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Abstract: Applying the optimum rate of fertilizer nitrogen (N) is a critical factor for field manage-
ment. Multispectral information collected by active canopy sensors can potentially indicate the leaf 
N status and aid in predicting grain yield. Crop Circle multispectral data were acquired with the 
purpose of measuring the reflectance data to calculate vegetation indices (VIs) at different growth 
stages. Applying the optimum rate of fertilizer N can have a considerable impact on grain yield and 
profitability. The objectives of this study were to evaluate the reliability of a handheld Crop Circle 
ACS-430, to estimate corn leaf N concentration and predict grain yield of corn using machine learn-
ing (ML) models. The analysis was conducted using four ML models to identify the best prediction 
model for measurements acquired with a Crop Circle ACS-430 field sensor at three growth stages. 
Four fertilizer N levels from deficient to excessive in 50/50 spilt were applied to corn at 1–2 leaves, 
with visible leaf collars (V1-V2 stage) and at the V6-V7 stage to establish widely varying N nutri-
tional status. Crop Circle spectral observations were used to derive 25 VIs for different growth 
stages (V4, V6, and VT) of corn at the W. B. Andrews Agricultural Systems farm of Mississippi State 
University. Multispectral raw data, along with Vis, were used to quantify leaf N status and predict 
the yield of corn. In addition, the accuracy of wavelength-based and VI-based models were com-
pared to examine the best model inputs. Due to limited observed data, the stratification approach 
was used to split data to train and test set to obtain balanced data for each stage. Repeated cross 
validation (RCV) was then used to train the models. Results showed that the Simplified Canopy 
Chlorophyll Content Index (SCCCI) and Red-edge ratio vegetation index (RERVI) were the most 
effective VIs for estimating leaf N% and that SCCCI, Red-edge chlorophyll index (CIRE), RERVI, 
Soil Adjusted Vegetation Index (SAVI), and Normalized Difference Vegetation Index (NDVI) were 
the most effective VIs for predicting corn grain yield. Additionally, among the four ML models 
utilized in this research, support vector regression (SVR) achieved the most accurate results for es-
timating leaf N concentration using either spectral bands or VIs as the model inputs. 

Keywords: multispectral sensor; machine learning; vegetation indices; yield prediction; nitrogen 
concentration; Holland scientific crop circle 
 

1. Introduction 
Agricultural products play a major role in feeding the world’s population and have 

a remarkable impact on people’s life and work by providing food, feed, and fuels. It is 
estimated that land used for agricultural purposes expanded by around 10 million ha/y 
from 1980 to 2007 [1] to meet the needs of a growing population, changing diets, and 
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emerging demand for biofuels. However, from 2010–2012, around 870 million people 
across the globe did not meet their minimum dietary energy needs due to insufficient 
foodstuffs [2]. The United States Department of Agriculture (USDA) reported that, in 
2019, approximately 36 million ha of corn was planted in the US and 0.27 million ha in 
Mississippi and 11.3 ton/ha and 11.7 ton/ha of corn grain was harvested in the US and 
Mississippi, respectively [3]. The importance of increasing production efficiency to meet 
global food demands is critical to maintaining or increasing economic viability while min-
imizing environmental hazards. 

Nitrogen (N) is a primary nutrient required for plant growth, development, and the 
reproduction of healthy plants, and it plays a key role in the developing phenological 
stages of corn, since N is directly related to photosynthesis [4]. An increase in fertilizer N 
application rates has contributed substantially to an increase in the yield of grain crops 
throughout the world [5]. However, applying fertilizer N in excess of crop demand can 
result in decreased economic returns, low Nitrogen Use Efficiency (NUE), poor nutritional 
quality, and a negative environmental impact [6,7]. A deficiency of N causes plants to 
senesce N compounds in older leaves while translocating to growing points or meriste-
matic areas [8] and causes lower crop yields. Nitrogen deficiency results in a decrease in 
leaf chlorophyll concentration, and causes a change in leaf color from dark green to light 
green or yellow [9]. This distinction has been associated with physiological and structural 
changes in cotton leaves [10], which results in an increase in leaf spectral reflectance in the 
visible wavelength range (400–700 nm) [11]. Moreover, Near-infrared (NIR) reflectance 
changes due to N deficiencies, in which these wavelengths are increasingly used for esti-
mating crop N, especially at early growth stages [12]. Therefore, N deficiency strongly 
influences the phenotypic characteristics of crops [13]. 

Using the optimum rate of fertilizer N can have a considerable impact on grain yield. 
Improving grain yield production and quality of crops using optimal fertilizer N applica-
tion rates, as well as proper application of pesticides, herbicides, and other inputs are the 
primary goals of precision agriculture. Critical parameters such as fertilizer and irrigation 
management, weather conditions, topography, and soil properties affect potential growth 
and yield. Multispectral sensors can be used to assist in the accurate and timely applica-
tion of these inputs for large agricultural fields providing spectral, spatial, and temporal 
information related to crop growth. Tracking corn growth rates during the growing sea-
son to estimate yield is important for efficiently managing N fertilization. Several studies 
have utilized crop sensor data to predict yield [14–19]. In the past, it was common to use 
a chlorophyll meter (SPAD) and associated leaf color charts to obtain point measurements 
of crop N status [20,21]; however, this method is time-consuming and labor-intensive 
when used to define spatial structure in large production fields. In recent years, there has 
been an increasing interest in using active field sensors and passive multispectral sensors 
mounted on Unmanned Aerial Vehicles (UAV) to estimate yield and plant N due to a 
greater efficiency in mapping large areas [22,23]. 

Multispectral sensors can quickly collect spectral information of actively growing 
crops across fields. One such commercially available handheld multispectral sensor is the 
Crop Circle ACS-430 (Holland Scientific Inc., Lincoln, NE, USA). It is an active canopy 
sensor with its own source of illumination. It simultaneously measures reflectance at 3 
wavelengths continuously, which can be used for computing Vegetation Indices (VIs). A 
vegetation index is a single value index calculated using several mathematical combina-
tions of different spectral wavelengths. Vegetation indices can be used for estimating var-
ious physiological characteristics such as biomass, leaf area, vegetation cover, leaf chloro-
phyll content at different growth stages for different crops [24]. For instance, Cao et al. 
(2013, 2017) evaluated several VIs gained from reflectance at the green, red-edge and NIR 
wavelengths, which they acquired with a Crop Circle ACS-470 to estimate N status of rice 
and developed a precision N management strategy for winter wheat (Triticum aestivum L.) 
in the north China plain, respectively. They also compared the results with GreenSeeker 
and evaluated the performance of a Crop Circle ACS-470 and Crop Circle ACS-430 for N 
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status estimation of winter wheat at different height and growth stages [25]. Shi et al. 
(2015) evaluated the ability of the Crop Circle ACS-470 sensor to estimate N status and 
yield for rice in China [26]. There are other commercially available handheld devices such 
as the GreenSeeker handheld crop sensor (Trimble Navigation Limited, Sunnyvale, CA, 
USA), Crop Circle ACS-211 (Holland Scientific Inc., Lincoln, NE, USA), and CropSpec 
(Topcon Positioning Systems, Inc., Livermore, CA, USA), which measure just two wave-
lengths (red and NIR, NIR and green, NIR and red-edge, respectively). One of the limita-
tions of using these sensors is the lower number of spectral bands and Vis, limiting the 
capacity to select or calculating specific indices shown to be better indicators for different 
plant biophysical parameters and phenological stages [12,24,26]. Thus, having more than 
2 wavelengths can improve a canopy sensors’ utility [23]. 

Machine learning (ML) techniques are applied to multispectral images, which can be 
utilized to illustrate physiological and structural attributes of plants and their response to 
environmental stress [27]; moreover, several variables such as meteorological data, soil 
moisture, irrigation, spectral bands are used as inputs of the ML models to predict ferti-
lizer N requirements or automated recommendations for irrigation [28]. Barzin et al. 
(2020) applied 8 ML methods on five spectral bands and various VIs to identify the best 
method for estimating leaf N in corn [29]. Gutiérrez et al. (2018) applied an ML algorithm 
on thermal imagery in order to develop a new technique for fast and reliable water status 
estimation in a vineyard [30]. Weng et al. (2018) used least squares-support vector ma-
chine classifier and hyperspectral images in order to detect Huanglongbing disease and 
nutrient deficiency in a citrus orchard during hot and cold seasons [31]. 

The primary objective of this study was to estimate corn leaf N concentration and 
grain yield using canopy reflectance, acquired by the Crop Circle ACS-430 multispectral 
handheld sensor. This study employed four ML algorithms to find the best prediction 
model for N concentration estimation and grain yield prediction. The results of this project 
provided detailed information regarding three spectral bands (red, red-edge, and NIR) 
and 25 VIs at different growth stages. Previous research has mostly used NDVI, or ratio 
vegetation index (RVI) gained from GreenSeeker active crop canopy sensor with two fixed 
red and NIR spectrums to estimate these two parameters. The development of three-band 
Crop Circle active sensor provides a potential to calculate several VIs, including the VIs 
derived from the red-edge bands. In this study, 25 VIs and 3 spectral bands were used to 
feed the ML models. Additionally, the accuracy of wavelength-based and VI-based mod-
els were compared to examine the best model inputs. 

2. Materials and Methods 
2.1. Study Site Description and Experimental Design 

The data were collected during the 2019 corn growing season using a Crop Circle 
ACS-430 at the W.B. Andrews Agricultural Systems Research Farm at Mississippi State, 
MS, USA (33°28’13.5”N, 88°45’48.0”W). The field area was 0.8 ha with the soil primarily 
mapped as a Marietta fine sandy loam (Fine-loamy, siliceous, active, thermic Fluvaquentic 
Eutrudepts). The field was rainfed and the precipitation and average temperature during 
the 2019 growing season were 760 mm and 22 degrees Celsius [29]. The region is classified 
as a hot and humid climate in the growing season. 

The experimental field study was divided into 16 plots. Twelve rows of corn were 
planted in each plot. There was a 97 cm space between each row, which were 38 m in 
length, with a 3 m alley in between each plot. Four fertilizer N rates (0, 90, 180, and 270 
Kg/ha) with four replicates were applied (Figure 1). Treatments were randomly assigned 
to each replicated block. The experimental design of the field was a randomized complete 
block. Corn (DeKalb Brand-DKC67-72 variety) was planted on 23 April 2019, at the Mis-
sissippi State research farm. Soil samples were taken before planting and analyzed utiliz-
ing Mississippi Extension Service soil test extraction method. The field received uniform 
applications of P-K-Mg-S before planting, based on soil test results: one part concentrated 
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super phosphate (0-46-0), two parts muriate of potash (0-0-60), and one part sulfate of 
potash-magnesia (0-0-22-11Mg-22S) were mixed and applied at a material rate of 224 
Kg/ha. Moreover, weeds and pests were managed based on Mississippi State University 
Extension recommendations. The fertilizer N source was liquid urea ammonium nitrate 
(32-0-0), which was applied as a side dress. The fertilizer N was applied as two splits: 50% 
after emergence, when corn had 1–2 leaves with visible leaf collars (V1-V2 stage) on 8 May 
2019, and the remaining 50% of fertilizer N rate was applied at V6-7 (27 May 2019). The 
experimental field has been used for corn production since 2012, with the same fertilizer 
N rates assigned to individual plots. 

 
Figure 1. Fertilizer Nitrogen (N) treatments and 4 replicates for corn in 2019 at Agriculture Systems 
Research Farm, Mississippi State, USA. 

2.2. Data Collection 
A Crop Circle ACS-430 (Holland Scientific Inc., Lincoln, NE, USA) was used in 2019 

to collect canopy reflectance data at 670, 730, and 780 nm (red, red-edge, and NIR spectral 
bands) from rows 2 and 3 and rows 10 and 11 of each plot (Figure 1). Spectral reflectance 
data were simply and instantly recorded as a CSV file on a SD flash card using the Holland 
Scientific GeoSCOUT X datalogger (Figure 2). It also measured the NDVI and NDRE val-
ues directly with geolocation of each point 10 times per second (10 Hz). The sensor’s field 
of view was an oval of ~30 degrees by ~14 degrees. The sensor to canopy distance is sug-
gested to be between 25 to 180 cm; however, in this research, the sensor was held at a 
consistent height of approximately 60 cm above the canopy, with a sampling speed of 10 
Hz, while moving through each plot at a constant pace. The Crop Circle ACS-430 denotes 
reflectance measurements as Pseudo Solar Reflectance (PSR), which means the spectral 
reflectance wavelengths are scaled as percentages and will not differ in sensor height 
above a target [32]. The Crop Circle ACS-430 has an internal GPS to record the latitude, 
longitude, and elevation of each point, but it was not considered accurate enough for our 
purposes. Therefore, it was connected to a Piksi Multi Evaluation Kit (Swift Inc., Rocky 
View County, Canada) as a Real-Time Kinematic (RTK) GPS. Data were extracted with a 
3 m reduction from the starting edge and end of each plot length. This reduction was 
applied to skip the first and last crop canopy of each plot to eliminate border effects. Data 
were collected at three phenological stages (V4, V6, and VT) around 10:30 am. The average 
reflectance values were computed to represent rows 2, 3 and 10, 11 of each plot (Figure 1). 
The calculated spectral Vis, using red, red-edge, and NIR, are listed in Table 1. 
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Figure 2. Crop Circle ACS-430 and GeoSCOUT X datalogger connected to RTK GPS. 

Table 1. Calculated spectral vegetation indices using red, red-edge, and NIR spectral bands. 

 Vegetation Indices (VIs) Abbreviation Formula Reference 
1 Normalized Difference Vegetation Index NDVI (NIR − Red)/(NIR + Red) [33] 
2 Renormalized Difference Vegetation Index RDVI (NIR − Red)/�NIR + Red [34] 
3 Transformed Difference Vegetation Index TDVI 1.5 × (NIR − Red)/�NIR² + Red + 0.5 [35] 
4 Difference Vegetation Index DVI NIR − Red [36] 
5 Red-edge difference vegetation index REDVI NIR − Red-edge [36] 

6 
Red-edge re-normalized different vegetation 

index 
RERDVI 

(NIR − Red-

edge)/�NIR + Red − edge 
[23] 

7 Normalized Difference Red-edge NDRE (NIR − Red-edge)/(NIR + Red-edge) [8,37] 

8 
Simplified Canopy Chlorophyll Content In-

dex 
SCCCI NDRE/NDVI [38] 

9 Non-Linear Index NLI (NIR − Red)/(NIR2 + Red) [39] 

10 Modified Non-Linear Index MNLI 
(NIR − Red) × (1 + 0.5)/ (NIR2 + Red + 

0.5) 
[40] 
[41] 

11 Soil Adjusted Vegetation Index SAVI 1.5 × (NIR − Red)/(NIR + Red + 0.5) [42] 
12 Optimized Soil Adjusted Vegetation Index OSAVI (NIR − Red)/(NIR + Red + 0.16) [42] 

13 Modified Soil Adjusted Vegetation Index 2 MSAVI2 
(2NIR + 1 − 

�(2NIR + 1)2 − 8(NIR − Red))/2 
[43] 

14 Simple Ratio SR NIR/Red [44] 
15 Modified Simple Ratio MSR (NIR/Red) − 1/�(NIR /Red) + 1  [45] 
16 Wide Dynamic Range Vegetation Index WDRVI (0.1 NIR − Red)/(0.1 NIR + Red) [46] 

17 
Red-edge wide dynamic range vegetation in-

dex 
REWDRVI 

(0.12 × NIR − Red-edge)/(0.12 × NIR + 
Red-edge) 

[23] 

18 Red-edge ratio vegetation index RERVI NIR/Red-edge [36] 
19 Red-edge difference vegetation index REDVI NIR − Red-edge [36] 
20 Red-edge chlorophyll index CIRE (NIR/Red-edge) − 1 [47] 

21 Modified red-edge simple ratio MSR_RE 
((NIR/Red-edge) – 1) 

/�(NIR/Red − edge)  +  1 
[23] 

22 Red-edge soil adjusted vegetation index RESAVI 
1.5 × [(NIR − Red-edge)/(NIR + Red-

edge + 0.5)] 
[23] 

23 Modified RESAVI MRESAVI 
0.5 × [2 * NIR + 1 − 

�(2 ×  NIR +  1)² −  8 ×  (NIR −  Red  
] 

[23] 
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24 
Red-edge optimal soil adjusted vegetation in-

dex 
REOSAVI 

1.16 × (NIR − Red-edge)/(NIR + Red-
edge + 0.16) 

[23] 

25 
Red-edge re-normalized different vegetation 

index 
RERDVI (NIR − Red-edge)/�NIR +  Red − edge [23] 

2.2.1. Leaf Nitrogen Sampling 
Whole plant or leaf samples were collected in 3 stages. Whole plant samples were 

collected at V4 stage (23 May 2019), leaf samples were taken at V6 (30 May 2019), and just 
before tassel emergence (VT) (21 June 2019). Six samples were collected from rows 2 and 
3 and six samples from rows 10 and 11 (three samples from each row). The most recently 
matured and fully collared leaf of the individual corn plants were selected for sampling. 
Samples were placed in a forced-air oven and dried at 65 °C and weighed before they 
were ground through a 40-mesh sieve in a Wiley Mill and placed in airtight plastic vials. 
Again, they were dried at 65 °C and stored in sealed polypropylene vials until analysis 
and were processed for total N concentration on a Carlo Erba N/C 1500 automated dry 
combustion analyzer (Carlo Erba, Milan, Italy). 

2.2.2. Grain Yield 
The corn grain was harvested with a two-row plot combine for the entire plot length 

and grain yield was calculated on ton/ha for rows 2 and 3 and rows 10 and 11 of each plot 
(Figure 1). Grain yield was adjusted to a moisture content of 15.5%. 

2.3. Statistical Analysis 
2.3.1. Feature Selection 

To remove irrelevant and redundant features, we were required to select the VIs that 
contributed most to predicting the target variable. Using irrelevant VIs can decrease the 
accuracy in the models; therefore, among the large number of VIs, we selected those that 
can optimally predict crop yield and plant tissue N concentration. There are different 
methods for feature selection such as a Univariate Selection ANOVA F-test, Principal 
Component Analysis, Recursive Feature Elimination (RFE), and bagged decision trees 
such as Random Forest (RF). For this study, RFE method [48], which is a popular feature 
selection method, was used to select predictors from the training data set that are more 
effective in predicting the independent variable and maximizing model accuracy. This 
method recursively removes attributes and builds the model on the remain features and 
works mainly in three steps including: 
1- RFE builds a model and estimates the feature importance by using a training data 

set. 
2- RFE sets the priority of the important features. It takes a subgroup of the selected 

variables in step 1 and builds models of a given subset size. In each iteration, the 
ranking of each feature is recalculated. In this step, the repeated cross-validations 
were implemented within the RFE method. 

3- The model performance is evaluated across different subset sizes to derive an optimal 
list of predictors. 
Most importantly, the flexibility of this method in terms of the hyperparameters and 

the ability to control which algorithms are utilized, makes it an appropriate feature selec-
tion model for most ML applications. Since we were interested in fitting an appropriate 
model with a limited number of predictors, the RFE method was selected as it chooses the 
optimum number of features without affecting the model accuracy. 

2.3.2. Machine Learning Methods 
Since the observed grain yield and leaf N concentration data did not follow a normal 

distribution and the VIs and multispectral observation were highly correlated, this type 
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of study is best analyzed through nonparametric models; therefore, this project utilized 
four nonparametric ML models to develop corn-leaf N concentration and grain yield pre-
diction models. Four ML methods (RF, Gradient Boosting Model (GBM), Extreme Gradi-
ent Boosting (XGBoost), and Support Vector Regression (SVR)) were used in this study to 
find the best model to predict grain yield and the leaf N concentration of corn. 

With its in-built ensemble capacity, RF. [49] provides one of the most versatile ML 
algorithms, which is used for either regression or classification problems. This technique 
proves to be robust for correlated predictors, such as spectral bands or different VIs, and 
is used to solve both supervised and unsupervised ML problems. Random Forest models 
can provide variable interaction detection, nonlinear relationship detection, can handle 
missing values, and model local effects. However, one of the disadvantages of the Ran-
dom Forest ML is that it tends to return erratic prediction in the case where observations 
are out of range of training data. Therefore, to come up with a robust prediction model, 
the training set should include the range of values at least as large as those that will be 
encountered when the model is tested. 

Similarly, the GBM [50,51] is an RF model in that it runs numerous decision trees and 
uses these trees to compute an average. The GBM is a sequential modeling approach, 
though, the value added by this model is that each step learns from the previous step, 
whereas, with an RF model, all trees are run separately, and they do not learn from each 
other. In the GBM model, on the other hand, high residuals from one step are upweighted 
when they are fed into the next step, as a result, each tree can learn from previous trees. 

The other model used in this research was the XGBoost [52]. This model is an opti-
mized distributed algorithm that has recently dominated applied ML competitions for 
structured or tabular data. It has a fast and accurate performance for regression and clas-
sification. It also can prevent overfitting by adding a regularization term [53]. 

The regression model of Support Vector Machine [54,55], called Support Vector Re-
gression (SVR), is a supervised-learning approach to predict continuous variables. This 
model is used to model linear and nonlinear relationships and the essential data points 
are chosen to solve the regression function. One of the advantages of SVR is that it is ro-
bust to the outliers and generalizing capability with high prediction accuracy [56]. 

The data set was randomly split into the training (75%) and testing (25%) set. Since 
this stage was used as an input feature in the ML models, in order to balance the datasets 
at each stage, a stratification approach was used to split data in a way that retains the same 
proportion of samples in each stage as observed in the original data set. Then, repeated 
cross validation (RCV) was used to train the models. In order to perform RCV, the training 
data set divided randomly into n folds and using each fold as testing data, the model 
trained on the rest of the n-1 folds. In RCV strategy we repeated this step several times (5 
times in this study). The evaluations metrics illustrate the average of errors obtained when 
performing the RCV method. Since each repeat was randomly split the data into n-fold, 
the training-testing data in the first iteration of RCV are different than for the second iter-
ation. Determining the optimal parameters of the ML models is critical for the bias-re-
duced assessment of a model’s predictive power. Therefore, hyperparameters tuning per-
formed for each model by a set of parameters. Schematic of the tuning and cross validation 
procedure was as below: 
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Two groups of features were used to train the ML models including spectral bands 

and VIs. Growth stages was imported as inputs in both groups. Therefore, two strategies 
were used to train the N and yield prediction models. In the first method, ML models 
were trained based on spectral bands. In this step, four features, including Red, NIR, Red-
edge, and growth stages were used as inputs in the training models. In the second strat-
egy, the VIs selected by the RFE method and growth stages were used as input features 
for the training models. To add a threshold to the number of predictors in the RFE method, 
different set of the VIs (2, 3, 4, 5, 6, etc.) selected manually and the accuracy of the trained 
models compared with each other. If increasing the threshold did not substantially im-
prove the accuracy of the model, least number of VIs was used. 

Three statistical evaluation metrics, including mean absolute error (MAE), root mean 
square error (RMSE), and coefficient of determination (R2) were used to evaluate the per-
formance of the ML models. The statistical R software (version 3.5) was employed to per-
form all statistical analyses and ML modeling in this research and the significance levels 
were indicated as follows: . = p-value < 0.1, * = p-value < 0.05, ** = p-value < 0.01, and *** = 
p-value < 0.001. 

3. Results and Discussion 
Among the several variables than can be used as inputs in ML modes, the RFE 

method selected SCCCI and RERVI, which are red-edge-based VIs [30,39,57–60] as pre-
dictors for estimating leaf N% and SCCCI, CIRE, RERVI, SAVI, and NDVI were chosen 
for predicting corn grain yield. Erdle et al. (2011) and Cao et al. (2013) found that RERVI 
was the most influential and temporally stable index for estimating leaf N concentration 
[23,61]. Bronson1 et al. (2020), compared the ability of 12 VIs to detect N deficiency be-
tween N treatments in irrigated cotton. They recommended the use of active canopy sen-
sors with NIR and red-edge wavelength for N management of irrigated cotton under an 
overhead sprinkler irrigation system [62]. Besides, growth stages have a considerable ef-
fect on performing VIs for estimating plants biophysical parameters [12,24,63–65] and in 
this study, growth stage was imported to the models as an input for both leaf N estimation 
and yield prediction. 

3.1. Regression Analysis 
A comparison of the relationship between the SCCCI and RERVI with leaf N concen-

tration and grain yield is presented in Figure 3. The data are organized in relation to the 
three phenological stages, including V4 (purple), V6 (orange), and VT (pink). The density 
plots illustrate the distribution of leaf N% as a response and SCCCI and RERVI as valid 
predictors of estimating leaf N%. The density plots for leaf N% (Figure 3, upper left) 
demonstrate that tissue N% does not follow the normal distribution at any of the growth 
stages. It has a similar probability distribution pattern for VIs at different phenological 
stages. For example, as shown in Figure 3, the SCCCI resulted in a near multimodal dis-
tribution. Scatter plots (lower panel) and associated correlations (upper panel) illustrated 
the relationships between the response variables (grain yield and leaf N%) and two inde-
pendent variables (RERVI and SCCCI) for the three growth stages. Regarding the SCCCI 
index, the correlation coefficients between this index and leaf N% were −0.35, 0.90, and 
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0.92 at V4, V6, and VT stages, respectively. Correspondingly, the correlation coefficients 
between the RERVI and N were 0.48, 0.74, and 0.95 at the V4, V6, and VT stages, respec-
tively. The correlation coefficients between grain yield and SCCCI were −0.44, 0.72, and 
0.93 and between the yield and RERVI, they were 0.67, 0.79, and 0.97 for V4, V6, and VT, 
respectively. The correlation coefficients between SCCCI and others were negative at V4, 
which may have been the result of small corn plant size and high soil reflectance. Four 
histograms were associated with each phenological stage, and each variable is shown at 
the bottom of this figure. The boxplots in Figure 3 show the variability of measurements 
at each of the different growth stages. For example, as corn development progressed, av-
erage leaf N% increased (around 0.25%) from V4 to V6, then at the VT stage, it decreased 
to almost the same level as the V4 stage. A variation in RERVI was observed as the phe-
nological stages changed from V6 to VT; however, unlike the SCCCI, a trend was observed 
at each growth stage. As illustrated in the scatterplot between RERVI and leaf N%, the 
variability in RERVI for each growth stage was independent of the other stages; therefore, 
separate regression models were fitted for each stage individually (Figure 4). Shen et al. 
(2014) reported that RERVI had a consistently greater correlation with plant N uptake 
across different growth stages [66]. The results of the regression analysis are illustrated in 
Table 2 and the fitted lines are shown in Figure 4. 

 
Figure 3. Exploratory data analysis for N, yield, RERVI, and SCCCI at different phenological stages. 
The significance levels were as follows: . = p-value < 0.1, * = p-value < 0.05, ** = p-value < 0.01, and *** 
= p-value < 0.001. 
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Figure 4. Scatter plots of RERVI versus leaf N percent in different corn growth stages. 

The regression analysis was performed for other VIs to evaluate the relationships 
between leaf N concentration and VIs. The preliminary results of the regression analysis 
were used to assess the importance of independent variables in the estimation of leaf N 
concentration. As illustrated in Table 2, RERVI had a statistically significant relationship 
with leaf N concentration at all three stages (all the p-values were less than 0.05 in 5% 
confidence interval). 

Table 2. Linear regression results of leaf N (%) and RERVI. ** = p-value < 0.01, and *** = p-value < 
0.001. 

Stage Residual Standard Error R2 p-Value 
V4 0.44 0.23 0.006 ** 
V6 0.36 0.54 1.45 × 10−6 *** 
VT 0.19 0.89 5.8 × 10−16 *** 

3.2. Machine Learning Results 
3.2.1. Machine Learning Results for N Estimation 

The box plots in Figure 5 display the variation in mean absolute error (a), root mean 
square error (b), and R-squares (c) resulting from the cross-validation of training models. 
Two groups of box plots are shown in Figure 5, in which the orange plots show the cross-
validation results derived from the ML model, which were trained by the VIs, and the 
brown plots illustrate the cross-validation results derived from the models, which were 
trained by the spectral raw data. In this study, four non-parametric ML models were used 
to estimate the leaf N concentration. As indicated in Figure 5, the evaluation metrics were 
different for all models. For example, in the wavelength-based models, the average R2 
values resulting from cross-validations in the training data set were 0.61, 0.48, 0.62, and 
0.75 for RF, XGBoost, GBM, and SVR models, respectively. The results indicated that SVR 
model had the least MAE and RMSE, and the greatest R2, therefore it can be concluded 
that the SVR model outperformed the other models in almost all performance measures. 
As illustrated, the SVR model could explain approximately 75% of the variability of N 
content using wavelength-based inputs. Cummings et al., 2021, evaluated Crop Circle 
Phenom for in-season diagnosis of corn N status during two years’ growing season in 
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Minnesota, United States. Their results showed that Canopy Chlorophyll Content Index 
(CCCI) was an important vegetation index for predicting plant N concentration and plant 
N uptake in both simple regression (SR) and XGB modeling [67]. 

 
Figure 5. Statistical evaluation metrics including (a) mean absolute error (MAE), (b) root mean 
square error (RMSE), and (c) coefficient of determination (R2) resulted from cross-validation in two 
sets of machine learning models to estimate leaf N content. 

Overall, a comparison of the performance of two groups of ML models indicated that 
the models trained by the VIs had slightly greater accuracy in comparison to models 
trained by the spectral bands in N prediction. According to these results, we can conclude 
that the ML models can manage the linear and non-linear relationships between the input 
features (i.e., spectral bands). The results of this study ranked the ML leaf N% estimation 
models from the best to the worst, according to the statistical evaluation metrics in the 
following order: SVR, RF, GBM, and XGBoost. In addition, regarding the performance of 
the ML models, the same order was observed for both VI-based and wavelength-based 
modeling approaches. 

The performance of well-trained models was evaluated using the test data (25% of 
the samples), that did not contribute to training the models. As illustrated in Figure 6, the 
SVR model had achieved the best performance measures as compared to the other models. 

(a) (b) 

(c) 
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As a result, this study illustrated that either spectral bands or VIs derived from the Crop 
Circle sensor can be used as reliable inputs for the SVR model to predict corn leaf N% 
accurately. Bakar et al. 2021, investigated instantaneous fertilizer application for rice using 
a Crop Circle ACS-430. They applied SVR on spectral data and vegetation indices to de-
velop a crop N status prediction model. The model was then incorporated into a practical 
on-the-go variable rate application system. Their results demonstrated that the model had 
an 83% accuracy in classifying the N status of the plants and was able to save up to 20% 
fertilizer use while maintaining yield [68]. The observed leaf N values varied between 
1.47% through 3.77% and the average was 2.8%. The mean absolute values in Figures 5 
and 6 indicated that the fitted SVR model can estimate the leaf N content with an absolute 
error of 0.26% on average. For instance, if the leaf N content in an un-seen leaf was about 
2%, the model can estimate it between 1.74% and 2.26%. Moreover, the Mean Absolute 
Percentage Error (MAPE), which is commonly used to measure the predictive accuracy of 
models, of the SVR model was 4.4%, indicating that the average difference between the 
predicted value and the actual value was 4.4%. The MAPE was 6.4%, 6.5%, and 7.7% for 
RF, xgBoost, and GBM, respectively. 

 
Figure 6. Statistical evaluation metrics including (a) mean absolute error (MAE), (b) root mean 
square error (RMSE), and (c) coefficient of determination (R2) derived from ML models’ perfor-
mance on the validation (test) data set for leaf N% prediction. 

Figure 7 indicates the observed and predicted leaf N content using the testing data 
set. The result indicated the performance of the well-trained models, which shows that 
the predicted values agree well with the observed data. In both modeling strategies, the 
SVR model had significantly enhanced performance in comparison to the other models. 

(a) (b) 

(c) 



Remote Sens. 2022, 14, 120 13 of 18 
 

 

While it may be more difficult to interpret the non-parametric models such as RF, in ad-
dition to the SVR model, it was found to be a better predictor of corn leaf N concentration 
in this study. 

 
Figure 7. Scatter plot of observed vs. predicted leaf N content using VIs to evaluate SVR model’s 
performance on the test data. 

3.2.2. Machine Learning Results for Yield Estimation 
The variation in MAE (a), RMSE (b), and R2 (c) resulted from the cross-validation of 

the training models, as demonstrated in Figure 8. Regarding the wavelength-based mod-
els, the average R2 values resulted from cross-validations in the training data set were 0.73, 
0.76, 0.74, and 0.72 for RF, XGBoost, GBM, and SVR models, respectively. Results indi-
cated that there was no dramatic difference between these models. The results of cross-
validation showed that the first quartile, median, and third quartile were almost the same 
for all of the ML models, indicating that there was no major difference between these 
models (Figure 8). 
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Figure 8. Statistical evaluation metrics including (a) mean absolute error (MAE), (b) root mean 
square error (RMSE), and (c) coefficient of determination (R2) resulted from cross-validation in two 
sets of ML models in order to estimate yield of corn. 

Figure 9 indicates the observed and predicted grain yield using the testing data set. 
The points under the red line (1:1 line) indicate that the model underestimated grain yield 
and the points above the 1:1 line represent the overestimation. Good correspondence was 
found between the observed and predicted grain yield, indicating that well-trained mod-
els can predict the grain yield well. 

(a) (b) 

(c) 
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Figure 9. Scatter plot of observed vs. predicted grain yield using VIs to evaluate SVR model’s per-
formance on the test data. 

4. Conclusions 
This study was conducted to evaluate the reliability of a handheld Crop Circle ACS-

430 in estimating corn leaf N% and predict grain yield corn using ML algorithms. The 
recursive feature elimination method was applied and determined that SCCCI and RERVI 
were the most effective VIs to estimate corn leaf N concentration. This method also deter-
mined that SCCCI, CIRE, RERVI, SAVI, and NDVI were the most efficient VIs in predicting 
corn grain yield. Furthermore, between the four ML models utilized in this research, the 
SVR achieved the most accurate results for leaf N% estimation using either the spectral 
bands or VIs as the model inputs. Further evaluation would help to detect possible model-
performance changes using improved inputs, model updates, or an increased number and 
quality of observations. More studies are required to further evaluate this sensor using a 
larger dataset collected across a wider and more varied range of environments. 
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