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Abstract: Traditional forward-looking super-resolution methods mainly concentrate on enhancing
the resolution with ground clutter or no clutter scenes. However, sea clutter exists in the sea-surface
target imaging, as well as ground clutter when the imaging scene is a seacoast.Meanwhile, restoring
the contour information of the target has an important effect, for example, in the autonomous landing
on a ship. This paper aims to realize the forward-looking imaging of a sea-surface target. In this paper,
a multi-prior Bayesian method, which considers the environment and fuses the contour information
and the sparsity of the sea-surface target, is proposed. Firstly, due to the imaging environment in
which more than one kind of clutter exists, we introduce the Gaussian mixture model (GMM) as the
prior information to describe the interference of the clutter and noise. Secondly, we fuse the total
variation (TV) prior and Laplace prior, and propose a multi-prior to model the contour information
and sparsity of the target. Third, we introduce the latent variable to simplify the logarithm likelihood
function. Finally, to solve the optimal parameters, the maximum posterior-expectation maximization
(MAP-EM) method is utilized. Experimental results illustrate that the multi-prior Bayesian method
can enhance the azimuth resolution, and preserve the contour information of the sea-surface target.

Keywords: sea-surface target; Gaussian mixture model; sparse; total variation; forward-looking imaging

1. Introduction

Scanning radar works as a non-coherent sensor and can be suitable for any geometry
situation. Therefore, the scanning radar can be employed in many applications, such as
forward-looking imaging [1–4]. In surveillance, reconnaissance, or situation awareness,
high resolution is critical for forward-looking imaging. The range resolution after pulse
compression is written as

ρr = c/2Br (1)

where c is the light speed, and Br is the bandwidth. Scanning radar commonly transmits
the linear frequency modulated (LFM) signal with a wide bandwidth to improve the range
resolution [5,6]. In the azimuth direction, the resolution is written as

ρa = R · (λ/D) (2)

where R denotes the range, λ denotes the wavelength, and D denotes the size of the antenna
aperture. In theory, we can increase the size of the antenna aperture to enhance the angular
resolution [7–9]. However, it is infeasible due to the practical limitation. Therefore, low
angular resolution hinders the forward-looking imaging quality in practical applications.

Many works suggest that the azimuth echo signal can be seen as a convolution form
between the antenna pattern and the target scattering coefficient. The angular resolution
can be increased by deconvolution or inverse filtering operations [10–12]. Unfortunately,
the antenna pattern is a low pass filter. In deconvolution procession, the noise amplitude
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in high frequency will be amplified to affect the azimuth resolution. Therefore, the direct
deconvolution procession is an ill-posed problem.

To alleviate the ill-posed problem, the super-resolution methods are introduced [13–17].
The regularized methods which add different prior terms to the objective function are a
main class of super-resolution methods [18,19]. The truncated singular value decomposi-
tion (TSVD) method is adopted to improve the resolution by discarding the small singular
value components [20]. However, this method losses some information and has a low
improvement in azimuth resolution. In [21], the authors introduce the Tikhonov regu-
larization to depress the noise. However, this method smooths the processed result, and
the azimuth resolution is not much improved. In the past years, the spectral estimation
methods are utilized to increase the azimuth resolution [22,23]. Iterative adaptive approach
(IAA) and its improved method are applied for forward-looking imaging [16,24]. The
IAA method has a good behavior to depress the noise and improve the azimuth resolu-
tion, while the computational complexity is high. To denoise and regularize sparse data,
a multichannel spectral analysis method is proposed in [25]. This method uses the L2
norm and the covariance matrices associated with data for denoising and reconstructing
sparse signals with the aid of additional information. At the same time, the Bayesian
estimation methods are utilized by maximum a posteriori (MAP) to improve the azimuth
resolution [26,27]. In the Bayesian methods, the prior information of the imaging system is
crucial [28,29]. Poisson distribution is considered as the prior statistical model of the noise
and targets’ scattering [30].

In the imaging region, the interest targets usually have some prior information, such
as sparsity and contour information. Compared with the entire imaging area, the targets
would be sparse in ship monitoring or airport surveillance. To reconstruct the sparse
characteristic, the sparse regularization method is applied by selecting reasonable prior
information. In [31], the authors add an Lp norm term to the objective function to recon-
struct the sparse target. In [32,33], the authors use L1 norm to reconstruct the sparse target
of the imaging area. The authors propose a sparse spectral estimation method named
sparse iterative covariance-based estimation (SPICE) in [34]. Then, SPICE and q−SPICE
methods are applied for scanning radar imaging in [17,35], and the reconstruction result of
the targets is significant. In Bayesian methods, the Laplace prior distribution is commonly
chosen as the statistical model for the prior information of the sparse targets [36–38]. In
some applications, we intend to get the precise contour information of the target, such as in
autopilot or autonomous landing of aircraft. Therefore, obtaining the contour information
of the target is one of main purposes of forward-looking imaging. The TV regularization
is usually used to highlight the contour information by minimizing the difference value
between adjacent points in the image procession region [39]. In [40,41], the authors intro-
duce the TV prior to estimate the target in forward-looking imaging, and the performance
is significant.

For sea-surface monitoring, the prior information of the imaging environment also
requires attention. When the imaging scene is the sea-surface, sea clutter would influence
the quality of the reconstruction result. In [42], the authors attempted to use the full-
polarization method to deal with the detection of small floating target on sea-surface.
By using the full-polarization information to detect sea-surface target, the information
received by radar can be fully used, and the detection performance is effective. Computer
vision combined with image processing technology is introduced to realize the sea-surface
monitoring in recent years. Liu at al. [43] show that the sea-surface target detection based
on improved YOLOv3 has high accuracy. In forward-looking imaging, Zhang et al. [44] use
the Rayleigh distribution to model the sea clutter. At the seacoast, the ground clutter and the
sea clutter will influence the reconstruction result together. A single clutter distribution is
insufficient to characterize the clutter in this scenario. In [45], to characterize the interference
of the clutter and noise, the GMM is introduced. However, this method does not do well at
preserving the contour information.

In this paper, we propose a multi-prior Bayesian method which considers the imaging
environment and fuses the sparsity and the contour information of the sea-surface target.
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Firstly, we utilize GMM to describe the interference since we assume the interference
distribution is constructed from various simple Gaussian distributions. Subsequently,
by adjusting the means, variances, and the mixing coefficient of Gaussian distributions,
the interference model gets more flexible to describe the clutter and noise. Secondly, we
propose a multi-prior distribution to express the target via fusing the Laplace prior and
the TV prior. By adjusting the weighted parameters of the Laplace prior and the TV prior,
the multi-prior not only describes the sparsity of the target but also preserves the contour
information. Third, we introduce the latent variable to simplify the logarithm likelihood
function. Finally, we estimate the parameters by introducing the MAP-EM method.

The article is organized as follows. In Section 2, we analyze the azimuth signal model.
In Section 2, we propose a multi-prior Bayesian model for sea-surface target to estimate the
imaging parameters. In Section 3, several experiments are shown to verify the effectiveness
of the multi-prior Bayesian method. In Section 4, we discuss the shortcoming and the future
research directions of the multi-prior Bayesian method. Finally, the conclusions are drawn
in Section 5.

2. Method
2.1. Azimuth Signal Model for Scanning Radar Forward-Looking Imaging

In this section, we analyze the azimuth echo signal convolution model of the forward-
looking imaging. Figure 1 shows the geometric model of scanning radar. With a velocity
of v and a height of H, the aircraft travels in the Y-direction. R0 is the initial slant range
between the radar and the target P. θ0 is the initial azimuth angle. ϕ0 is the initial pitching
angle. As the aircraft travels, the slant range changes into R, the pitching angle changes
into ϕ, and the azimuth angle changes into θ with a time interval t. The slant range history
R(t) satisfies

R(t) =
√

R2
0 + (vt)2 − 2R0vt cos θ0 cos ϕ0

≈ R0 − vt cos θ0 cos ϕ0.
(3)

X

Z

0
q q

0
j

j

v

0
R RH

 Y

P

Figure 1. Geometric model of the scanning radar.

In the forward-looking region, the azimuth angle is normally smaller than 10◦, and
cos θ0 ≈ 1. So the approximate slant range history is written as

R(t) ≈ R0 − vt cos ϕ0 = R0 − v cos ϕ0
θ − θ0

ω
(4)

where ω is the beam scanning speed.
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The radar transmits LFM signal:

s(τ) = rect
(

τ

Tp

)
exp(j2π fcτ) exp

(
jπµτ2

)
(5)

where τ is the fast time in range direction. fc denotes the carrier frequency of the transmitted
signal. Tp denotes the signal duration. µ denotes the chirp rate. rect(·) is written as

rect
(

τ

Tp

)
=

{
1,
0,
|τ| ≤ Tp/2
|τ| > TP/2

. (6)

The received signal of the target P is denoted as follows:

sr(τ, t)

= σPh(t− t0) rect
(

τ − 2R(t)/c
Tp

)
· exp

(
j2π fc

(
τ − 2R(t)

c

))
exp

(
jπµ

(
τ − 2R(t)

c

)2
) (7)

where h(·) is the antenna pattern function, and σP is the target scattering coefficient. t0 is
the time when the beam center scans P.

To achieve a high resolution in range direction, the pulse compression technique is
implemented. The received signal is transformed to frequency domain in range direction

sr( f , t)

= σPh(t− t0) rect
(

f
Br

)
exp

(
−j

4π( fc + f )
c

R(t)
)

exp
(
−jπ

f 2

µ

) (8)

where f is the frequency in the range direction. Then, construct the frequency-domain filter

H( f ) = rect
(

f
Br

)
exp

(
jπ

f 2

µ

)
. (9)

Multiply Equation (8) times Equation (9),

Srout( f , t) = Sr( f , t)H( f )

= σPh(t− t0) rect
(

f
Br

)
exp

(
−j

4π( fc + f )
c

R(t)
)

.
(10)

Transform the filtered signal to time domain in range direction, and get the received
signal after pulse compression

srout(τ, t) = σPh(t− t0)sinc
[

Br

(
τ − 2R0

c

)]
exp

(
−j

4π

λ
R(t)

)
(11)

where exp(−j4πR(t)/λ) is the Doppler shift which is approximately constant and can be
ignored. Then, the received signal is transformed from the time domain (τ, t) to range-angle
domain as follows:

srout(R, θ) = σPh(θ − θ0)sinc
[

2Br

(
R− R0

c

)]
(12)
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Subsequently, the azimuth echo signal can be seen as a convolution form between the
antenna pattern and the target scattering coefficient

srout(R, θ) = σ(R, θ)⊗ h(θ) (13)

where ⊗ denotes convolution operator.
Considering the interference, we have

srout(R, θ) = σ(R, θ)⊗ h(θ) + w(θ). (14)

In Equation (14), the convolution can be written as a matrix multiplied by vector,

s = Hx + w (15)

where s represents the discrete azimuth echo signal vector defined as s = [s1, · · · , sM]T . M
is the length of the azimuth echo signal vector. (·)T denotes the transpose operation. x is
the target vector defined as x = [x1, · · · , xK]

T . K is the length of scanning points in azimuth
direction. w = [w1, · · · , wM]T denotes the interference of the clutter and noise. H denotes
the convolution matrix

H =



h1
h2 h1
... h2

. . .

hL
...

. . . h1

hL
... h2

. . .
...

hL


M×K

. (16)

where [h1, · · · , hL]
T is antenna pattern vector. L is the length of the antenna pattern.

2.2. Bayesian Model for Sea-Surface Target

In this section, we propose a multi-prior Bayesian method to overcome the low resolution
of the sea-surface target in azimuth direction and preserve the contour information. Firstly, we
present the statistical distributions of the interference and target, respectively, and establish the
Bayesian model. Secondly, we estimate the parameters by the MAP-EM method.

2.2.1. Bayesian Model

When the imaging target is the sea-surface target, the scene may be a sea-surface scene
or a seacoast scene. The interference of the clutter and noise is challenging to model using a
naive prior information. In [46–48], the authors propose that any continuous density could
be approximated by a sufficient number of Gaussians. Inspired by this idea, we utilize the
GMM to describe the interference.

p(wm) =
J

∑
j=1

πjN
(

uj, α−1
j

)
(17)

where J is the number of Gaussians, πj is the weighted coefficient of the jth Gaussian, and

∑J
j=1 πj = 1, πj ≥ 0. N(·) is Gaussian distribution function. uj is the mean value of the jth

Gaussian. αj is the inverse variance of the jth Gaussian.
In [48], the authors introduce Gamma-Gaussian prior to characterizing the sparsity of

the target, and the result is effective. However, for some sea-surface targets, the targets are
not only sparse, but also have contour information. To retain the contour information of
the sea-surface targets, the TV prior is usually utilized [39], and the TV prior is written as

p(x|ρ) =
(ρ

2

)K
exp(−ρTV(x)) (18)
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where ρ is the scaling parameter of the TV term. The high resolution of the range direction
is realized by pulse compression technique in forward-looking imaging. Therefore, we only
consider the azimuth dimension. The TV function is given by

TV(x) = ‖x̃‖1 (19)

where x̃ = Ax. A is a discrete derivative operator

A =


1
−1 1

. . . . . .
−1 1

−1 1


K×K

. (20)

At the same time, the sparse information of the target is modeled by the Laplace
prior distribution.

p(x|γ) =
(γ

2

)K
exp(−γ‖x‖1) (21)

where γ is the scaling parameter of the Laplace term.
We fuse the sparsity and contour information of the target, and the multi-prior distri-

bution is defined as

p(x|γ, ρ) =
K

∏
k=1

γkρ

2
exp(−c1γk|xk| − c2ρ|x̃k|) (22)

where c1 and c2 are the weighted parameters to balance the Laplace term and the TV term.
At the same time, to improve the flexibility of the sparse target scattering coefficient, we
assume the Laplace distribution with different γk.

Figure 2 displays the probabilistic graphical model of the multi-prior Bayesian method,
where c = [c1, c2]

T .

xπ

r

s

u

w

α H

c

g

Figure 2. Probabilistic graphical model.

2.2.2. MAP-EM Estimation

To achieve high azimuth resolution, we need to do MAP estimation of the target
scattering coefficient x

x̂MAP = arg max
x

p(x|s, α, u, π) (23)

where p(x|s, α, u, π) is the posterior probability. The posterior p(x|s, α, u, π) is given by

p(x|s, α, u, π) =
p(s, x, α, u, π)∫
p(s, x, α, u, π)dx

. (24)
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However, the posterior p(x|s, α, u, π) is intractable, since
∫

p(s, x, α, u, π)dx cannot
be calculated easily. Therefore, we use the joint probability p(s, x, α, u, π) to perform the
estimation. Then, the target scattering coefficient x is estimated by solving

x̂MAP = arg max
x

p(s, x, α, u, π)

= arg max
x

ln p(s, x, α, u, π).
(25)

The joint distribution satisfies

p(s, x, π, α, u)

= p(s|x, π, α, u)p(x|γ, ρ)

=
M

∏
m=1

(
J

∑
j=1

πjN
(

sm|Hmx + uj, α−1
j

))
p(x|γ, ρ).

(26)

The logarithm likelihood function is written as

ln p(s, x, π, α, u)

=
M

∑
m=1

ln

(
J

∑
j=1

πjN
(

sm|Hmx + uj, α−1
j

))

− c1

K

∑
k=1

γk|xk| − c2ρ
K

∑
k=1
|x̃k|+ const.

(27)

Since the likelihood function contains ln(∑(·)), the calculation is complex. To simplify
Equation (27), we introduce a latent variable z = [z1, · · · , zM]T , and zm satisfies

p(zm = j) = πj (28)

where zm denotes the sub-interference class label of the mth interference wm. Because zm is
determined from 1 to J, Equation (28) can be rewritten as

p(zm) = π
1(zm=j)
j (29)

where 1(zm = j) is equal to 1 if zm = j; or 0, otherwise.
Similarly, p(wm|zm, u, α) is written as

p(wm|zm, u, α) =
J

∏
j=1

(
N
(

wm|uj, α−1
j

))1(zm=j)
. (30)

Figure 3 displays the modified probabilistic graphical model. The joint distribution
p(s, z, x, α, u) can be rewritten as

p(s, z, x, π, α, u)

=

(
M

∏
m=1

J

∏
j=1

(
πjN

(
sm|Hmx + uj, α−1

j

))1(zm=j)
)

p(x|γ, ρ).
(31)
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x

π

r

s

u

w

α

z

H

c

g

Figure 3. Modified probabilistic graphical model with latent variable.

The logarithm likelihood function can be rewritten as

ln p(s, z, x, π, α, u)

=
M

∑
m=1

J

∑
j=1

1(zm = j)
(

ln πj +
1
2

ln αj −
1
2

αj
(
sm −Hmx− uj

)2
)

− c1

K

∑
k=1

γk|xk| − c2ρ
K

∑
k=1
|x̃k|+ const.

(32)

From Equation (32), we can see that it is challenging to calculate x directly. In this
section, we estimate the target scattering coefficients using MAP-EM approach [49].

The MAP-EM method is an iterative algorithm consisting of E-step and M-step. The latent
variable z can be estimated in E-step, and the parameter {x, π, α, u} is estimated in M-step.

The posterior distribution of z satisfies

p(z|s, x, π, α, u) =
M

∏
m=1

p(zm|sm, x, π, α, u) (33)

where

p(zm|sm, x, π, α, u)

=
p(sm|zm, x, α, u)p(zm|π)

∑J
j=1 p(sm|zm = j, x, α, u)p(zm = j|π)

=
πzm N

(
sm|Hmx + uzm , α−1

zm

)
∑J

j=1 πjN
(

sm|Hmx + uj, α−1
j

) .

(34)

We define

φm(j) = p
(
zm = j|sm, x, πj, αj, uj

)
=

πjN
(

sm|Hmx + uj, α−1
j

)
∑J

j=1 πjN
(

sm|Hmx + uj, α−1
j

) .
(35)

where φm(j) is the posterior probability of the jth Gaussian in the mth observation,
∑J

j=1 φm(j) = 1.
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By maximizing the lower bound, the model parameter {x, π, α, u} can be obtained,
and the lower bound is given as

L(x, π, α, u)

= Ez|s,x,π,α,u[ln p(s, z, x, π, α, u)]

=
M

∑
m=1

J

∑
j=1

ψm(j)
(

ln πj +
1
2

ln αj −
1
2

αj
(
sm −Hmx− uj

)2
)

− c1‖Γx‖1 − c2ρ‖x̃‖1 + const

(36)

where Γ = diag{γ1, . . . , γK}.
Then, we obtain the model parameter {x, π, α, u} by solving the gradient of the lower

bound ∇x,π,α,uL(x, π, α, u) = 0. Since L1 norm is non-differentiable, we introduce the
approximate approach,

‖Γx‖1 ≈
K

∑
k=1

γk

√
|xk|2 + δ (37)

‖x̃‖1 ≈
K

∑
k=1

√
|x̃k|2 + δ (38)

where δ is a small non-negative constant.
The lower bound L(x, π, α, u) is rewritten as

L(x, π, α, u)

=
M

∑
m=1

J

∑
j=1

ψm(j)
(

ln πj +
1
2

ln αj −
1
2

αj
(
sm −Hmx− uj

)2
)

− c1

K

∑
k=1

γk

√
|xk|2 + δ− c2ρ

K

∑
k=1

√
|x̃k|2 + δ + const.

(39)

The solutions of ∇x,π,α,uL(x, π, α, u) = 0 are

dj =
M

∑
m=1

ψm(j) (40)

πj =
dj

M
(41)

x =

(
M

∑
m=1

(
J

∑
j=1

ψm(j)αj

)
HT

mHm+c1U(x)+c2W(x̃)

)−1

·
M

∑
m=1

(
J

∑
j=1

ψm(j)αj
(
sm − uj

)
HT

m

) (42)

where

U(x) = diag
{

γ1

(
|x1|2 + δ

)− 1
2 , . . . , γK

(
|xK|2 + δ

)− 1
2
}

(43)

W(x̃) = ρATdiag
{(
|x̃1|2 + δ

)− 1
2 , . . . ,

(
|x̃K|2 + δ

)− 1
2
}

A. (44)

For easy reference, we summarize the details of the proposed method.
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Step 1: Initialize ψ
(1)
m (j), γ(1), ρ(1), u(1), and α(1) randomly, and set J(1) with a large

number, x(1)k =
HT

k s
HT

k Hk
.

Step 2:
M-step:

d(t+1)
j =

M

∑
m=1

ψ
(t)
m (j) (45)

π
(t+1)
j =

dj

M
(46)

x(t+1) =(
M

∑
m=1

(
J

∑
j=1

ψ
(t)
m (j)α(t)j

)
HT

mHm+c1U
(

x(t)
)
+c2W

(
x̃(t)
))−1

·
M

∑
m=1

(
J

∑
j=1

ψ
(t)
m (j)α(t)j

(
sm − u(t)

j

)
HT

m

) (47)

α
(t+1)
j =

d(t+1)
j

M
∑

m=1
ψ
(t)
m (j)

(
sm −Hmx(t+1) − u(t)

j

)2
(48)

u(t+1)
j =

M
∑

m=1
ψ
(t)
m (j)

(
sm −Hmx(t+1)

)
d(t+1)

j

(49)

γ(t+1)
k

=
1∣∣∣x(t)k

∣∣∣+ δ
(50)

ρ(t+1) =
1∥∥x̃(t)
∥∥

1 + δ
(51)

E-step:

ψ
(t+1)
m (j) =

π
(t+1)
j N

(
Hmx(t) + u(t)

j , α
(t)−1

j

)
J

∑
j=1

π
(t+1)
j N

(
Hmx(t) + u(t)

j , α
(t)−1

j

) (52)

Then, keep columns that correspond to the maximum probability of the mth input,
update J(t+1), and do normalization ψ

(t+1)
m (j)

ψ
(t+1)
m (j) = ψ

(t+1)
m (j)/∑j ψ

(t+1)
m (j). (53)

Step 3: Repeat Step 2 and calculate the difference value D until convergence.

D =
L
(

x(t+1), π(t+1), α(t+1), u(t+1)
)
− L

(
x(t), π(t), α(t), u(t)

)
L
(
x(t), π(t), α(t), u(t)

) (54)

In Step 1, we usually initialize J with a large number. To balance the Laplace term and
the TV term, we need to manually pick appropriate weighted parameters, c1 and c2. To
show the process more clearly, we give the flowchart of the multi-prior Bayesian method
in Figure 4.
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Input the echo signal and 

the convolution matrix

 Initialize the parameters

Execute M-Step according 

to Equation (41)-(47)

Execute E-Step according 

to Equation (48)

Determine whether to 

converge

No

Output the reconstruction 

result

Yes

Update    , and do 

normalization according to 

Equation (49)

J

Figure 4. The flowchart of the multi-prior Bayesian method.

3. Experiment Result

To reflect the advantage of the multi-prior Bayesian method, we design multiple
experiments in this section. We compare the imaging performance among IAA, SPICE,
and Gaussian mixture model-Laplace hierarchical prior (GMM-LP) method [2,17,45]. In
the experiments, the antenna pattern is Sinc-shaped and the main lobe is considered. The
signal to clutter ratio (SCR) is given by

SCR = 10log10
Ps

Pc
(55)

where Ps and Pc are the mean power of the echo and the clutter, respectively.
The signal to noise ratio (SNR) is given by

SNR = 10log10
Ps

Pn
(56)

where Pn is the mean power of the noise.

3.1. Point Simulation

The targets are assumed in the sea-surface scene. The performance of the multi-prior
Bayesian method is verified by a point simulation. The sea clutter is modeled by Rayleigh
distribution in this section. Table 1 lists the simulation parameter. In the simulation, the
scanning area in the azimuth direction covers from −7◦ ∼ +7◦. The antenna pattern is
illustrated in Figure 5.
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Table 1. Point simulation parameters.

Parameter Value

Bandwidth 60 MHz
Scanning speed 50◦/s

Main Lobe Beamwidth 3◦

Pulse repetition frequency 1000 Hz
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Figure 5. Antenna pattern.

In the simulation, we assume the imaging region has two targets with the same
amplitude. The positions of the targets are set at 0◦and 0.8◦. The simulation results are
shown in Figure 6. Figure 6a gives the ideal scene. Then, we add the Rayleigh clutter
to the echo signal with SCR = 10 dB. Considering the system error, the white Gaussian
noise is blended to the echo signal in the simulation with SNR = 20 dB. Figure 6b gives the
echo signal result. Since the beam width is greater than the interval of adjacent targets, the
adjacent targets are mixed. The processing results are shown in Figure 6c–f. The red circles
are the ideal locations of the targets’ scattering. The processing result of the IAA method is
displayed in Figure 6c. The two targets are separated, but the valley between the targets is
high. The processing result of the SPICE method is displayed in Figure 6d. Affected by the
clutter, many pseudo targets occur in the result of the SPICE method. Figure 6e displays
the processing result of the GMM-LP method. It is obvious that the clutter is suppressed,
and the targets are distinguished. Because the contour information is not considered in
IAA, SPICE, and GMM-LP methods, the reconstruction results of the adjacent targets only
have two sharp peaks. Figure 6f displays the processing result of the multi-prior Bayesian
method. From the result, two targets are distinguished with low clutter. Meanwhile, the
multi-prior Bayesian method also effectively retains the contour information of the targets.

To quantitatively reflect the superiority of the multi-prior Bayesian method, the mean
square error (MSE) is employed, and the MSE is written as

MSE =
1
N

(
1
K
‖x̂− x‖2

2

)
(57)

where x̂ represents the estimation value, and x represents the ideal azimuth value. N de-
notes the number of Monte Carlo simulations. The SCR is set from 0 to 20 dB in experiments.
For each SCR, we conduct 100 independent Monte Carol trials with SNR = 20 dB [50]. The
MSE curves are shown in Figure 7. From the results, the multi-prior Bayesian method has a
lower MSE curve. The MSE curves prove that the multi-prior Bayesian method performs
better than other methods.
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Figure 6. Point Simulation results. (a) Original scene. (b) Echo signal. (c) IAA method. (d) SPICE
method. (e) GMM-LP method. (f) Multi-prior Bayesian method. (The red circles are the ideal locations
of the targets’ scattering).
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Figure 7. MSE curves with Rayleigh distribution.

3.2. Area Simulation

To further understand the effectiveness of the multi-prior Bayesian method, the area
simulation is considered in this section. In this case, the sea-surface targets are assumed in
the seacoast. The ground clutter and the sea clutter are expressed by the Gaussian distribu-
tion and the Rayleigh distribution, respectively. Table 2 lists the simulation parameters.

As shown in Figure 8a, we construct a synthetic scene with several adjacent targets in
a different range cell. Figure 8b displays the clutter label. The black part is populated by
the Rayleigh clutter, and the white part is populated by the Gaussian clutter. Then, we add
the Gaussian noise to the echo signal with SNR = 20dB. The echo signal result is shown in
Figure 8c with SCR = 5 dB. In the echo signal, the adjacent targets are mixed and cannot
be distinguished. Figure 8d–g are the imaging results processed by IAA, SPICE, GMM-LP,
and the multi-prior Bayesian method. The global resolution has been greatly enhanced in
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the results. From Figure 8d, we can see that the IAA method distinguishes all targets, but
suffers from the clutter. In Figure 8e, the SPICE method can separate the targets the same as
the IAA method, but the clutter is still not suppressed. As shown in Figure 8f, the GMM-LP
method can reject the Rayleigh clutter and Gaussian clutter. Figure 8g is the processing
result of the multi-prior Bayesian method. Figure 8g is more clarity, and the reconstruction
targets are more obvious compared with other processing results. The results prove that
the multi-prior Bayesian method can well resolve the targets with lower clutter.
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Figure 8. Area simulation results. (a) Ideal scene. (b) Clutter label. (c) Echo signal. (d) IAA method.
(e) SPICE method. (f) GMM-LP method. (g) Multi-prior Bayesian method. (h) Comparison at range
cell 2745 m.
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Table 2. Area simulation parameters.

Parameter Value

Bandwidth 60 MHz
Scanning speed 50◦/s
Scanning area −10◦ ∼ +10◦

Main Lobe Beamwidth 3◦

Pulse repetition frequency 1000 Hz

To further view the processing results, we extract the profiles at range cell 2745 m, which
are shown in Figure 8h. The targets are separated in the results of the IAA method. However,
the sharpening effect of the right target is not well. Affected by the clutter, the left target has
two peaks in the result of the SPICE method. The GMM-LP method can sharpen the beam,
and the targets are separated with a low saddle. As we can see, the contour information is
missing in the result of the GMM-LP method. Conversely, the multi-prior Bayesian method
can distinguish all targets. Meanwhile, the contour information is well restored. Table 3 shows
the MSE results of the different methods at range cell 2745 m. In Table 3, the multi-prior
Bayesian method has a lower MSE value compared with other methods.

Table 3. MSE results at range cell 2745 m.

Methods MSE (×10−2)

IAA 2.75
SPICE 3.91

GMM-LP 1.41
Multi-prior Bayesia 0.57

3.3. Semi-Real Data Experiment

The point and area simulations have proved the effectiveness of the multi-prior
Bayesian method to overcome the low resolution of sea-surface targets in azimuth di-
rection and preserve the contour information. In practical applications, the clutter is more
complex compared with Rayleigh clutter or Gaussian clutter. We process the semi-real data
in this part to verify the effectiveness of the multi-prior Bayesian method. The real data is
X-band sea clutter and Table 4 displays the parameters of the radar system [51]. The radar
antenna of the real data is shown in Figure 9.

Table 4. System parameters of semi-real data.

Parameter Value

Bandwidth 25 MHz
Scanning speed 144◦/s
Scanning area −8◦ ∼ +8◦

Main Lobe Beamwidth 2.7◦

Pulse repetition frequency 3000 Hz

Figure 9. Radar antenna of the real data.

Figure 10a displays several targets in the ideal scene. It can be seen that the targets
are sparse in the whole region, and have obvious contour information. The echo signal
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after pulse compression with SCR of 10dB is shown in Figure 10b. The processing result
of the IAA method is displayed in Figure 10c. The targets are distinguished and the
azimuth resolution is improved in the result. However, the clutter still obviously exists.
The contour information of the target is missed. Figure 10d displays the processing result of
the SPICE method. The targets are picked out as shown in Figure 10d. However, the clutter
is not restrained. The processing result of the GMM-LP method is given in Figure 10e. In
Figure 10e, the azimuth resolution is improved effectively and the clutter is suppressed.
The processing result of the multi-prior Bayesian method is given in Figure 10f. The targets
are completely distinguished with a low clutter. At the same time, the contour information
is restored well.
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Figure 10. Results of semi-real data. (a) Ideal scene. (b) Echo signal. (c) IAA method. (d) SPICE method.
(e) GMM-LP method. (f) Multi-prior Bayesian method. (g) Comparison at range cell 2435 m.

Figure 10g shows the profiles at range cell 2435 m. From the result, the IAA method
can sharpen all the targets, but the high clutter still exists. In the result of the SPICE
method, there are two or three peaks in a target. The GMM-LP method can reconstruct
the sparse sea-surface targets, and effectively suppress the clutter. However, the contour
information is missed. The multi-prior Bayesian method has a better reconstruction with
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low clutter. We then calculate the MSE results to quantitatively reflect the superiority of the
multi-prior Bayesian method. Table 5 shows the results extracted from 2435 m range cell.
From Table 5, the multi-prior Bayesian method has a better performance in the MSE results,
which indicates that the multi-prior Bayesian method has greater clutter suppression and
azimuth improvement capability than other approaches.

Table 5. MSE results at range cell 2435 m.

Methods MSE (×10−2)

IAA 1.92
SPICE 2.59

GMM-LP 0.76
Multi-prior Bayesia 0.19

4. Discussion

In the forward-looking imaging of sea-surface target, the suitable model of the imaging
environment plays an important role. However, most methods focus on the system noise
and ignore the particular characteristics of the environment of the sea-surface target. Thus,
only the Gaussian noise is considered. The multi-prior Bayesian method considers the
characteristics of the environment of the sea-surface target, and proposes to use the GMM
to model the clutter in the imaging scene. On the other hand, the sea-surface target also
has many characteristics. For example, compared with the whole imaging scene, the target
is sparse. In the autonomous landing on a ship, the counter information is important
to influence the landing precision. The multi-prior Bayesian method fuses the sparsity
and counter information to model the sea-surface target by introducing the Laplace prior
and TV prior. Therefore, combining with the environment clutter and the target model,
the multi-prior method can perform well in target recovery and clutter suppression. For
the visual and quantitative results obtained in Section 3, the simulations and semi-real
data processing results are presented to show the performance of the multi-prior Bayesian
method. Compared with the traditional methods, the multi-prior method has a better
performance both in the sea-surface scene and the seacoast scene.

In practical application, real time is crucial. The computation complexity of the multi-
prior Bayesian method is mainly determined by the length of the echo signal M, the length
of scanning points in azimuth direction K, the number of Gaussian distribution J. In
E-step, computing the posterior probability φm(j) needs O(JM). In M-step, computing the
parameters π, α and u requires O(JM). Computing the parameter x requires computing the
inverse matrix. The computational complexity to calculate the inverse matrix is O

(
K3). The

overall computation complexity is concentrated in calculating the parameter x. To improve
the imaging speed, we will find an improved algorithm to reduce the computational
complexity to calculate the inverse matrix.

In the multi-prior Bayesian method, the weighted parameter c is utilized to balance
the Laplace term and the TV term. However, we need to manually pick the appropriate
weighted parameter in the imaging procession. Future work will also research how to
select the weighted parameter adaptively.

The high resolution in range direction is realized by the pulse compress technique. We
only consider realizing the high resolution in the azimuth direction. Only one-dimensional
prior information is exploited. However, two-dimensional prior information of the target
can provide more structure information. In the future, two-dimensional prior information
of the target is encouraged to study.

5. Conclusions

In this paper, to overcome low resolution in the azimuth direction and retain the con-
tour information of the sea-surface target, we proposed a multi-prior Bayesian method to
obtain forward-looking imaging. We used the GMM to model the interference considering
the complexity of the interference in the forward-looking scene. In the imaging region,
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the sea-surface targets were not only sparse, but also had contour information. By fusing
the Laplace prior distribution and the TV prior distribution, we proposed a multi-prior
to describe the prior model of the sea-surface target. Since logarithm likelihood function
existed in the accumulative-logarithmic operations, we introduced the latent variable to
derive the logarithm likelihood function. The MAP-EM method was used to achieve the
optimized solution. Finally, several experiments proved that the multi-prior Bayesian
method obviously enhances the angular resolution and suppresses the clutter. At the same
time, the contour information of the sea-surface target was restored well.

Author Contributions: W.L. conceived the idea, designed and performed the experiments, produced
the results, and drafted the manuscript. M.L., L.Z. and H.C. acquired the datasets. M.L., L.Z., H.S. and
Y.L. contributed to discuss the idea and results. W.L., M.L., L.Z., H.S., H.C. and Y.L. contributed to the
revision of the article. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 61871307 and Grant 61772390, and in part by the Fundamental Research Funds for the
Central Universities under Grant JB210207.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank anonymous reviewers for their comments towards improving
this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Acronyms
To make acronyms clear, we list all the acronyms used in this paper:

GMM Gaussian mixture model
TV total variation
MAP-EM maximum a posterior-expectation maximization
LFM linear frequency modulated
TSVD truncated singular value decomposition
IAA iterative adaptive approach
MAP maximum a posteriori
SPICE sparse iterative covariance-based estimation
GMM-LP Gaussian mixture model-Laplace hierarchical prior
SCR signal to clutter ratio
SNR signal to noise ratio
MSE mean square error
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