019 Journal VI-UAV TLS
Bridge of the

Han River,
Korea

3D modeling Terrestrial
LiDAR/UAV/Camera

Trimble Real
Works

(TRW)/UAS
Master

[85] 2018 Journal VI-UAV

The Ponte
delle Torri
masonry
bridge in

Spoleto, Italy.

3D modeling
(Geometry)/Crack

pattern

Multicopter SenseFly
Exom drone equipped

with ultrasonic and
circular vision sensors

ARTeMIS
Modal Pro/
PhotoScan/

Abaqus

Crystal Clear SSI
algorithm

[77] 2015 Journal VI-UAV Tape mea-
surements

Pedestrian
bridge/Artificial

structures
(Lab)

3D reconstruction Camera/UAS/LADAR

MeshLab/123D
Catch/OpenCV/

Arc3D/
clustering
views for

multi view
stereo

(CMVS)/OpenGL
graphics

API/SURF

The IM reconstruction
algorithm

[43] 2019 Journal VI-UAV, Sensor-UAV
Two bridges

with different
features

General bridge
inspection

Camera/UAS/total
station/manual contact -

[52] 2020 Journal VI-UAV, Sensor-UAV Visual
inspection

Laboratory-
scale concrete

shear
wall/Bridge

structure

Damage localization Camera (Sony
A9)/UAS/1D LiDAR - The mask R-CNN

algorithm
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[49] 2017 Journal IRT-UAV, VI-UAV Hammer
sounding

Two bridge
deck surfaces

in Detroit,
Michigan

Concrete delaminations

Thermal infrared
imaging camera

(FLIR)/Nikon D800,
digital single-lens reflex
(DSLR) camera/UAV
(Bergen hexacopter)

Matlab

The classification
algorithm/the
mapping algo-

rithm/sophisticated
analysis algorithms,

[78] 2019 Journal VI-UAV Two bridges in
China

3D Reconstruction of
Structural Surface Camera/UAV

EOS Photo-
Modeler

Scan-
ner/Agisoft
PhotoScan

SfM
algorithm/Poisson

surface
reconstruction/the

Min-cut
algorithm/voxel-

based segmentation
algorithms/Region

Growing (RG)
algorithm/Locally
Convex Connected

Patches (LCCP)
algorithm

[86] 2019 Conference VI-UAV, TLS-UAV

San Cono’s
bridge

(masonry
bridge) in

Bianco river,
Italy

3D Reconstruction Camera/UAV

Pictran-D
digital pho-
togrammet-
ric/Agisoft

Photo-
scan/Mission

Plan-
ner/Rhinoceros/

GTS NX
structural
software
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[87] 2016 Conference VI-UAV
Artificial
structures

(Lab)

Performance and
damages for civil

structures

Camera/UAV Bebop
Drone Matlab

Speeded up Robust
Features (SURF)
Based Feature

Detection
Algorithm/The
stitching algo-

rithm/Autonomous
crack identification
algorithm/Image

registration
algorithm/RANdom
Sample Consensus

(RANSAC)

[80] 2018 Conference VI-UAV
Different
concrete
surfaces

Detect cracks on
concrete surfaces Camera/UAV -

Crack detection
modelrelies on a deep

learning
convolutional neural

network (CNN)
image classification
algorithm/machine

learning-based
algorithm for crack

detection

[88] 2018 Conference IRT-UAV, VI-UAV

Existing
bridge and

pavement in
USA

Damage classification
and condition
assessment.

UAV carrying high
resolution camera and
infrared thermography
camera/Raspberry Pi

camera/DJI Phantom 4
Pro Drone

- Robust algorithm
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[89] 2019 Conference VI-UAV
Bridge on the
Danube River
in Novi Sad

Data collectionto record
the progress during the

construction

Camera/UAV (DJI
Phantom 4 Advanced

Pro,)
-

[90] 2020 Conference VI-UAV Simulated
bridge

General bridge
inspection - Unity game

engine

Augmented reality
(AR) (Virtual reality

environment)

[91] 2019 Conference VI-UAV
Artificial
structures

(Lab)

measure 2D and 3D
shape and deformation

fields in structures

Arduino along with a
LIDAR/Computer
(Microsoft Surface

3)/Quadrotor UAV (DJI
Matrice 100 UAV with

Stereo-DIC
system)/Camera

/OptiTrack motion
capture system

VIC-3D

[92] 2019 Conference VI-UAV
Clifton

Suspension
Bridge

General bridge
inspection

UAV (Hexa-
copter)/Lightware
LW20C lightweight

LIDAR

QGIS/eCalc/CAD

[84] 2020 Conference VI-UAV

Indoor Girder
Inspection
(lab)/Four-
span timber
slab bridge
located in
Pipestone,
Minnesota

Identify and quantify
damage

UAV (DJI Matrice
210)/Gimbal camera

ImageJ/Python
5.0.1

Conventional image
analysis

algorithm/DIC
algorithm

[93] 2019 Conference VI-UAV, TLS-UAV

Bridge in
Benevento,

Italy/Concrete
bridge

Damage
assessment/Real

dimensions of
structural elements.

Drones/Camera/LIDAR Pix4D
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[94] 2016 Conference VI-UAV
Railway

infrastructure
system

structural
faults/security threat

detec-
tion/consequences of

natural
hazards/intentional

attacks

Drones/Camera
/sensors -

Motion tracking
algorithm/Robust

algorithm

[95] 2019 Conference VI-UAV Bridge in USA Crack Detection/3D
object reconstruction

UAS (DJI S900
hexacopter with a

payload of 6.8 Kg)/ZED
Stereo Camera

-

[96] 2016 Conference VI-UAV

Bridge
crossing the
Duck pond,

Korea

General bridge
inspection

USV/GPS/IMU/laser
distance finder

(Hokuyo UST-10LX)
-
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