
remote sensing  

Article

Terrain Proxy-Based Site Classification for Seismic Zonation in
North Korea within a Geospatial Data-Driven Workflow

Han-Saem Kim , Chang-Guk Sun * , Moon-Gyo Lee and Hyung-Ik Cho

����������
�������

Citation: Kim, H.-S.; Sun, C.-G.; Lee,

M.-G.; Cho, H.-I. Terrain Proxy-Based

Site Classification for Seismic

Zonation in North Korea within a

Geospatial Data-Driven Workflow.

Remote Sens. 2021, 13, 1844. https://

doi.org/10.3390/rs13091844

Academic Editor:

Paraskevas Tsangaratos

Received: 25 March 2021

Accepted: 4 May 2021

Published: 9 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea;
adoogen@kigam.re.kr (H.-S.K.); mglee@kigam.re.kr (M.-G.L.); hicho@kigam.re.kr (H.-I.C.)
* Correspondence: pungsun@kigam.re.kr; Tel.: +82-42-868-3265

Abstract: Numerous seismic activities occur in North Korea. However, it is difficult to perform
seismic hazard assessment and obtain zonal data in the Korean Peninsula, including North Korea,
when applying parametric or nonparametric methods. Remote sensing can be implemented for
soil characterization or spatial zonation studies on irregular, surficial, and subsurface systems of
inaccessible areas. Herein, a data-driven workflow for extracting the principal features using a
digital terrain model (DTM) is proposed. In addition, geospatial grid information containing terrain
features and the average shear wave velocity in the top 30 m of the subsurface (VS30) are employed
using geostatistical interpolation methods; machine learning (ML)-based regression models were
optimized and VS30-based seismic zonation in the test areas in North Korea were forecasted. The
interrelationships between VS30 and terrain proxy (elevation, slope, and landform class) in the
training area in South Korea were verified to define the input layer in regression models. The landform
class represents a new proxy of VS30 and was subgrouped according to the correlation with grid-based
VS30. The geospatial grid information was generated via the optimum geostatistical interpolation
method (i.e., sequential Gaussian simulation (SGS)). The best-fitting model among four ML methods
was determined by evaluating cost function-based prediction performance, performing uncertainty
analysis for the empirical correlations of VS30, and studying spatial correspondence with the borehole-
based VS30 map. Subsequently, the best-fitting regression models were designed by training the
geospatial grid in South Korea. Then, DTM and its terrain features were constructed along with VS30

maps for three major cities (Pyongyang, Kaesong, and Nampo) in North Korea. A similar distribution
of the VS30 grid obtained using SGS was shown in the multilayer perceptron-based VS30 map.

Keywords: digital terrain model; proxy; site classification; seismic site effect; VS30; regression model;
geographic information system; North Korea

1. Introduction

Numerous seismic activities such as earthquakes, collapses, and explosions have
been recorded in North Korea. However, assessing the seismic hazards is challenging
because of the lack of and/or discrepancies in the data from public seismic stations,
damage inventories of earthquakes, and site investigation results. Historically, the largest
earthquake (MW 6.2; 19 March 1952) in the Korean Peninsula occurred near Pyongyang,
North Korea [1]. Moreover, nuclear tests between 2006 and 2017 triggered events such as
mine collapses [2]. In North Korea, the Phyongnam and Taebaeksan Basins are two major
Paleozoic basins in the Rangnim massif range and the Gyeonggi and Yeongnam massifs,
where seismic amplification and ground shaking tend to occur [3]. Therefore, seismic site
effects due to the amplification of seismic waves have been suspected to cause aggravated
earthquake hazards in the basin area.

The damage caused by earthquakes is enhanced by the reflection and dispersion of
seismic waves near the surface or shallow subsurface [4]. In city-scale areas with high
spatial variability of terrain or geology, certain wave propagation phenomena related to
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local amplification have been investigated via numerical simulations and seismological
observations [5]. In nationwide areas comprising sedimentary basins, valleys, and moun-
tain ridges or tops, empirical cross-correlations with terrain, geology, and geophysical
characteristics have been estimated, while site response indexes have been developed by
dividing these areas via macro- or micro-seismic zonation.

Many counties have seismic codes to compute the seismic site effects at local sites that
are based on the observed average shear wave velocity (VS) in the top 30 m of the subsurface
(VS30) [6]. However, in the absence of site surface data or seismological observations, the
validity of VS30 in tectonically active complex territories, particularly in geological contexts
(such as the existence of inversions in the VS profiles), has been challenged by certain
researchers [7–9]. To indirectly predict VS30 distribution, Ahdi et al. [10] developed VS30
maps that included local proxy types, namely topographical slope and geomorphological
landscape containing high spatial variability. The terrain features (curvature and alluvial
fan) influence the subsurface strata and their stiffness. Accordingly, the geomorphological,
landform, and land cover features should be incorporated into the subsoil investigation
results for geotechnical or geology engineering to visualize the VS30 map.

The digital elevation model (DEM) and digital terrain model (DTM) are useful for
developing VS30 maps based on geographic information system (GIS)-based regression
analysis [11]. DEMs of various resolutions for several regions across the United States were
used to examine the use of optimum resolution DEMs in developing VS30 maps [12,13].
A method of generating the automatic topography classification using a 50 m DEM was
developed using multiple linear regression analysis of the logarithm correlations between
the observed VS30 and the topographic attributes reported by Iwahashi and Pike [14].
However, seismic amplification associated with proxies is too nuanced for determining a
single synthetic parameter such as VS30 [15,16].

Therefore, to integrate the proxies for determining VS30 and other site response pa-
rameters, a data-driven approach including a random effect procedure, based on artificial
intelligence (AI), is essential. This data-driven approach is suitable for the identification
of geomechanical risks and facilitates the avoidance of pitfalls (e.g., low correlation coeffi-
cient); hence, it can be standardized into a widely consistent workflow [17]. AI technology
uses spatial, temporal, and anomalous features of systems for classification, regression, and
clustering. In addition, it has been used extensively owing to its efficiency in producing
useful information and finding hidden variables in various datasets [18]. Machine learning
(ML) models have become increasingly prevalent in the simulation of the spatial distribu-
tion of soil properties [19–21]. The ML-based subsurface or soil texture mapping includes
the use of artificial neural networks, boosted regression trees, random forests, and artificial
neuro-fuzzy inference systems [22,23]. For early disaster response to floods, landslides,
and earthquake risks, a combination of the ML workflow and geospatial information
such as DEM [24], synthetic aperture radar (SAR) imagery [25], and area intensity [26]
was proposed. Moreover, following the incorporation of stochastic methods and geolog-
ical hazard assessment with nonlinear data handling by using varying scales/types of
sources, the application of data mining and ML algorithms increased [27,28]. The best-
fitting model using only surficial proxy presents a spatial distribution of VS30 based on the
borehole measurements.

In this study, the VS30 of major cities in North Korea (Pyongyang, Kaesong, and
Nampo) were mapped. In the training areas in South Korea, the borehole-based VS30
values and DTM-based terrain characteristics were identified as labels and features, respec-
tively; these parameters were constructed as geospatial grid information for input into
the regression models. The elevation, slope, and topographic position index (TPI)-based
landform classes were extracted using the DTM. The VS30 grids from the borehole dataset
were interpolated using geostatistical methods with the lowest residuals. The best-fitting
model for VS30 regression, with the grids incorporating VS30 and terrain-based features,
visualized the VS30 map of the test areas in North Korea. The novelty of the proposed
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methodology for developing VS30 is the ML-based multivariate regression that integrates a
large number of grids as interpreted from the DTM and borehole datasets.

2. Method and Data
2.1. Study Area

Geographically, the Korean peninsula is located on the eastern borders (33–43◦ N and
124–132◦ E) of the Eurasian continent. According to Sun et al. [29], different geologic strata
from the Pre-Cambrian period to the Cenozoic era have been distributed throughout the
peninsula. Most regions consist of plutonic and metamorphic rocks, mainly comprising
Rangnim, Gyeonggi, and Yeongnam massifs [30] as well as a partial sedimentary rock
distribution. The Choogaryong rift valley clearly divides geology into two regions in the
north and south, which is mostly similar with the Military Demarcation Line in the Korean
Peninsula. In South Korea, various geological rock types (e.g., granite and Mesozoic sedi-
mentary rock) are distributed. However, North Korea is mostly formed by Pre-Cambrian
metamorphic rocks, Paleozoic sedimentary rocks, and Quaternary volcanic rocks. From
the geomorphological perspective, the Korean Peninsula is defined as an old landform due
to its continuous erosion. Steep and high mountains are commonly distributed in North
Korea, whereas low mountains and alluvial plains are common in South Korea. Nationally,
geological and geomorphological differences are observed between South and North Korea;
however, local similarities are observed in certain areas at a city level scale as the shallow
soil layers above the engineering bedrock mostly influence the effects of the seismic site.
Geographical, geomorphological, and geological similarities during the formation of the
layers should be determined prior to building datasets.

Therefore, the study area comprised one training area in South Korea and three test
areas in North Korea for the development of the best-fitting model for site classification by
considering the similarities shown in Figure 1. The training area in South Korea included
Seoul city, part of Incheon city, and Gyeonggi Province (Figure 1a). Seoul spans 605.25 km2

and is approximately 15 km long; it is bisected by the Han River into the northern and
southern halves. The city is bordered by eight mountains and comprises more lowlands in
the Han River plains and in the west. Incheon, bordering Seoul and Gyeonggi Province to
the east, is located in northwestern South Korea. Gyeonggi Province, which encompasses
Seoul, covers 10% of the territory (10,171 km2) in South Korea. Hence, the training area
between the east longitude of 126◦39′N and 127◦0′N and north latitude of 37◦27′N and
37◦31′12”N is defined by considering the spatial proximity and connectivity of the largest
metropolitan area in the northwestern region of South Korea. In the training area, the
geology characteristic is largely granite, wherein the bedrock is widely intruded into the
Jurassic Period of Mesozoic era [31]. In the northwest direction, granite is present in Seoul.

For VS30 mapping in North Korea, sections of Pyongyang, Kaesong, and Nampo were
selected as the test areas based on the archived DTM. The minimum distances between the
training and test areas are 176.3, 42, and 172.5 km for Pyongyang, Kaesong, and Nampo,
respectively. Pyongyang is located in the west-central region of North Korea in a flat
plain, which is one of the two largest plains (50 km east of Korea Bay) on the western
coast of the Korean Peninsula (Figure 1b) [32]. Kaesong is the southernmost city of North
Korea and is located close to the border of South Korea. The city center encompasses
the significantly smaller mountainous northeastern region (average elevation of 103 m),
and most areas consist of low hills with a height of less than 100 m [33]. Nampo is a
seaport and lies on the northern shore of the Taedong River at a distance of 15 km east from
the river’s mouth [26,34]. The Imjingang Belt lies between the Rangnim and Gyeonggi
massifs; therefore, were grouped the training area (Seoul, Incheon Gyeonggi Province) and
Kaesong [30].

With respect to geography, the Pyongyang area located on the Taedong River has a
plain area that is similar to that of Seoul. The mountainous region in the Kaesong area
resembles the southern and northern parts of Seoul. The Nampo area is a seaport and
can be regarded as the western coast of Incheon. The training and test areas are located
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in the same Paleozoic basins (i.e., Phyongnam basin) and exhibit large distributions of
Mesozoic igneous rocks. The shallow soil layer was mostly formed as Quaternary alluvial
soil and weathered residual soil by fluvial or weathering processes. Despite the uncertainty
in literature-based geological investigations in North Korea owing to the huge knowledge
gap, the formation similarities between the shallow subsurface in the training and test
areas were identified.

1 
 

 

 Figure 1. Study areas in the Korean Peninsula: (a) training and test areas in Korean Peninsula; (b) central-western region
involving Seoul and partial Incheon for the training area of the site classification model; (c) test area in Pyongyang; (d) test
area in Kaesong; (e) test area in Nampo. The base map has been obtained from the OpenStreetMap project.

2.2. Digital Terrain Model

DTMs in the training area of South Korea were archived from NASA’s Shuttle Radar
Topography Mission (SRTM, http://www2.jpl.nasa.gov/srtm/instr.htm, accessed date: 3
March 2020) and other local radar mission projects to render surficial terrain information
for the target areas. Despite the archiving of the terrain information in the test areas,
North Korea is inaccessible due to military security. The global DTM was acquired by the
Advanced Land Observing Satellite from the Japan Aerospace Exploration Agency.

To integrate the boreholes and DEM precisely, the transverse Mercator spatial coordi-
nate system in the DEM was simultaneously transformed based on the geographic coordi-
nate system (latitude and longitude). The DTM with a 5 m × 5 m resolution (0.15 arcsec)
was available; subsequently, interferometry was used to gather topographic (elevation) data.
The horizontal and vertical accuracies of the root mean squared error (RMSE) were 5 m,
and global site condition maps for deriving the topographic slope data as a proxy for the
site amplification were collected from the SRTM 30 and 3 arcsec [12,13]. Stewart et al. [35]
developed geologic and terrain-based site condition maps for California by using a geolog-
ical map and 1, 3, 9, and 30 arcsec DEMs. Conversely, high-resolution topographic data for
developing local site condition maps are essential, particularly for North Korea, where di-
rect land surveys are impossible. The slope was extracted via remotely sensed applications
using DTMs based on DTM-derived longitudinal profile analysis [36] implemented in ESRI
GIS products. Figure 2 shows the DTM-based elevation and slope distribution maps.

http://www2.jpl.nasa.gov/srtm/instr.htm
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 Figure 2. DTM-based elevation and slope: (a) training area in Seoul and Incheon; (b) test area in Pyongyang; (c) test area in
Kaesong; and (d) test area in Nampo.
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The maximum elevation is approximately 852 m in the northern and southern moun-
tainous regions of the training areas, and the average standard deviation is 6.2 m (Figure 2a).
The highest slope is approximately 72◦. The maximum elevations in Pyongyang, Kaesong,
and Nampo (the test areas) are approximately 363, 478, and 501 m, respectively, and their
maximum slopes are approximately 63.3, 90, and 90◦, respectively. In the Pyongyang area,
the elevation and slope along the watershed were approximately 0–25 m and 0–10◦, respec-
tively. In the Kaesong area, the surrounding mountains, spatially occupying approximately
65% of the area, have an elevation of 110–478 m and a slope of 30–70◦, excluding the central
basin. In the Nampo area, most of the plain (70% area) exhibits an elevation of 0 to 100 m
and a slope of 0 to 8◦, except for certain mountainous areas in the northern region.

2.3. Geotechnical Datasets

In the test area, the borehole log datasets (31,033 points), including the engineering
strata and standard penetration test (SPT) results, were collected from the Korea Civil
Engineering and Building Technology Institute’s Geo-Info system. Additionally, site visits
for 350 locations were carried out to gather surface geo-knowledge information, mainly
in regions that lacked borehole data. The site survey was conducted at locations where
borehole data were not obtained using cone penetration, a global positioning system,
and other techniques to validate the rock outcrop or cut slope and cross-check with the
engineering strata from the adjacent borehole data [37]. The engineering strata were
classified into five groups: fill layer, alluvial soil, weathered soil, weathered rock, and
bedrock (soft rock).

In situ geophysical measurement of VS such as downhole, cross-hole, and spectral
analysis of surface waves is the preferred approach for calculating the small-strain shear
properties [25]. It was also used in the site classification systems and ground motion
equations. When the direct measurement of the VS profile is not determined, the use
of multiple indirect methods (i.e., penetration-based VS correlations) is recommended;
these methods require selecting a VS30 design according to the seismic design codes in
many countries [38]. The site-specific correlations between the VS and penetration tests,
such as the cone penetration test, SPT, and Becker penetration test, have been obtained
previously [39–43]. However, the correlations exhibit certain limitations: (1) low coefficient
of determination values, (2) local uncertainty based on low quality data, and (3) disregard
of the characteristic deformation behaviors of soils.

In this study, the direct VS profiles were not stored in the Geo-Info system, and
large-scale SPT results were yielded. SPT, detailed in ASTM D 1586 [44], provides pene-
tration resistance related to the blow count (n value), which is widely used to determine
engineering properties and soil design parameters. For uncertainty analysis with regard
to the empirical relation of SPT-N versus VS, the VS30 from each borehole location was
computed using the representative transformation formulas for soil types (Table 1). If the
n value was not registered above the engineering bedrock, the representative VS values
were calculated to be 190 m/s for the fill layer, 280 m/s for alluvial soil, 350 m/s for weath-
ered soil, 650 m/s for weathered rock, and 1300 m/s for bedrock [45]. Correlation #1 [46],
which was reasonably consistent with correlations from previous studies in other countries,
was adopted in the domestic seismic design [4,47] and applied as the preferred approach.
Correlation #2 [38] was recommended for N60 (normalized to 60% energy ratio), effective
stress (σ′v), and the geological era, and applied in the Pacific Earthquake Engineering
Center (PEER), USA. Correlation #3 was derived by using N60 that included previous
correlations [42]. The performance of ML models was evaluated depending on the N
versus VS correlations.
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Table 1. N-VS correlation equations (modified after related studies by Sun et al. [46], Wair et al. [38], and Hasancebi and
Ulsay [42]).

Soil Type

Correlation #1 [46] Correlation #2 [38] Correlation #3 [42]

VS (m/s) VS (m/s)
Age Scaling Factors

VS (m/s)
Holocene Pleistocene

All soils 65.64N0.407 30N0.215
60 σ′0.275

v 0.87 1.13 104.79N0.26
60

Alluvial soil

Clay & silt 65.64N0.407 26N0.17
60 σ′0.32

v 0.88 1.12 107.63N0.237
60

Gravel—Holocene 78.63N0.361 53N0.19
60 σ′0.18

v - - 104.79N0.26
60

Gravel—Pleistocene 78.63N0.361 115N0.17
60 σ′0.12

v - - 104.79N0.26
60

Sand & silt 82.01N0.319 30N0.215
60 σ′0.275

v 0.87 1.13 104.79N0.26
60

Sand 65.64N0.407 30N0.23
60 σ′0.23

v 0.90 1.17 131N0.205
60

Weathered soil 75.76N0.371 30N0.215
60 σ′0.275

v 0.87 1.13 104.79N0.26
60

Weathered rock 107.94N0.418 30N0.215
60 σ′0.275

v 0.87 1.13 104.79N0.26
60

2.4. Methodology
2.4.1. Topographic Position Index and Land Formation

A strong correlation is observed between the topographic position and physical
and biological processes that influence landscape, such as soil erosion and deposition,
hydrological balance, wind exposure, and cold air drainage [48]. The TPI is used to compare
the elevation of each cell with the average elevation of the neighborhood surrounding each
cell to classify the landforms using the DTM or DEM [48–50]. In the center of the local
window, the local mean elevation is subtracted and calculated via algorithm analysis using
a geographic information system (GIS) [51]. The algorithm consists of a local neighborhood
and a central point, representing the vertical position in length above or below the mean
elevation of the neighborhood as follows:

TPI = Z0 −
∑n−1 Zn

n
(1)

where Z0 is the elevation of the model point under elevation, and Zn is the elevation of the
cell within the local window.

Neighborhood sizes of 25 and 500 m were used for small and large elements of
landform classes [52]. The TPI contributes to the classification of the DEM into 10 landform
categories with a grid threshold TPI (25 or 500) (Table 2). TPI values are categorized into
pitch positions depending on the pitch and how intense they are at each point. TPI values
above a certain level may represent mountain tops or hilltops, while those below the
threshold could signify bottoms of the valleys or depressions. TPI values of approximately
0 can be defined as plains (when the path is above 0) or midslope ridges (if the slope is
above a certain threshold). For a better categorization of the landform class appropriate for
the terrain proxy, the grouped classes are presented in Table 2.

2.4.2. Geospatial Interpolation for Surficial and Subsurface Grid Building

The geotechnical datasets, including the borehole data and results gathered from
on-site studies, mainly comprised building lots, roads, and railroads. Grid generation, in
conjunction with engineering strata and the SPT-N value based on geostatistical interpola-
tion, is essential for comparing the geotechnical properties with the DEM-based terrain
features under the same grid (or resolution). Kriging is a representative interpolation
method for smoothing out the inherent distribution of the original dataset. However, in
practice, the variance of the estimates is lower and, therefore, on average, high values are
underestimated and low values are overestimated. Conditional simulation is an efficient
method of resolving such limitations of the kriging estimates.
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Table 2. Definition of Topographic Position Index (TPI)-based landform classes and grouped landform classes (modified
after Weiss [48]).

Class Landform Proposed Grouped Class
Neighborhood TPI

Small (TPI25) Large (TPI500)
1 Incised streams LF-I ≤ −1 ≤ −1
2 Midslope drainages

LF-II
≤ −1 > −1 and < 1

3 Upland drainages ≤ −1 ≥ −1
4 U-Shaped valleys LF-III > −1 and < 1 ≤ −1
5 Plain (slope ≤ 2◦) LF-IV > −1 and < 1 > −1 and < 1
6 Open slopes (slope > 2◦)

LF-III
> −1 and < 1 > −1 and < 1

7 Upper slopes > −1 and < 1 ≥ −1
8 Local ridges

LF-II
≤ −1 ≤ −1

9 Midslope ridges ≤ −1 > −1 and < 1
10 Mountain tops ≤ −1 ≥ −1

In this study, we applied conventional geostatistical interpolation approaches: inverse
distance weight (IDW), simple kriging (SK), ordinary kriging (OK), universal kriging (UK),
empirical Bayesian kriging (EBK), and sequential Gaussian simulation (SGS). Instead of
calculating the mean using the kriging algorithm, SGS produces many feasible realizations
of a property. As a few attempts to assess the various reliabilities (5th, 50th, 100th) of differ-
ent outcomes have been made, the final prediction (E-type) was identified by combining
all results, that is, the mean simulation. Details on the variogram, kriging, and simulation
methods are reported by Chiles and Delfiner [53] and Zuo et al. [54].

The 5 m × 5 m resolution of VS was established by interpolating the borehole-based
VS value for unit depth (i.e., 1 m) and visualizing along a two-and-a-half-dimensional
(2.5D) geospatial grid. The selection procedure for the optimized interpolation method
was proposed for borehole data using a cross-validation technique [55,56]. Therefore, the
optimal interpolation method with the lowest prediction error (residuals) was applied.

2.4.3. Multivariate Site Response Parameters and Classification System

Seismic zonation based on the multivariate site response parameters was assessed
with a spatially assigned grid including elevation, slope, TPI-based landform class, and
VS. VS profiles can be obtained using downhole, cross-hole, and surface wave methods
from different sources for general estimates. Conventional parameters are primarily used
to quantify the seismic site effect and define the criteria for site classification. The site
classification scheme was applied to VS30 in the US seismic code after 1994 as the main
categorization parameter, and the average VS up to 30 m below ground level [57] can be
calculated as follows:

VS30 = 30/
n

∑
i=1

Di
VSi

(2)

where Di and VSi represent the thickness and the VS of the ith layer, respectively. The
engineering bedrock (H), also known as the analytical brief index, only represents the geo-
metrical features without considering the stiffness of the VS profile, if only the engineering
strata are given. The natural site period results from the sharp contrast between the soil
and engineering bedrock and is measured using strata thickness and VS.

VS topographical calculations also positively correlate with DEMs, geological maps,
and other geomorphic indicators [12,13,58]. The scientific concept of a terrain proxy
criterion was established in a metropolitan area in South Korea, including mountains,
valleys, plains, and sites with diverse geological features [37,45,59]. Empirical correlations
with site response parameters were suggested in South Korea with respect to site-specific
geospatial conditions to regional zoning of seismic site effects (Table 3). As VS30 decreases,
the stiffness of the strata weakens, and the elevation and slope decrease.
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Table 3. Multivariate site classification system for seismic site effects (modified after Kim et al. [60]).

Generic Description Site Class

Geotechnical Criteria Geo-Proxy-Based Criteria

H (m)
VS30
(m/s)

TG
(s)

f 0
(Hz)

Slope
(%)

Elevation
(m)

Lithology

Geological Era Stratigraphy

Rock B <6 >760 <0.06 >16.67 >5.6 >80 Paleozoic Plutonic/metamorphic rocks
Weathered Rock and

Very Stiff Soil
C

C1 <10 >620 <0.10 >10.00 >3.5 >60

Mesozoic

Cretaceous fine-grained sediments
C2 <14 >520 <0.14 >7.14 >2.0 >45 Sheared/weathered crystalline rocks

Intermediate Stiff Soil
C3 <20 >440 <0.20 >5.00 >1.1 >31 Oligocene–Cretaceous sedimentary rocks
C4 <29 >360 <0.29 >3.45 >0.62 >22 Oligocene coarse-grained younger material

Deep Stiff Soil D

D1 <38 >320 <0.38 >2.63 >0.23 >18

Cenozoic

Miocene fine-grained sediments
D2 <46 >280 <0.46 >2.17 >0.08 >14 Coarse younger alluvium
D3 <54 >240 <0.54 >1.85 >0.023 >11 Holocene alluvium
D4 <62 >180 <0.62 >1.61 >0.006 >9 Fine-grained alluvial/estuarine deposits

Deep Soft Soil E ≥62 ≤180 ≥0.62 ≤1.61 ≤0.006 ≤9 - Inter-tidal mud
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2.4.4. Multivariate Regression

The best-fitting regression algorithms were compared with approaches focused on cost
functions to predict the VS30 value in this analysis. The VS30 value as the label attribute and
other original features are included in the grid properties: elevation, slope, and landform
class. The elevation and slope are subgrouped with the landform class for predicting the
VS30 and validation of the best-fitting models. It is imperative to preprocess the data before
inputting them into regression models. There are five basic stages of data preprocessing:
(1) handling missing values, (2) scaling, (3) one-hot encoding, (4) feature selection, and
(5) splitting the dataset into training and test datasets [21]. In this study, the input attributes
of the training area in Seoul and Incheon were defined as the training datasets. After
preprocessing, the grouped attributes with landform classes in the training datasets were
input into the fitted regression models. VS30 was predicted using the test datasets and
terrain information in the three test areas in North Korea.

Given the different numbers of attributes inputted into the training datasets, a resam-
ple method, such as K-fold cross-validation, was required to determine the best-fitting
model. K-fold cross-validation removes the convergence of the K-fold data partition and
yields K. Each K-fold can be used for end-of-line testing, and all other folds are used
simultaneously for training. In this study, 10 folds are generated for the subsurface grid in
the training area. Prior to splitting the grids, shuffles and a robust pseudorandom number
generator, denoted as Mersenne Twister [61] in Python, are applied. We designed four
representative regression algorithms of AI: logistic regression (LR), neighbors K-nearest
(K-NN), support vector regression (SVR), and multilayer perceptron (MLP). The models
were trained using each algorithm, while hyperparameters were incorporated and opti-
mized model outputs on the K-fold validation dataset were contrasted. In this study, the
top-performing model pipeline was determined based on the Auto-Sklearn [62], which is
an open-source library for data transformation and machine learning algorithms based on
the Bayesian optimization search procedures [63] in Python.

The classical statistical approach used for binary classification is LR and has been
adopted as a simple ML model. The LR model uses a logistic feature to compress the
output of a linear equation between 0 and 1, rather than fitting a straight line or hyperplane.
As linear regression assumes that the data are linear, LR uses a sigmoid to model the data.

g(z) =
1

1 + e−z (3)

For the K-NN procedure, the predicted values for the neighboring measurements
of the variables were obtained as weighted averages. One of the main challenges of this
approach is the need to choose an ad hoc similarity metric, particularly for heterogeneous
datasets of different types and sizes that exhibit varying interrelationships between the
extracted features [64]. The proximity to a certain spot in a high-dimensional space is scarce
and leads to significant variety. K-NN regression is a nonparametric method that intuitively
approximates the relations between the independent and continuous effects by integrating
observations in the same neighborhood. K-NN regression uses distance functions and an
important and less concerned approach for producing K-NN rankings (e.g., Euclidean
distance, Manhattan distance, and Minkowski distance). Manhattan distance (denoted as
block distance or taxicab geometry), which is the distance (d) between two points (xi and yi)
at right angles to the axes, has been calculated as follows:

d =
n

∑
i=1
|xi − yi| (4)

SVR is a linear or nonlinear regression method based on the concept of support vector
machines (SVMs). When formulating SVMs as convex optimization problems [65–67],
SVM resolves binary classification problems. The SVR methodology uses linear quadratic
programming methods to handle data in high-dimensional space [68]. We also sought to
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reduce the LR error rate. During SVR, we attempted to match the error under any threshold.
The former condition generates the objective function in equation (Min 1

2‖w‖
2) where the

size of the normal vector to the surface is approximated.
MLP is a static neural structure consisting of layers that transmit and transfer informa-

tion through synaptic links represented by weight adjustment. The MLP has also been used
as a regression approximation tool. A conversion function is used to transfer the weighted
number of inputs and the terms of bias to the activating step [69,70]. A feed-forward neural
network is an artificial and non-cyclic neural network. Every perception is completely
linked to all the nodes in a single layer. The input, hidden, and output layers are usually
composed of MLP modeling. Hyperparameter tuning was performed for the best-fitting
model of the MLP classifier by adjusting numerous parameters such as the number of
hidden layers, number of nodes of the hidden layer, activation function, optimizer, number
of epochs, batch size, and learning rate. In particular, the process of finding the optimal
network was applied, namely grid search; meanwhile, various cases in the hyperparameter
were altered. In this analysis, two hidden layers in 80 nodes were linked to the link layers.
The input values were weighted and generated according to the activation function of the
layer above [71]. As an activation function, rectified linear units (ReLU) were used for the
hidden layers and the Adam optimizer was set up. If the input was less than 0 and the raw
output of ReLU was different, the output was considered to be 0. The random state and
solver are eight, and the stochastic gradient descent, respectively [70].

3. Results
3.1. Topographic Position Index-Based Classification of Landforms

The TPI was computed, and its grid-based landform class was determined based
on the relative height difference and slope inclination (Figure 3). The zonal proportion
based on the occupied grid was determined against 10 TPI classes for each training and
test area (Figure 4). TPI-based landform maps support the site-specific characterization of
topographic site effects on seismic waves to induce important gradients during the ground
acceleration in grids while elucidating their relationship with VS30.

In the training area, the plain (class 5) that accounted for approximately 33% of the
total area was mainly distributed along the riverside and reclaimed land. The widest
landform was formed by the U-shaped valleys (class 4) that accounted for approximately
35% of the test area; these valleys were mainly observed on the northern hillside and
lower slopes. The upper slopes (class 7) and open slopes (class 6) were regionalized in
the northern and southern mountainous areas. The U-shaped valleys and upper slopes
accounted for approximately 32% and 24%, respectively, of the test area in Pyongyang.
The partial river basin (plain, class 5) occupying 17% of the area was classified as a flat
relief or lowland along the Taedong River. The upper slope (class 6), which accounted for
approximately 25% of the test area in Pyongyang, was also distributed and blended with
the plain area of an urban district. The test area of Kaesong exhibited a major landform
that was classified as U-shaped valleys (class 4), which accounted for approximately 35%
of the total test area; these valleys comprised most of the urban and industrial zones; a
plain area that accounted for only 7% of the test area in Pyongyang was also identified. For
the test area in Nampo, the U-shaped valleys (class 4) accounted for approximately 28% of
the northern mountainous region. The plain (class 5), excluding the sea area, accounted
for approximately 28% of the test area and was distributed in the blended area with upper
slopes (class 7) that accounted for 18% of the test area.

The test area in Pyongyang was relatively similar to the training area when compared
to the U-shaped valleys and plain area. For the U-shaped valleys, the test area in Kaesong
had a terrain characteristic resembling that of the northern mountainous area in the training
area. Kaesong exhibited more terrain features (classes 1, 2, 3, 8, 9, and 10) of highland
regions compared to the others. The test area in Nampo was similar to the northwestern
area in the test area with regard to only the plain area.
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Figure 3. Topographic position index (TPI)-based classification of landforms: (a) the training area in Seoul and Incheon; (b)
test area in Pyongyang; (c) test area in Kaesong; (d) test area in Nampo.
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3.2. Geospatial Grids Assigned with VS30 and in Test Area

Geospatial grids (5 m × 5 m resolution) assigned with VS30 (Figure 5b–j) were devel-
oped using the borehole datasets (Figure 5a), based on the proposed geostatistical method
(IDW, SK, OK, UK, EBK, and SGS). VS was transformed from the SPT-N value using three
correlations (Table 1), and N-VS correlation #1 was used for selecting the optimized inter-
polation method. The predicted VS30 was generally high when focusing on the outside
mountainous region of the administrative divisions of Seoul. A deep stiff soil with a
VS30 value lower than 360 m/s was found to be distributed along the Han River and the
southern part of Incheon, including the Incheon International Airport. On the VS30 maps
in the test area, there were minor spatial variations according to the interpolation methods.



Remote Sens. 2021, 13, 1844 13 of 26

 

4 

 

Figure 5. VS30 mapping using (a) borehole (SPT-N) datasets in the training area based on the interpolation algorithms:
(b) inverse distance weight; (c) simple kriging; (d) ordinary kriging; (e) universal kriging; (f) empirical Bayesian kriging;
(g) sequential Gaussian simulation—5th realization; (h) sequential Gaussian simulation—50th realization; (i) sequential
Gaussian simulation—100th realization; (j) sequential Gaussian simulation—E-type. VS30 was calculated using VS that was
transformed from the SPT-N value by using correlation #1 (Table 1). The unit of VS30 is m/s.
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The proposed optimization procedure was also conducted by considering the cost
function of cross-validation. The residuals and scatter of the plots between the measured
and predicted VS30 values were analyzed (Figure 6). When the actual VS30 values were
below 760 m/s, the threshold of the engineering bedrock depth [72] implied that VS30
values were overestimated. When the actual VS30 values exceeded 760 m/s, VS30 was
underestimated. As the 70% boring log was mostly investigated prior to the engineering
bedrock, soil strata were largely scattered, leading to over-fitting and poor validation due
to the smoothing effects of kriging [73]. Although most outcrop bedrocks in mountainous
regions were studied and their VS values were assumed to be 1300 m/s as per the site
visiting survey, the measured VS for bedrock was lower than 1300 m/s. Moreover, the high
stochastic/spatial variation of VS for bedrock in local areas induced low spatial correlation
coefficients and under-fitting of the VS30 predictions. The residuals of UK are larger than
those of the other methods because UK was developed precisely to recognize and quantify
the linear spatial trends in datasets [74].
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weight; (b) simple kriging; (c) ordinary kriging; (d) universal kriging; (e) empirical Bayesian kriging; (f) sequential Gaussian
simulation—5th realization; (g) sequential Gaussian simulation—50th realization; (h) sequential Gaussian simulation—100th
realization; (i) sequential Gaussian simulation—E-type. The black dotted line represents the 1:1 ratio. The blue-dotted line
indicates the linear regression line.

To better compare the residuals in regression analysis, this study evaluated four
error indices: mean absolute error (MAE), RMSE, root relative squared error (RRSE),
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and coefficient of determination (R2) (Table 4). The metrics of the indices are calculated
as follows:

MAE =
1
N

N

∑
i=1
|yi − ŷ| (5)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (6)

RRSE =

√√√√∑(yi − ŷ)2

∑(yi − y)2 (7)

R2 = 1− ∑(yi − ŷ)2

∑(yi − y)2 (8)

where ŷ is the predicted value of y, and y is the mean value of y. The indices indicate the
difference between the measured and predicted VS30; the higher the accuracy, the closer
the difference value is to 0. R2 shows how closely the values complement the original
value; the higher the value, the better the model. The SGS-E-type method showed the
optimal prediction results when comparing the RMSE and RRSE values; these were the
lowest for the SGS-E-type method. The MAE for the SK method had the lowest values. The
R2 values of the SK, OK, and SGS-E-types were closer to 1, indicating a higher precision.
When the error distribution is assumed to be Gaussian, RMSE and RRSE are more suitable
for reflecting the model results than MAE. In particular, RMSE is more useful if significant
errors are avoided, and it is considered that RRSE reduces the error to the same dimensions
as the quantity being predicted. Accordingly, the SGS-E-type as the best-fitting method was
used to construct the geospatial grid assigned with VS30 in the test area. The proportions of
grids, which were built by interpolation methods and allocated for the site class (Table 3),
have been summarized in Table 4. In general, a similar distribution for proportion is
presented; the ratio of the B, C, D, and E classes is 42%, 31%, 13.3%, and 13.7% in the
training area, respectively.

Table 4. Performance and statistical summary of geospatial interpolation model in regression analysis.

Methods
Regression Analysis Proportion of Site Class (%)

MAE (m/s) RMSE (m/s) RRSE (%) R2 B C D E

IDW 98.59 146.17 60.00 0.64 41.5 30.8 13.9 13.9
SK 84.59 134.30 55.68 0.69 41.6 30.7 13.8 13.8
OK 85.58 133.88 55.68 0.69 45.5 28.7 12.9 12.9
UK 125.69 168.35 67.82 0.54 41.5 30.8 13.9 13.8
EBK 92.21 140.20 58.31 0.66 48.5 27.1 12.2 12.2

SGS-5th 89.05 137.65 57.45 0.67 45.1 28.9 13.0 13.0
SGS-50th 88.66 137.48 57.45 0.67 42.1 30.5 13.7 13.7
SGS-100th 88.38 135.39 56.57 0.68 41.9 30.6 13.8 13.8
SGS-E-type 88.38 133.39 55.68 0.69 41.9 30.6 13.8 13.8

3.3. Adaptation of Terrain Proxy-Based Site Class

To investigate the interrelationship between VS30 and landform, the combination of
landform classes, which are clearly defined as the principal components for the regression
model, have been examined using the box and whisker plots. The grids assigned with
VS30 in the training area were built using SGS and grouped by the TPI-based landform
class, which has been denoted as LF (Figure 7a). Class 1 (LF1) had the broadest range
(400–1100 m/s between the first and third quartiles) of VS30 as well as the highest VS30
(approximately 1300 m/s). LF2, LF3, LF8, LF9, and LF10 represented the drainages or
ridges in the mountainous area and exhibited a similar range (approximately 400–800 m/s
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between the first and third quartiles) of VS30. LF4, LF6, and LF7, which were classified as
valleys and slopes, ranged from approximately 400 to 600 m/s between the first and third
quartiles of VS30. LF5 (plain area) was verified as having the lowest range (approximately
300–420 m/s between the first and third quartiles) of VS30. Accordingly, the LFs were
grouped into four classes (LF-I, -II, -III, and -IV) with similar ranges of VS30. (Figure 7b,
Table 2). LF-I represented deeply incised streams characterized as metamorphic rocks [75]
and exhibited the highest VS30. LF-II was defined to include drainage and ridge sites
(TPI25 ≤ −1). LF-III represented valleys and slopes, with TPI25 > −1 and < 1, and a
slope > 2◦. LF-IV denoted a plain where the mean VS30 was 400 m/s.

1 
 

 
 Figure 7. Relations of SGS-E-type based VS30 and terrain proxy values classified by the TPI-based landform class in the
training area: (a) relations between TPI-based landform class and VS30; (b) relations between grouped TPI-based landform
class and VS30; (c) relations between elevation and VS30 classified by the grouped TPI-based landform class; (d) relations
between slope and VS30 classified by the grouped TPI-based landform class. The criteria of terrain proxy-based site
classification are also presented.

The coinciding of grids of different sites classified by VS30 (Table 3) was evaluated
along with the four groups of the LFs by comparing the elevation and slope as a proxy
of VS30. The minimum first quartile of the VS30 value for each class was mostly 400 m/s
because the grids with VS30 values of 400 m/s had a wide range of surface elevations and
slopes (Figure 7c,d). No grid was determined as a class E. The grid area associated with the
elevation and slope of LF-IV accounted for approximately 32% and 89% of the total area for
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the D class, respectively. Among class C, the grid area associated with the elevation and
slope of LF-III accounted for approximately 83% and 65% of the total area, respectively. The
grid area associated with the elevation and slope of LF-II accounted for approximately 68%
and 59% of the total area for B class, respectively. The grids classified as LF-I accounted for
only 2% of the entire test site, although they exhibited scattered relations with VS30. The
grid area associated with the elevation and slope of LF-I accounted for 95% and 89% of the
total area for B class, respectively. Therefore, LF-II (including LF-I), LF-III, and LF-IV were
strongly related to the site classes B, C, and D, respectively. The statistical characteristics of
terrain proxies (elevation and slope) and VS30 values are summarized using the grouped
TPI-based landform classes (Table 5). From LF-I to LF-IV, VS30 increases; otherwise, the
elevation and slope generally increase.

Table 5. Statistical summary of terrain proxies (elevation and slope) and VS30 values as per the
grouped TPI-based landform class.

Landform Class Grid-Statistics VS30 (m/s) Elevation (m) Slope (m/m)

LF-I

Min. 240.72 0.00 0.02
Mean 700.56 700.56 0.27
Max. 1299.98 1299.98 0.92
Std. 320.70 320.70 0.20

Count 980

LF-II

Min. 257.76 0.00 0.00
Mean 623.83 59.88 0.30
Max. 1299.99 695.24 1.55
Std. 258.73 63.96 0.19

Count 8347

LF-III

Min. 175.13 0.00 0.00
Mean 519.61 15.73 0.07
Max. 1299.99 504.24 1.47
Std. 227.23 24.69 0.11

Count 103,704

LF-IV

Min. 208.00 0.00 0.00
Mean 417.05 5.73 0.01
Max. 1299.99 533.28 0.96
Std. 195.54 13.90 0.04

Count 57,970

3.4. Multivariate Regression Model for Terrain Proxy-Based VS30 Classification

Using the grids (171,000 cells) in the training area constructed by SGS, the elevation
and slope were subgrouped using the proposed four LFs and defined as input feature
datasets for the training procedure in the proposed four regression models. The labeled
data were VS30. Using the four modeled regression algorithms for each LF group, the four
input combinations (elevation and slope) were trained and verified using K (i.e., 10-fold
cross-validation). The averaged residuals between the predicted and actual VS30 values
(Figure 8) were calculated for each cross-validation using the metrics of the indices: MAE,
RMSE, RRSE, R2. The validation data for the model were then considered to be a single
subsample (i.e., 17,100 cells), and the remaining K-1 samplings (i.e., 153,900 cells) were
used as the training data. The prediction performance of N-VS correlations (Table 3) for
deriving the VS30 grid were also compared with the cost functions.
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and (d) R2. The black dotted line in MAE and RMSE indicates the minimum deviation (140 m/s) of VS30 threshold in the
site classification system (Table 3).

The best-fitting model for each LF group was determined using the cost functions.
The MAE for SVR had the lowest value and was considered to be a more optimized
method. When RMSE and RRSE exhibited their lowest values, LR and MLP showed
optimal prediction performance. In particular, MAE and RMSE were compared with the
minimum deviation (140 m/s) of VS30 threshold in the site classification system. The indices
were lower than 140 m/s except for K-NN, indicating the low possibility of encountering
errors during site classification when using the regression algorithms. The R2 values of LR
and MLP were also closer to 1, indicating relatively high precision. In particular, K-NN
was the least reliable in predicting VS30. The optimal predictable LF was determined
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by comparing the cost functions. Similar to the optimization of geospatial interpolation
models, the LR presented performed optimally in the prediction of VS30 because using the
RMSE is more appropriate for realizing a Gaussian error distribution. To select the eclectic
regression model that almost completely satisfies the cost functions, the priorities of the
optimal performing regression algorithm are as follows: LR, MLP, SVR, and K-NN.

The predicted grids classified as LF-III and comprising maximum data (103,704 cells)
yielded the lowest metrics of residual indices for all the models. The input feature of
the landform class that represents valleys and slopes may be consistent with the slope
and elevation. Otherwise, LP-I, which is characterized by its deeply incised streams and
identified as class B accruing to site classification, shows the highest level of uncertainty in
predicting the VS30 in the training area. Characterizing the representative VS30 in bedrock
is complicated when using the sparse distribution of investigated rock outcrops in the
training area. After comparing the N-VS correlations in the cost functions, correlation
#1 was selected and used for the transformation of N to VS to calculate the VS30 as it
yielded the lowest MAE, RMSE, and RRSE values and the highest R2. Nevertheless, the
reasons these values when compared to other stochastic relationships are as follows: (1) low
number of geotechnical investigations were performed in mountain and rock outcrop areas;
(2) uncertainty in the geospatial interpolation of sparsely distributed and low correlated
features; and (3) possible underfitting in the auto fitting procedures of hyperparameters.

In this study, the predicted residuals were elucidated and the difference between
the predicted VS30 values with the measured VS30 values (Figure 9) was evaluated based
on the N-VS correlation #1. The best-fitting regression model out of the four algorithms
was applied to the training areas to compare the spatial variability in the predicted VS30
map (Figure 10). The scatter patterns in LR, SVR, and MLP were very similar, whereas
the residual application of the K-NN was significantly scattered. For all grouped LFs, the
VS30 value was under approximately 400 m/s; at this value, the site classes D or E were
overestimated. The grids assigned with low VS30 were mainly located at LF-IV, where
elevation and slope were the smallest (5.73 m and 0.01◦, respectively) (Table 5). However,
these grids in LF-I or LF-II may be a source of noise parameters in the regression models.
Conversely, when the VS30 value exceeded approximately 400 m/s, site classes B and C
were underestimated.

The grids allocated in the high VS30 map (Figure 5) mostly exhibited top or ridge
characteristics: LF-I or LF-II, high elevation and slope, and outcrop bedrock or stiff soil.
The grid with a high VS30 in the plain would be a source of noise parameters. When the
VS30 value was either higher or lower than 400 m/s, the number of residuals increased.
VS30 was mapped in the training area (Figure 10) and test areas (Figure 11) based on the
best-fitting model of the four regression methods. The maps from LR and SVR presented
similar spatial trends, particularly in the northern and southern mountainous regions
where VS30 exceeded 800 m/s. The grids were defined as class B using LR, K-NN, SVR,
and MLP, which occupied 32%, 39%, 31%, 38% of the training area, respectively. The grid
areas assigned with class C for the application of LR, K-NN, SVR, and MLP occupied 19%,
25%, 20%, and 30% of the training area, respectively. Class D was distributed at 49%, 46%,
49%, and 42%, respectively, in the four VS30 maps. The MLP-based VS30 map had a similar
proportion of site class with the VS30 grid, according to the geospatial interpolation models.
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K-nearest neighbors; support vector regression; multilayer perceptron.

3.5. VS30 Mapping in the Test Area, North Korea

Based on the best-fitting regression model, the VS30 values in four test areas in North
Korea were mapped using elevation, slope, and the grouped LF from the DTM (Figure 11).
In Pyongyang, the results of LF and K-NN were similar to those of the training area. K-NN
predicted the discontinuous zone, which was classified as class B, along the Taedong River.
In the MLP-based VS30 map, the C3 and C4 classes, representing the intermediate stiff soil,
were distributed on the basin-edge area and occupied a wider area (28%) than those in the
LR, K-NN, and SVR-based maps (10%, 19%, and 9%, respectively). The D and E classes
were distributed in the basin and embankment areas, except in the K-NN-based map.

The LF-I zone in the test area, Kaesong, was mainly classified as class B. The LF-II
zone was classified as class C based on the MLP-based map, whereas other maps mostly
identified the zone as class D. As class C denotes the weathered rock or stiff soil and is
generally distributed in the drainage and ridge areas (Sun and Kim, 2017), the MLP-based
map provided reasonable distribution of the site class. In every map, classes D or E were
determined by focusing on LF-IV. The VS30 maps of the test area in Nampo were obtained
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from the four regression models that generally represented a similar pattern, with LF-I and
LF-IV being classified as classes B and D, respectively. Class D was widely distributed,
exclusively in the northern and northwestern mountains, where the elevation exceeded
350 m and the slope exceeded 50◦.

The LR- and SVR-based maps showed a similar VS30 distribution to that observed
in the training area. The K-NN-based VS30 maps showed discontinuous zoning despite
having the same LF. The MLP-based map determined class C for a wider area than the
maps based on other models. The normal distribution of VS30 obtained from the best-fitting
model in the four regression methods was derived for the four test areas (Figure 12). The
probability density of the SGS-E-type in the training area was also compared based on
the distribution patterns (skewness and kurtosis). The probability density distributions
of LF, SVR, and MLP-based VS30 maps were more peaked (leptokurtic) than that of the
SGS-E-type. If VS30 was leptokurtic, most of the VS30 grids were distributed mainly in the
VS30 range of 600–800 m/s as compared to that observed in a mesokurtic or platykurtic
distribution (i.e., SGS-E-type and K-NN applications). The kurtosis of VS30 developed
from the K-NN was similar to that of the SGS-E-type. In the training area, the skewness
coefficients of LF and SVR were zero, while K-NN and MLP were typically negative. In
the test areas of Pyongyang and Nampo, the distribution patterns were similar to those in
the training area. Similar to the resemblance in geography and terrain of the training and
test areas, the predicted VS30 grid conserved the surficial and subsurface characteristics. In
contrast, the negative skewness of VS30 for the four models was estimated for the test area
in Kaesong. As most areas of Kaesong are low hills, a higher VS30 value (approximately
700–900 m/s) than that for the training area was possible. 

2 

 
Figure 12. Normal distribution of VS30 map from the regression models for the (a) training area in
Seoul and Incheon; (b) test area in Pyongyang; (c) test area in Kaesong; and (d) test area in Nampo.

4. Discussion

The large-scale VS30 map predicted using only the terrain features supports site
classification against seismic site effects. In particular, the configuration of subsurface
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characteristics was complicated by the given confined terrain information, despite the
important global or local spots in the Korean Peninsula. The TPI-based landform character-
istics were newly defined as the principal components of the learning model to reclassify
the conventional criteria of various terrain proxies. The terrain-based proxy usually uses
the slope gradient and elevation, and in combination with LF, adequately predicts VS30.
The training area in South Korea was representative of the geography and terrain charac-
teristics of the Korean Peninsula. The subareas (basins, ridges, and valleys) in the training
area resembled those in the three test areas in North Korea based on the LF. As the LFs
were classified into 10 landform categories with a grid threshold TPI (25 or 500 m), the
subgrouping of LFs was appropriate for clearly categorizing the relations between LF
and VS30.

The previous methodologies suggested the individual proxy dependence of VS30 re-
lated to geomorphological, terrain, and geological properties through a stochastic approach,
such as a lognormal linear regression model [11–14,44]. The best-fitting models for the
training area had the lowest residuals for various cost function metrics and presented a
good performance by applying K-fold cross-validation. However, determining the optimal
regression model by considering only the cost functions is challenging. Hence, geospatial
interpolation was applied to verify the reliability of the models based on the site class
proportion of VS30 grids. The VS30 maps in North Korea primally visualized site classes
against seismic site effects using the best-fitting models of the four regression methods.
Although verification is impossible without geotechnical or geophysical investigations, the
coefficients of the site amplification can be preliminarily interpreted for seismic hazard
assessment or resistance designs.

Prior to the site classification, regression, and mapping workflow, the archiving of
the VS30 profile and its site response from the geophysical survey is essential. However, if
the VS profile is not distributed for a large-scale area, the empirical correlations with other
physical value can be assumed as the best alternative approach for determining the VS
profile. Nevertheless, the applicability of N-VS correlations for regression modeling were
validated; the direct VS profile should be archived or supplemented for the site-specific
characterization of seismic amplification. Therefore, the proposed regression model is
recommended only in n-value-based VS30 mapping.

Geological unit-based proxies for seismic site characterization maps in high seismicity
regions have been effectively used to demonstrate the shallow shear wave profile and
its index properties. Accordingly, the integrated proxy index is possible considering the
local cross-correlation between terrain and geological features, given the geological map of
North Korea. An ensemble learning approach is necessary to combine several regression
models to produce an optimal predictive model for an extended follow-up research.

5. Conclusions

In this study, the DTM was used to map large-scale VS30 in the test site in North
Korea according to the proposed procedures: (1) TPI-based landform classification; (2)
geostatistical interpolation for building a geospatial grid with geotechnical and DTM
features; (3) calculation of VS30 grids; (4) reclassification and subgrouping of the TPI-
based landform class with respect to VS30 grids; (5) uncertainty analysis with regression
modes, landform class, and N-VS correlations; and (6) multivariate regression for VS30 grid
prediction using terrain proxy-based principal components. The reclassified TPI-based
landform was strongly correlated with VS30, and its site response coefficients were similar
to the correlations between VS30 and elevation or slope. In particular, the grouped LF
divided the sedimentary site with a lower VS30 from the outcrop bedrock site in the training
and test sites. The geospatial grid, which has been developed based on the SGS-E-type, also
supported the characterization of shallow subsoil and land cover conditions in addition to
VS30. The ML techniques for predicting the VS30 grid, which were initially allocated with
the DTM, determined the site-specific VS30 map at the test sites: Pyongyang, Kaesong, and
Nampo. The best-fitting models of LR, K-NN, SVR, and MLP were determined based on
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K-fold cross-validation. The MLP-based VS30 map represented a similar distribution of the
geospatial grid by using the SGS-E-type. On the VS30 map in the test areas of North Korea,
feasible site classification against the seismic site effect was visualized, which will probably
be used as a reference map for preliminary seismic hazard assessments.
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