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Abstract: Landslides often cause significant casualties and economic losses, and therefore landslide
susceptibility mapping (LSM) has become increasingly urgent and important. The potential of deep
learning (DL) like convolutional neural networks (CNN) based on landslide causative factors has
not been fully explored yet. The main target of this study is the investigation of a GIS-based LSM
in Zanjan, Iran and to explore the most important causative factor of landslides in the case study
area. Different machine learning (ML) methods have been employed and compared to select the best
results in the case study area. The CNN is compared with four ML algorithms, including random
forest (RF), artificial neural network (ANN), support vector machine (SVM), and logistic regression
(LR). To do so, sixteen landslide causative factors have been extracted and their related spatial layers
have been prepared. Then, the algorithms were trained with related landslide and non-landslide
points. The results illustrate that the five ML algorithms performed suitably (precision = 82.43–85.6%,
AUC = 0.934–0.967). The RF algorithm achieves the best result, while the CNN, SVM, the ANN, and
the LR have the best results after RF, respectively, in this case study. Moreover, variable importance
analysis results indicate that slope and topographic curvature contribute more to the prediction. The
results would be beneficial to planning strategies for landslide risk management.

Keywords: landslide susceptibility mapping; machine learning; deep learning; landslide causative
factors; feature importance

1. Introduction

Landslides as the most occurring geo-hazard lead to severe landscape damage all over
the world [1]. The international databases on the casualties of the landslides reported more
than 3876 landslides during the period 1995–2014 in 128 countries around the world, which
caused 11,689 injuries and 163,658 deaths [2]. It is therefore important and necessary to
investigate the landslide susceptibility mapping for improving disaster management and
mitigation strategies [3].

The Zanjan province of Iran experiences a high number of landslides annually due to
its mainly mountainous topography, diverse geological and morphological structures, and
different climatic conditions, which cause considerable damage to the region. However,
the development of big industries and large infrastructure projects is notable in this region.
Consequently, investigating landslides and planning mitigation strategies are major prob-
lems facing the case study area for sustainable development. Moreover, little effort has
been made to assess or predict these landslides. The only study for producing landslide

Remote Sens. 2022, 14, 211. https://doi.org/10.3390/rs14010211 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14010211
https://doi.org/10.3390/rs14010211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6812-4307
https://doi.org/10.3390/rs14010211
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14010211?type=check_update&version=1


Remote Sens. 2022, 14, 211 2 of 22

susceptibility maps in the Zanjan province has been conducted by Boroumandi, et al.,
(2015) which is based on low-resolution data and a multi-criteria decision making (MCDM)
approach [4]. Therefore, more studies are needed for this important issue.

Due to the various influencing factors, landslides are considered complicated natural
disasters [4–7]. The main idea of landslide susceptibility maps (LSMs) is to forecast areas
that are susceptible to landslides based on the influencing factors. Influencing factors
primarily include lithology (e.g., soil/rock type), geomorphological characterization (e.g.,
slope, aspect), climate and hydrologic settings, and infrastructures [8,9]. Methods to
produce LSMs usually consider a set of causative factors, depending on the physical
characteristics and the area of landslides [10]. The relationship between influencing factors
and landslide susceptibility is complicated and remains unknown in Zanjan, which is
worthy of more effort in landslide susceptibility modeling and mapping.

Previous research has reported the ability of machine learning (ML) methods [6,11],
and recently deep learning (DL) methods as a subclass of ML, in recognizing susceptible
areas to landslides in different regions [12,13]. It has been indicated that the performance
of ML methods could be different with respect to the region, input influencing factors,
the accuracy of input data, etc. So in order to produce the most proper LSM, different
ML techniques need to be examined. In particular, the potential of CNNs in this field
based on causative factors has not been fully explored yet, especially by comparing its
performance with the conventional machine learning algorithms. Herein, the performance
of the convolutional neural network (CNN), random forest (RF), artificial neural network
(ANN), support vector machine (SVM), and logistic regression (LR) are compared in
producing LSM due to the complexity of influencing factors. Comparing the performance
of different methods in landslide susceptibility mapping can provide analysts with guidance
for the selection of the appropriate one for the study area in Zanjan. Moreover, the priority
of the causative factors has been investigated, which is a crucial issue in decision-making
to manage and decrease the influence of casualties related to this hazard.

2. Literature Review

The approaches of producing LSMs based on influencing factors are categorized into
multi-criteria decision analysis (MCDA), statistical methods, and ML techniques based on
the literature. MCDA methods have been widely employed for generating LSMs, while
detailed data of selected sites and weighting information of landslide occurrence factors
considering experts’ opinions are required (e.g., [14]). In contrast, ML techniques can be
used to learn and predict the association of the landslides’ positions and their associated
causative factors (e.g., [15–17]). ML techniques do not need statistical assumptions and
also can model the nonlinear character of landslides [9,12]. Therefore, ML, especially DL
techniques, have been attracting more attention in landslide studies.

In the literature, a series of studies have implemented different ML algorithms for
LSM in different countries. For example, Chen et al., (2017) compared maximum entropy
(MaxEnt), support vector machines (SVM), and artificial neural networks (ANN) for pro-
ducing LSM in the Wanyuan area of China. The results showed that the ANN obtains more
precise outcomes in comparison with other techniques in terms of area under the curve
(AUC). Pham et al. (2017) investigated the efficiency of ensemble ML methods for landslide
susceptibility assessment by conducting the case study in Himalayan area of India. The
results indicated that machine learning ensemble techniques can significantly improve
the performance of base classifiers [18]. Pourghasemi and Rahmati (2018) investigated
the performance of ten different ML approaches for achieving LSM in the Ghaemshahr
Region of Iran. It is indicated that RF achieved the best performance compared with other
ML models [6]. Pourghasemi et al. (2018) attempted to produce landslide susceptibility
maps for Jumunjin Country in South Korea with three ML algorithms, namely Logistic
Regression (LR), LogitBoost (LB), and NaïveBayes (NB) [19]. Kavzoglu et al. (2019) applied
ML techniques, including bagging, random forest (RF), rotation forest (RotFor) and support
vector machines (SVM), to landslide susceptibility analysis by conducting a case study
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in the Mackaregion of Trabzon, Turkey [20]. Nguyen et al. (2019) developed three novel
hybrid machine learning models for landslide susceptibility modeling and validated them
in the study area of the Van Chan district of Yen Bai province, Vietnam [21]. It was deter-
mined that Best First Decision Trees-based Rotation Forest (RFBFDT) achieved the best
performance. Achour and Pourghasemi (2020) explored how ML techniques can increase
the accuracy of landslide susceptibility maps in the vicinity of the A1 Highway corridor at
Ain Bouziane, Algeria. By evaluating the landslide susceptibility using three ML methods,
namely support vector machine (SVM), random forest (RF), and boosted regression tree
(BRT), the RF model achieved the highest predictive accuracy [22]. Di Napoli et al., (2020)
presented an approach based on the ensemble of artificial neural networks for landslide
susceptibility mapping and tested it in the Monterosso al Mare area, Cinque Terre National
Park, Northern Italy. The efficacy and suitability of the proposed approach was confirmed
in land management [23]. Huang et al. (2020) compared the ML models represented by
binary logistic regression (BLR), support vector machine (SVM), Multilayer Perceptron
(MLP), back-propagation neural network (BPNN) and C5.0 decision trees (C5.0 DT) with
the heuristic model analytic hierarchy process (AHP), and the statistical models like gen-
eral linear model (GLM) and information value (IV) model for landslide susceptibility
prediction and mapping. By applying the above-mentioned models to the study area of
Shicheng County in China, the results showed that C5.0 DT yielded the highest prediction
accuracy [24]. Orhan et al. (2020) utilized five machine learning models, including logistic
regression (LR), artificial neural network (ANN), support vector machine (SVM), classifica-
tion and regression tree (CART), and random forest (RF), to produce landslide susceptibility
maps in the Arhavi-Kabisre river basin of Turkey [25]. Ali et al. (2021) conducted a compar-
ison study on producing LSM between fuzzy MCDM and ML methods in the Kysuca river
basin of Slovakia. The results concluded that RF is an optimal and promising model for
landslide susceptibility in the study area [26]. Youssef and Pourghasemi (2021) evaluated
the capabilities of seven advanced ML techniques for landslide susceptibility modeling and
mapping in the Abha Basin of the Asir Region in Saudi Arabia. It was determined that RF
produced the best performance [17].

Recently, DL methods have been successfully used for producing LSMs. For instance,
Wang et al. (2019) developed a CNN framework for generating LSM and tested it in the
case study area of Yanshan County in China [27]. The work of Bui et al. (2020) introduced a
Deep Learning Neural Network (DLNN) for LSM and compared its suitability with ML
methods in the study area of the Kon Tum Province, Vietnam. The results indicated that
the suggested algorithm had better results in comparison with the other four ML models
used, including ANN, SVM, decision tree (DT), and the RF [28]. Van Dao et al. (2020) de-
veloped an explicit DL neural network model for the prediction of landslide susceptibility
at the Muong Lay district, Vietnam. The results validated the efficiency of the developed
method [29]. Mandal et al. (2021) compared a DL algorithm convolutional neural network
model (CNN) with three typical ML algorithms represented by the random forest model
(RF), artificial neural network (ANN), and bagging model for LSM in the Rorachu river
basin of Sikkim Himalaya, India. The results showed that CNN achieved the best per-
formance [30]. Kavzoglu et al. (2021) proposed an ensemble DL architecture based on
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-
Term Memory (LSTM) for LSM. The ensemble form CNN-RNN-LSTM was demonstrated
to be of the highest modeling performance by testing it in Trabzon province, Turkey [31].
In the study of Ngo et al. (2021), two DL algorithms, namely recurrent neural network
(RNN) and CNN, were applied for producing LSM on a national scale in Iran. Both of them
presented a promising performance on this large scale [13].

In summary, the review of previous studies demonstrates that this research is not the
first to employ CNNs for generating LSMs; however, the potential of CNNs in this field
based on different causative factors has not been fully explored yet, especially by comparing
its performance with the conventional ML algorithms and prioritizing the causative factors
of landslides.
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3. Study Area and Data

In this section, first, the case study area and its characteristics will be described.
Then, the employed landslide causative factors and their data sources and accuracy will
be explained.

3.1. The Case Study Area

Zanjan province in northwest Iran is the case study area (Figure 1) of this research.
The area of Zanjan province is approximately 22,000 km2 and it has a population of
approximately 900,000. As shown in Figure 1, Zanjan province has two mountainous and
plain regions in terms of land appearance. In terms of topography, it is a mountainous
region that has been formed as a high plateau. The region has independent plains due to the
breakdown of major rivers. The roughness of the province is divided into the mountains of
North Zanjan and the mountains of South Zanjan. In terms of geographical divisions, the
North Zanjan Mountains are a continuation of the Alborz Mountains in Iran and the South
Zanjan Mountains are part of the Central Single Mountains. The direction of the mountains
is naturally continuous from northwest to southeast, and the valley of the Zanjan River
is the longest valley in the region. The northern heights of Zanjan province as part of the
western Alborz have a mountainous morphology. Most of the wastewater of these heights
is discharged to the Caspian Sea through the Ghezel Ozon and Sefidrud rivers. The climate
of the province is affected by two important factors, namely the entry of huge moisture and
heat fronts, and the topographic condition and altitude. The predominant climatic type
of the province is semi-arid ultra-cold (52%) and cold (18%), which covers about 70% of
the province. The average rainfall of the province during 1996–2021 is about 300 mm per
year. Moreover, in Figure 1 the classification of lithological structure is presented based on
the average stability and resistance characteristic of rock units which is respectively from
higher resistance to lower resistance in the aspect of landslide occurrence probability in
the legend. Due to special lithological conditions, topographic structure and land slope,
especially in rural areas, Zanjan province experiences landslides that cause considerable
financial losses each year. Figure 2 illustrates the histogram of previous landslides and
their related areas. As can be seen in Figure 2, the number of landslides and their related
area in the province is substantial and causes significant damage to individuals and the
government annually.

3.2. The Causative Factors of Landslides

Sixteen causative factors of landslides were prepared, containing altitude, slope, aspect,
topographic curvature, land use, lithology, distance from lineaments, lineaments density,
distance from faults, the density of faults, distance from roads, springs density, river
density, distance from rivers, NDVI, and precipitation. These factors are selected based
on the literature [8,19,20,32–34]. The processed data of this research and their sources are
presented in Table 1.

3.2.1. Altitude

Altitude controls the direction of the waterways and the density of the drainage
networks and has a significant effect on soil moisture and the gradient of slope [35]. To
produce the altitude layer, a DEM of the study area is created using a contour map of the
1:25,000 scale. Figure 3 shows all factor maps used in this research and Figure 3a presents
the generated altitude map.

3.2.2. Slope

The slope controls the shear forces acting on hill slopes and is one of the critical
causative factors in occurring landslides (Dou et al. 2015). Theoretically, the risk of
landslides increases in areas with higher slope, and decrease to zero in areas with a slope
below 5 [36]. The map of the slope is produced based on DEM, as presented in Figure 3b.
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3.2.3. Slope Aspect

The aspect of the slope, together with the sunlight exposure affects the soil mois-
ture [36]. In the northern hemisphere, the south and west directions are exposed to sunlight
for a longer period than the north and east directions. As a result, more sunlight radiation
causes evapotranspiration to increase and soil moisture to decrease. But the north slopes
will have lower temperatures due to less sunlight. Figure 3c shows the slope aspect map.

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 1. The case study area. (a) Iran boundary and related political boundaries and provinces, (b) 
Zanjan province and its topographic and lithological structure. 

Figure 1. The case study area. (a) Iran boundary and related political boundaries and provinces,
(b) Zanjan province and its topographic and lithological structure.



Remote Sens. 2022, 14, 211 6 of 22
Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 2. The number of landslides in Zanjan province based on their area. 

3.2. The Causative Factors of Landslides 
Sixteen causative factors of landslides were prepared, containing altitude, slope, 

aspect, topographic curvature, land use, lithology, distance from lineaments, lineaments 
density, distance from faults, the density of faults, distance from roads, springs density, 
river density, distance from rivers, NDVI, and precipitation. These factors are selected 
based on the literature [8,19,20,32–34]. The processed data of this research and their 
sources are presented in Table 1. 

Table 1. Employed information and their sources in the current research. 

Information Related Factor Maps Source Scale/Resolution 
Digital Elevation Model 

(DEM) 
Altitude, Aspect, Slope, Plan 
curvature, Profile curvature 

National Cartographic Center of Iran 1:25,000 

Lithology Lithology 
Geological Survey & Mineral 

Explorations of Iran (GSI)/Land sat8 
images 

1: 50,000 
30 m 

Land use Land use National Cartographic Center of 
Iran/Land sat8 images 

1:25,000 
30 m 

Faults Distance from faults Institute for Advanced Studies in Basic 
Sciences 

1:50,000 

Rivers Distance from river National Cartographic Center of Iran 
(NCC) 

1:25,000 

Roads Distance from roads NCC 1:25,000 
Springs Distance from springs Zanjan regional water company 1:10,000 
NDVI NDVI Sentinel 2 satellite images 10 m 

Lineament density Lineament density Sentinel 2 satellite images/DEM 10 m 

Precipitation Precipitation 
Zanjan regional water company/Iran 

Meteorological Organization 1:10,000 

3.2.1. Altitude 
Altitude controls the direction of the waterways and the density of the drainage 

networks and has a significant effect on soil moisture and the gradient of slope [35]. To 
produce the altitude layer, a DEM of the study area is created using a contour map of the 

Figure 2. The number of landslides in Zanjan province based on their area.

Table 1. Employed information and their sources in the current research.

Information Related Factor Maps Source Scale/Resolution

Digital Elevation Model (DEM) Altitude, Aspect, Slope, Plan
curvature, Profile curvature

National Cartographic Center
of Iran 1:25,000

Lithology Lithology
Geological Survey & Mineral

Explorations of Iran (GSI)/Land
sat8 images

1: 50,000
30 m

Land use Land use National Cartographic Center of
Iran/Land sat8 images

1:25,000
30 m

Faults Distance from faults Institute for Advanced Studies in
Basic Sciences 1:50,000

Rivers Distance from river National Cartographic Center of
Iran (NCC) 1:25,000

Roads Distance from roads NCC 1:25,000

Springs Distance from springs Zanjan regional water company 1:10,000

NDVI NDVI Sentinel 2 satellite images 10 m

Lineament density Lineament density Sentinel 2 satellite images/DEM 10 m

Precipitation Precipitation
Zanjan regional water

company/Iran
Meteorological Organization

1:10,000

3.2.4. Topographic Curvature

Total topography curvature is the change in slope of the topographic surface along a
small arc of the curve. This factor is found as a triggering factor in landslides influencing
the mass motion velocity and direction [37]. The factor map of total curvature is presented
in Figure 3d.

3.2.5. Land Use

Land use indirectly affects slope stability. For example, vegetation affects hydrological
processes due to the effect of hydraulic conductivity [38]. Therefore, in the regions with
low vegetation, landslides are expected to occur. Figure 3e shows the land use/cover map
of Zanjan province. Land uses are shown from low risk to high risk, respectively.
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Figure 3. Spatial layers of landslide factors, showing: (a) map of the altitude, (b) map of the slope,
(c) map of the slope aspect, (d) map of the topography curvature, (e) map of the land use, (f) map of
the lithology structure, (g) map of the faults, (h) map of the river, (i) map of the roads, (j) lineaments,
(k) map of the springs, (l) precipitation map.

3.2.6. Lithology

Lithology and its diverse structures often lead to differences in the stability and
resistance of rocks, as well as the diversity of soil [39]. The stronger rocks, such as igneous
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and metamorphic, provide more resistance to the forces in comparison with the weaker
rocks, such as most sedimentary rocks, and therefore are less disposed to landslides [4,40].
The geological structure of Zanjan province has a diversity of rocks. Using geological
quadrangle maps of the Zanjan province along with Landsat 8 images, six classes of
lithological units were considered in this study (Figure 3f). The classification is based on
average stability and resistance characteristic of rock units which respectively from higher
resistance to the lower one.

3.2.7. Distance from Faults and the Density of Faults

The development of cracks and shear fractures along the fault zones, formation of fault
damage zones, and fault rocks have a serious role in the stability of rocks and their water
infiltration physical characteristics. Moreover, tectonic activities have an accelerating effect
on the landslides occurrence [41]. The related map of the faults is presented in Figure 3g.

3.2.8. Distance from Rivers and the Density of Rivers

Many landslides are caused by the underflow of slopes (collapse of unstable slopes)
due to surface erosion by runoff. This action increases the impact of the destructive shear
forces which results in slope instability adjacent to the river channels [42]. The map of
rivers is displayed in Figure 3h.

3.2.9. Distance from Roads

Human activities such as road constructions in mountainous areas are one of the most
effective factors of landslides in sloping areas. The distance map of roads was generated
using the Euclidean distance method from the road network which is shown in Figure 3i.

3.2.10. The Density of Lineaments

Lineaments are linear sequences that include faults, joints, and fissures or the bound-
ary between formations on the earth’s surface and have different dimensions and orienta-
tions [43]. The presence of lineaments in an area causes more water to penetrate into the
joints and cracks, thereby increasing the likelihood of landslides [44]. In order to extract the
lineaments in the study area, directional edge detection filters of 0◦, 45◦, 90◦, and 135◦ were
applied on the 10-m resolution Sentinel 2 satellite images and also to the 30-m resolution
DEM of the study area. The employed directional derivative filter is stated in Equation (1).

f ′ =
∂ f
∂x

cos θ +
δ f
δy

sin θ (1)

where δ f
δx shows the derivative of f in the x-direction, δ f

δy is the derivative of f in the
y-direction and θ shows the direction of the filter.

To be more precise, the resultant lineament map was then edited visually. Figure 3j
shows the resultant lineaments.

3.2.11. The Density of Springs

The water infiltration of the springs in the surrounding sediments decreases the stress
and shear strength of the slopes. Consequently, as the humidity increases, the pressure of
the pore water also increases. Therefore, the likelihood of landslides is increased [45]. The
map of springs is shown in Figure 3k.

3.2.12. NDVI

The presence of vegetation in slopes strengthens the hillsides and resistance to land-
slides [39]. In this research, vegetation density was computed employing the normalized
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difference vegetation index (NDVI) from Sentinel 2B (with the resolution of 10 m) satellite
images using Equation (2) [36].

NDVI =
NIR− RED
NIR + RED

(2)

where NIR and RED represent red bands and near-infrared in the spectrum of electromag-
netic, correspondingly. The NDVI index differs between −1 to 1. Higher values imply
denser vegetation. In contrast, sparse vegetation is identified by lower values of NDVI.
Figure 4 shows the red band and infrared band of sentinel 2 optical images along with a
related NDVI map of the study area.
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3.2.13. Precipitation

Rain or snow infiltrates inside rocks and soil masses increases mass weight and
increases landslide probability [36]. Herein, firstly, the annual precipitation of the synoptic
stations produced from the Meteorological Organization of Iran and the Regional Water
Company of Zanjan province and its neighboring provinces was collected. Next, the annual
average of precipitation for 15 years (from 2003 to 2018) was calculated. Using inverse
distance weighted (IDW) and Kriging interpolation methods, the precipitation maps were
prepared. Comparing the error rates, it was found that the Kriging method has a lower
error than the IDW method here. Therefore, according to Figure 4a, the rainfall map is
prepared by the Kriging method and the results are categorized into five classes.

After calculating all the causative factors, we implement multicollinearity analysis
to examine the correlations between these causative factors by calculating the variance
inflation factor (VIF). VIF of one variable represents how well the variable is explained
by other variables, which has been widely used for multicollinearity analysis in different
applications (e.g. [46,47]). By calculating VIF values of each factor, they are within the
range between one and two and all are far less than 10. This suggests that there is no
multicollinearity among these causative factors.

3.3. Landslide Inventory Map

The landslide inventory map (LIM) is employed to train ML methods in this research,
which is created by the forest and watershed management organization (FWMO) of Zanjan
province. This map is created using the interpretation of aerial photos, Google Earth images,
satellite image archives, and field mapping. Mentioned approaches are frequently used
to produce the LIM for a large region [48]. Here, the landslides in the inventory map are
recorded as points. In our study, we verified this map using accessible aerial photos and
Landsat images, and also the morphological shape of the area. Finally, 2513 landslide points
and 3287 non-landslide points are generated.

4. Methodology

Figure 5 presents the study methodology, which consists of the following steps. First,
the landslide causative factors calculated based on various datasets in Section 3.2 along
with the landslides from the LIM are used to train the models. Second, four conventional
ML models, including RF, LR, SVM, and ANN, and CNN as one of the typical DL methods
are used for landslide susceptibility prediction. Third, several commonly used evaluation
measures are used to assess the prediction performance, which is elaborated in Section 4.1.
In addition, the variable (or feature) importance is evaluated for each model based on
the permutation-based variable accuracy importance methods, which is introduced in
Section 4.2.

4.1. Machine Learning Algorithms
4.1.1. Logistic Regression (LR)

Logistic regression [49] is a multivariate technique that considers multiple physical
parameters that may affect the probability of landslide occurrence. The dependent variable
can only have two values as occurrence or not. So, LR is well suited in describing and vali-
dating the relationship between categorical outcome variables (landslide or non-landslide)
and independent variables (landslide causative factors). For landslide susceptibility map-
ping, LR aims to find the best-fitting model to describe the relationship of the occurrence or
not of landslides with the independent variables.

4.1.2. Artificial Neural Network (ANN)

ANN is a computational mechanism that generates new information by analyzing
and processing relations in the input data as a generic nonlinear function approximation
algorithm which has been widely used for landslide susceptibility mapping (e.g., [50,51]).
The back-propagation training algorithm, as the most frequently used ANN method, was
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used in this study. This method searches for the minimum error values in weight space
using the method of gradient descent. The weights which minimize the error values
produce the best solution for the learning process. Here, multilayer perceptron (MLP), a
type of ANN, was used which includes at least three layers of nodes: an input layer, a
hidden layer, and an output layer. The first step is coding the factors affecting the landslide
as the input layer. In this study, all causative factors in Figure 3 are considered as the
number of neurons in the input layer and one neuron as the output neuron for the neural
network. Trial and error methods are also used to determine the number of neurons in the
hidden layers.
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4.1.3. Support Vector Machine (SVM)

SVM is a supervised machine learning classification method that can be used with lin-
early non-separable and high dimensional datasets. It has been extensively and effectively
used for a range of classification and regression problems [52]. It is based on the statistical
approach to determine an optimal hyperplane with a maximum margin for separating
two classes, such as landslide and non-landslide. Its performance is affected by the kernel
function, which can be linear, radial basis function (RBF), sigmoid, or polynomial function.
In this study, the RBF kernel is selected for the SVM model that is applied to calculate
the landslide susceptibility index, the performance of which is influenced by the value
of the kernel width gamma. In addition, the regularization parameter C also affects the
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performance of SVM. The two optimal hyper-parameters are obtained using the grid search
method, which is considered one of the most reliable optimization techniques.

4.1.4. Random Forest (RF)

Random forest was first proposed by Breiman (2001) as a significant ensemble machine
learning method, and has been widely used to deal with classification or regression issues
in many fields (e.g., [53–55]). When solving classification problems, many classification
trees are generated and aggregated to compute a classification. A single decision tree is
a weak classifier, which normally has either a high variance or high bias. RF attempts
to achieve a balance between two types of errors by increasing the diversity among the
classification trees. The bagging technique is used to resample the data with a replacement
for the training model. When splitting a node, only a random subset of the features is
taken into account to make trees more random. By building multiple decision trees and
merging them, more accurate and stable predictions can be generated. The number of
trees and the number of predictive variables used to split the nodes are two main required
hyperparameters. In summary, each tree in the random forest carries out a class prediction
and the class with the most votes is determined as the prediction of the model. In this
study, two hyperparameters, namely the number of trees and the number of features to be
selected for the best split, are tuned with the grid search method.

4.1.5. Convolutional Neural Network (CNN)

Deep learning methods have recently attracted more attention and achieved remark-
able success in many fields. The convolutional neural network (CNN), as a type of deep
learning model for processing data that has a grid pattern (e.g., image), has been recognized
as one of the most successful and widely used DL algorithms [56], and was gradually used
in the latest landslide susceptibility studies. As a class of artificial neural networks, CNN
is designed to automatically and adaptively learn features through backpropagation by
using convolution layers, pooling layers, and fully connected layers. Compared with a
fully connected neural network where each neuron in one layer is connected to all neurons
in the next layer, the neurons within any given layer in CNN will only connect to a small
region of the layer preceding it [57].

A typical CNN architecture is comprised of an input layer, the repetition of a stack
of multiple convolutional layers, and a pooling layer, followed by one or more fully
connected layers, and an output layer. The input layer is an m × n matrix in which
every element corresponds to a feature value. The input data thus can be represented as
a two-dimensional map. A convolution layer is a fundamental component of the CNN
architecture that consists of several convolutional units, and the parameters of each unit
are optimized by a back-propagation algorithm [27,58]. The aim of the convolutional
layer is to extract different features of the input layer. The purpose of the pooling layer
is to decrease the computational power required to process the data by dimensionality
reduction. Max pooling is the most popular form of pooling operation. Hence, compared
with the conventional ML methods that directly classify the input data and cannot uncover
more representative features from these data, CNN can automatically and adaptively learn
features from the input data to further improve classification accuracies. Once the features
are created via the convolutional layers and the pooling layers, they are mapped to the final
outputs of the network by fully connected layers. Since the CNN model requires 2D images
as the inputs, the data on landslide causative factors is incapable of fitting the input of the
CNN model. The two-dimensional data representation method is introduced to address
this issue [27].

4.2. Evaluation Measures

The evaluation measures are important in determining the performance of classifi-
cation and managing the classifier modeling. In this study, binary classification methods
are developed to predict landslide susceptibility. Six statistical measures including sen-
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sitivity/recall/true positive rate, specificity, accuracy, precision, and receiver operating
characteristics (ROC) curves are utilized to gauge the classification capability. Readers can
refer to Orhan et al., 2020 for more detail about these statistical measures. Generally, the
following equations are used to calculate these measures:

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Accuracy =
TN + TP

TN + TP + FN + FP
(5)

Precision =
TP

TP + FP
(6)

False−positive rate =
FP

TN + FP
(7)

F1−measure =
2× TP

2× TP + FN + FP
(8)

In which P indicates the number of landslides in total, N shows the number of non-
landslides points; true positive (TP) and true negative (TN) are the numbers of samples
that are classified correctly; false positive (FP) and false-negative (FN) are the numbers of
samples which are misclassified.

The ROC curves have been extensively used to evaluate the performance of prediction
in the ML methods (e.g., [27,59]). The ROC curve is generated using the plot of two
parameters, including true positive rate and false positive rate, to display the performance
of a classification model at different classification thresholds. The area under the curve
(AUC) is also the index of model performance. A ROC curve for a good classifier usually
rises sharply near the starting point and reaches approximately the maximum value of 1,
which quantifies how well the model is capable of distinguishing between classes.

4.3. Feature Importance

The feature (or variable) importance assessment in ML studies facilitates the variable
selection and supports meaningful interpretation. Nevertheless, it remains a complicated
issue because of variation of the feature importance, interactions, and correlations among
the features [60,61]. On the one hand, the importance of one feature could vary with the
selected evaluation criterion, which results in the consequence that superfluous features of
a certain classifier may be helpful for another classifier. On the other hand, the relevance of
the two features could change in the context of other features.

Various methods have been suggested to measure the feature importance in recent
years [62–64]. Herein, a widely employed method, namely permutation-based variable
accuracy importance (PVAI), is used to assess the importance of features for various
classifiers. The rationale of the method is that the importance of a feature is calculated
based on comparing the variation in the performance of a classifier when the feature is
randomly permuted in the test dataset. If the performance decreases more under the
variation of a feature, its importance degree is higher.

In this work, the PVAI method is implemented to measure the importance of each
feature for the five machine learning models. Specifically, each feature is permuted 10 times
in the test dataset. The importance is measured by the reduction in accuracy. The decrease
in sensitivity is taken as a measurement of the feature importance.

5. Results and Discussion

In this section, first, the performance of employed methods will be discussed. Then,
the results of variable importance will be demonstrated, and finally, the susceptibility maps
resulting in different methods will be presented.
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5.1. Model Performance Comparison

The five introduced machine learning methods in the methodology are utilized to
conduct landslide susceptibility analysis. We compare their performance with respect to
the above-mentioned evaluation measures. First, the whole dataset including landslide and
non-landslide points is randomly split into 4060 training data points (70%) and 1740 test
data points (30%). Second, grid search with 10-fold cross-validation is employed to tune the
hyperparameters of each classifier using training data. Moreover, the same test and training
data are employed in all models to have comparable performance evaluation results.

Table 2 presents the model performance on the five machine learning models in
terms of the evaluation measures in this case study. Concerning the performance for the
classification of landslides, the RF model achieves the highest performance (precision
= 85.6%), which is closely followed by the CNN model (accuracy = 83.88%), which is
then followed by the ANN model (precision = 83.36%), SVM model (precision = 82.69%),
and LR model (precision = 82.43%). It should be noted that, with regard to recall, the
best performance is achieved by the LR model (recall = 97.8%), followed by the CNN
model (recall = 97.24%), the RF model (96.86%), the SVM model (96.75%), and the ANN
model (96.04%). This is mainly due to the lowest false-negative by the LR model. For the
classification of non-landslides, the best results were attained by the RF method, with a
specificity value of 89.82%. Moreover, the specificity of CNN, ANN, SVM, and LR were
equal to 88.78%, 88.37%, 88.01%, and 87.93%, respectively. Considering the classification
of both landslides and non-landslides, the RF model (accuracy = 92.53%) outperforms
other models in terms of accuracy, followed by the CNN model (accuracy = 91.95%), the
LR model (accuracy = 91.55%), the ANN model (accuracy = 91.26%), and the SVM model
(accuracy = 91.26%). The same conclusion can be reached in terms of the F1 measure.
The model performance is also evaluated in terms of the ROC curve and the AUC, as
presented in Figure 6. It can be observed that the highest AUC value belongs to the RF
model (AUC = 0.967). The ACU values of the CNN, ANN, SVM, and LR were also equal
to 0.956, 0.946, 0.944, and 0.934, respectively. It is notable to say that the results here
don’t mean RF is the best machine learning method for all prediction/classification tasks.
The conclusion mainly indicates that RF can achieve the promising result of landslide
susceptibility mapping in this study.

Table 2. The performance of five employed methods in the terms of evaluation measures.

Measures/Methods LR ANN SVM RF CNN

TP 624 631 626 648 635

TN 969 957 962 962 965

FP 133 126 131 109 122

FN 14 26 21 21 18

Precision 82.43% 83.36% 82.69% 85.6% 83.88%

Recall 97.8% 96.04% 96.75% 96.86% 97.24%

Specificity 87.93% 88.37% 88.01% 89.82% 88.78%

Accuracy 91.55% 91.26% 91.26% 92.53% 91.95%

F1-measure 89.46% 89.25% 89.17% 90.88% 90.07%

Overall, five ML models achieve promising performance on the prediction of LSM.
Among them, the RF model has achieved the best performance, especially in identifying
the landslides, which is reliable according to the conclusions from previous studies [6,26].
The CNN model ranks with the second-best performance, outperforming the other three
conventional ML models LR, ANN, and SVM.
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5.2. Variable Importance Analysis

The feature importance (FI) measurement has been commonly used for different
purposes, such as feature engineering to reduce the number of variables, or detecting the
most related variable for prediction within a dataset. In this study, the significance of each
causative factor is evaluated using the permutation-based approach. This is executed by
permuting each factor 10 times in the test dataset and reporting the resultant differences
in accuracy.

Figure 7 illustrates the feature importance for the five machine learning models with
boxplots. It can be found that slope and topographic curvature have very high PVAIs for
all five ML classifiers. In particular, the most important causative factor, slope, achieves
the highest PVAI values in the five classifiers. The topographic curvature is at the next
level. The PVAI values of other features are much smaller than slope and curvature. Table 3
displays the top five most important variables that are ranked based on the mean of PVAI
values of variables for each classifier. It should be noted that the ranks of other variables are
different for the five machine learning models, except for slope and curvature. For example,
the third most important variables are land use for the LR and ANN models, however,
geology is the third most important for the SVM, RF, and CNN models. It is worth noting
that the results about the importance of landslide causative factors have been obtained
computationally here. As can be seen, slope and curvature, which indicate the instability of
the terrain, are the most important factors in all ML methods in this study with the area near
km2. However, datasets such as soil type, soil moisture, subsidence and so on, which are
essential in the study of smaller scales, are not available in the whole case study area here.
Accordingly, it is necessary to pay attention to the geological characteristics of soil type,
soil moisture, and other causative factors rose on smaller scales for more accurate studies.
Besides, from a physical point of view, the decision requires additional information.

5.3. Produced LSMs

After evaluating and comparing the performance of the five landslide prediction meth-
ods, all five models are used for generating LSMs. The production of LSMs is comprised
of three main steps. First, the selected landslide causative factors are calculated for each
pixel in the entire study area. Second, landslide susceptibility indexes (LSIs) are predicted
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for each pixel with the constructed models. Third, the landslide susceptibility indexes are
reclassified into five classes by the natural breaks method, including very low susceptible,
low susceptible, medium susceptible, high susceptible, and very high susceptible. After
assigning LSI to each pixel, the landslide susceptibility maps can be generated in an ArcGIS
environment for visualization. Figure 8 shows the LSMs generated by the CNN model and
the four conventional ML models. As seen in this figure, the very high susceptible areas
and the very low susceptible locations have similar distributions for the different models.
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The distribution of landslide susceptibility classes in all five models is examined by
calculating the percentages of susceptibility classes, as displayed in Figure 9. In the LSM
generated using the LR model, 45.47% and 38.82% of the pixels belong to very low and
very high susceptibility classes, respectively, while 3.33%, 2.84%, and 9.54% of the pixels



Remote Sens. 2022, 14, 211 17 of 22

belong to low, medium, and high susceptibility classes accordingly. Regarding the LSM
produced by the ANN model, 39.09% and 58.22% of the pixels belong to very low and
very high susceptibility classes, respectively, while 0.75%, 0.99%, and 0.94% of the pixels
belong to low, medium, and high susceptibility classes respectively. With regard to the
LSM generated using the SVM model, 45.74% of the area of case study located in the very
low susceptibility class, while 3.2%, 16.77%, 7.17%, and 27.12% of the area placed in the low,
medium, high and very high susceptibility, respectively. Furthermore, in terms of the RF
model, the LSM is comprised of 37.31% of the pixels in the very low susceptibility category,
11.62% of the pixels in the low susceptibility class, 11.58% of the pixels in the medium
susceptibility class, 19.61% of the pixels in the high susceptibility class, and 19.88% of the
pixels in the very high susceptibility class. According to the LSM calculated using the CNN
model, 39.1% and 34.18% of the study areas are covered by the very low susceptibility class
and very high class correspondingly., while 10.47%, 4.99%, and 11.26% of the study areas
consist of the low, medium, and high susceptibility classes in order.

Table 3. Top Five most important features for each classifier.

Methods LR ANN SVM RF CNN

Top-5 most
important features

Slope Slope Slope Slope Slope

Curvature Curvature Curvature Curvature Curvature

Land use Land use Geology Geology Geology

Precipitation Geology Land use Lineament density River density

NDVI Precipitation NDVI Precipitation Precipitation

In summary, it can therefore be concluded that most areas are located in the very high
and very low classes, which demonstrates that a relative consistency is observed between
landslides and non-landslide regions for all methods.

Furthermore, the results of all methods are approximately compatible with the mor-
phological structure of the case study area since the susceptibility is high in high-slope and
high-altitude areas and it is low in the plains and the areas with slopes below 5% (related
DEM of the region is presented in Figure 1). Meanwhile, the results of RF and CNN are
more compatible with the morphological structure of the case study area since the medium
susceptible areas have occurred in the boundary between the valleys and mountains area,
while in the LR, ANN, and SVM methods the number of pixels in high-susceptible and
low-susceptible classes is more considerable. Moreover, the comparison of these training-
based methods and the results of MCDM in the study of Boroumandi, Khamehchiyan,
and Nikoudel (2015) shows using more related causative factors in GIS modelling, higher
spatial resolution digital earth data (Sentinel 2B), and training-based AI techniques improve
the results of the model significantly. The results of this current research are therefore more
compatible with the nature of the landslide phenomenon and the morphological shape of
the case study area. Consequently, using train-based AI techniques in such spatial problems
that inventory map is accessible, have more reliable and accurate results.
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6. Conclusions

An important requirement for decreasing or even avoiding landslide damages is by
conducting an appropriate landslide susceptibility map. The existing studies on landslide
susceptibility mapping are mainly concentrated on conventional machine learning algo-
rithms, while deep learning techniques have been explored less in this field, especially
based on landslide causative factors. Herein, the CNN method as a deep learning algorithm
and four conventional machine learning models (i.e., LR, ANN, SVM, RF) were applied
to generate landslide susceptibility mapping in the Zanjan province of Iran. Landslide is
a complicated process that is influenced by various conditioning and triggering factors.
Based on literature, in this study 16 causative factors were selected and used to systemati-
cally examine the potential influencing factors. The main contributions of this research are
summarized below.

First, the performance of the CNN model and the four conventional ML models were
examined and compared in terms of several evaluation measures. The results indicated
that the RF yields the best performance (precision = 85.6%, AUC = 0.967), and the CNN
(precision = 83.88%, AUC = 0.956) outperforms than the other three conventional ML
models (i.e., LR, ANN, SVM). Although CNN, as a DL artificial intelligence technique,
progressively presents significant potential in image processing and natural language
processing, it is advantageous and required to explore its prediction capability in landslide
susceptibility assessments, especially to process the data in a tabular form.

Second, the feature importance is evaluated based on the permutation-based variable
accuracy importance approach for the five models. The variable importance results indicate
that slope and topographic curvature are most important for each model, while the ranks
of other variables based on the PAVI values are different for the models.

Third, LSMs were produced based on the constructed models to help decision-makers
in landslide management and risk analysis. The LSMs revealed that the majority of the
study areas are identified as having very low and very high susceptibility. The findings
also indicate that the ML methods could be useful techniques to identify the susceptible
areas. To put it briefly, the results of this work could be helpful for decision-makers and
planners while planning the land use in the areas susceptible to landslides.
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