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Abstract: The ecosystem performance approach, used in a previously published case study focusing
on the Nebraska Sandhills, proved to minimize impacts of non-climatic factors (e.g., overgrazing, fire,
pests) on the remotely-sensed signal of seasonal vegetation greenness resulting in a better attribution
of its changes to climate variability. The current study validates the applicability of this approach for
assessment of seasonal and interannual climate impacts on forage production in the western United
States semi-arid grasslands. Using a piecewise regression tree model, we developed the Expected
Ecosystem Performance (EEP), a proxy for annual forage production that reflects climatic influences
while minimizing impacts of management and disturbances. The EEP model establishes relations
between seasonal climate, site-specific growth potential, and long-term growth variability to capture
changes in the growing season greenness measured via a time-integrated Normalized Difference
Vegetation Index (NDVI) observed using a Moderate Resolution Imaging Spectroradiometer (MODIS).
The resulting 19 years of EEP were converted to expected biomass (EB, kg ha−1 year−1) using a
newly-developed relation with the Soil Survey Geographic Database range production data (R2 = 0.7).
Results were compared to ground-observed biomass datasets collected by the U.S. Department of
Agriculture and University of Nebraska-Lincoln (R2 = 0.67). This study illustrated that this approach
is transferable to other semi-arid and arid grasslands and can be used for creating timely, post-season
forage production assessments. When combined with seasonal climate predictions, it can provide
within-season estimates of annual forage production that can serve as a basis for more informed
adaptive decision making by livestock producers and land managers.
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1. Introduction

Rangelands in the United States cover around 312 million ha representing about 30%
of the total land area [1]. Climatic changes, including more frequent and longer-duration
droughts and long-term directional shifts in temperature and precipitation seasonality and
amounts, can substantially affect forage production [2–5]. Reduced forage production can
lead to lower livestock gains, soil erosion, water quality and quantity issues, and often
results in rippling socio-economic impacts like physical and emotional stress [6] or financial
and social instability [7]. For example, a widespread severe drought in 2012 led to poor or
very poor conditions in 59% of the total U.S. pasture and range areas [8], costing taxpayers
over $2.6 billion through record payouts via the U.S. Department of Agriculture’s Livestock
Forage Program [9]. Despite this drought assistance, many producers experienced losses in
welfare that may have persisted for several years [10].

Semi-arid rangelands of the United States have inherently high interannual differences
in forage production mostly connected to inter- and intra-annual variability in precipita-
tion [11–13]. Matching animal demand to forage availability using adaptive management
can improve animal weight gains [14] and increase sustainability of land management.
Previous management emphasized fixed moderate to low stocking rates, based on decadal-
scale research, that optimized weight gains per animal and per unit land area [15] with
slow but substantial changes to these stocking rates over long periods of time (e.g., mul-
tiple decades) [16]. These fixed stocking rates result in underutilization of forage during
years with above-average forage production while also creating difficult and costly grazing
management decisions to reduce numbers of livestock or shorten the grazing season in
drought years. The use of flexible stocking rates, adjusted seasonally/annually based on
forage availability, provides opportunities for more efficient utilization of available forage
within and across years and can be advantageous for economic returns [17–20].

A fundamental need for producer decision-making using adaptive management and
flexible stocking rates is the accurate simulation or prediction of forage production prior to
and during the grazing season. Modeling efforts are available but the complexity of plant
communities in rangelands remains challenging for site-level estimates [21] and cross-site
efforts are more problematic [22]. Lack of large-scale, long-term, coordinated ground obser-
vations of forage production hinders development of a robust model covering large spatial
extents that would rely solely on ground-observed data. Alternatively, advancements in
remote sensing and processing of big data have produced emergent tools in the United
States for estimating forage production in rangelands at large spatial scales with enhanced
accuracy (Table 1). These tools can be generally categorized into two groups based on
the timing of the provided information: (1) a post-growing season assessment and (2) a
within-growing season prediction of annual forage yield. Characteristics and limitations of
these tools are provided in Table 1.
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Table 1. Characteristics of large-scale rangeland forage production prediction tools in the United States.

Tool Name Focus Method Spatial
Resolution Extent Limitations Website Reference

Rangeland
Production

Monitoring Service
(RPMS)

Post-growing season
assessment of forage

production

Season-maximum
Normalized

Difference Vegetation
Index (NDVI) is

linked to
ground-observed

data

30 m/250 m Contiguous U.S.
rangelands

The maximum NDVI
approach can lead to

erroneous estimations in
areas with two distinct

vegetation peaks, which is
characteristic for rangeland

plant communities
composed of both cool- and
warm-season plants and for

areas with
monsoon influence.

https://www.fuelcast.net
(last accessed 18
November 2021)

[5]

Rangeland Analysis
Platform (RAP)

Post-growing season
assessment of forage

production

Process-based model
that uses Landsat

observations.
30 m Western U.S.

Long return intervals of
Landsat (16-days) with

frequent cloud
contamination can introduce

errors in these
observations [23,24]

https://rangelands.app (last
accessed 18 November 2021) [25]

Grass-Cast
Within-growing

season prediction
production anomaly

Process-based model
connected with

empirical biomass
observations.

10 km Great Plains and
Southwest

Coarse spatial resolution
when compared to an

average size of a ranch.

https://grasscast.unl.edu
(last accessed 18
November 2021)

[18,26]

FuelCast
Within-growing

season prediction of
forage production

Statistical model
using empirical

relations, climate and
remotely sensed

NDVI data.

30 m/250 m Western U.S. No peer-reviewed validation
of the predictions.

https://www.fuelcast.net
(last accessed 18
November 2021)

N/A

South Dakota
Drought Tool (SDDT)

Within-growing
season prediction of

percent normal
forage production

Empirically
established relation

between
precipitation and

production.

N/A South Dakota

No peer-reviewed
publication, no formal

validation of the predictions,
limited spatial extent.

https:
//www.nrcs.usda.gov/

wps/portal/nrcs/main/sd/
technical/landuse/pasture/

(last accessed 18
November 2021)

N/A

https://www.fuelcast.net
https://rangelands.app
https://grasscast.unl.edu
https://www.fuelcast.net
https://www.nrcs.usda.gov/wps/portal/nrcs/main/sd/technical/landuse/pasture/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/sd/technical/landuse/pasture/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/sd/technical/landuse/pasture/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/sd/technical/landuse/pasture/


Remote Sens. 2022, 14, 4 4 of 27

Except for the SDDT, all the tools identified in Table 1 in some way use satellite-
observed Normalized Difference Vegetation Index (NDVI, [27]) data for estimating forage
production. While effectively capturing spatial and temporal patterns of greenness, vegeta-
tion health, and annual biomass production [28–30], NDVI and tools using NDVI do not
provide information about the underlying causes of changes in grassland productivity [31].

Many factors affect forage production across spatial and temporal scales. Long-term
spatial patterns of forage production are primarily affected by soil characteristics, vege-
tation type, long-term climate, and topography [11,32,33]. Temporal scale variability, in
contrast, is driven primarily by the intra- and interannual variability in climate condi-
tions [12,13,34,35], fire [36], pest outbreaks [37], management [13], and growing conditions
of the previous year [38,39]. To limit the focus to the effect of intra- and inter-annual climate
variability on forage production, other non-climatic effects that cause variability in forage
production during the growing season, such as disturbances caused by overgrazing, fire,
flooding, and pests, would need to be minimized or eliminated completely. In a case study
from the Nebraska Sandhills, the Expected Ecosystem Performance (EEP) approach [40]
was used to separate the climate signal from other annual effects [3]. The amount of ex-
pected forage production was estimated solely based on seasonal climate and site-specific
characteristics using a data-driven piecewise regression tree model. This model used a
long-term historical NDVI dataset at 250-m spatial and weekly temporal resolutions as
a proxy for annual forage production. While the approach was successful in estimating
annual forage production based on observed climate, the model was developed over a
specific and relatively small ecoregion.

Here, we test the extension of the EPP approach with the piecewise regression tree
model on semi-arid grasslands of the western United States. The objectives are as follows:
(1) develop an EEP model and historical maps of EEP derived from this model for the years
2000 until 2018 that retain the information from the climate signal but reduce other non-
climatic factors, (2) convert the EEP to a measure of forage biomass (e.g., kg ha−1), (3) assess
the accuracy of EEP estimates across various sites within the study area using independent
ground-based observations, and (4) test whether the model can be used beyond the model
training period (2000–2018). The outcome of our efforts was to ascertain the applicability of
EEP for post-growing season assessments and, if used in conjunction with seasonal climate
forecasts or scenarios, for timely within-growing season annual forage predictions.

2. Site Description

The spatial extent of the study and resulting biomass maps cover major grassland areas
in western United States (Figure 1). The eastern border of the study area was determined
using the Level II Omernik ecoregion classification [41] that divides the Great Plains into
west-central and south-central semi-arid prairies from temperate prairies. Most of the
tallgrass temperate prairies, characterized by higher precipitation amounts and resultant
greater soil moisture content, were excluded from the analysis because the majority of
this grassland type has been converted to cultivated crop land [42]. The western border
of the study area is delineated by the mountain ranges of the Sierra Nevada and Cascade
Range and the coinciding Level III Omernik ecoregions [41]. We excluded desert ecoregions
including the Mojave Basin and Range, Sonoran Basin and Range, Arizona-New Mexico
Plateau, and Chihuahuan Desert, where growth dynamics of sparse vegetation cover are
difficult for moderate resolution sensors to detect. We divided the study site into two
regions that differ in the percentage of herbaceous land cover compared to other land
cover classes in each Level III ecoregion (Figure 1). More detailed description of the
differences between these two regions is provided in Appendix A. The study site has a
total area of over 3 million km2 and is diverse in climate, elevation, soil properties, and
land cover types. Annual precipitation ranges from ~100 mm to 2500 mm, the minimum
February temperature from −19 to 11 ◦C, and the maximum August temperature from 13
to 38 ◦C. As summarized in The Fourth National Climate Assessment [43], over the last
few decades the western part of the United States has seen the largest increases in annual
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temperatures (over 0.8 ◦C) when compared to the entire United States. Since the beginning
of the 20th century, the United States has experienced changes in precipitation patterns with
increases in annual mean precipitation in the Midwest and Great Plains and decreases in the
Southwest. These trends are expected to continue in the future [43]. Elevation in the study
site ranges from ~30 m to 4300 m. The soil orders include, but are not limited to, Mollisols,
Entisols, Aridisols, and Alfisols. Most of the area is well drained, while some locations
are somewhat excessively drained (e.g., Nebraska Sandhills). Although the area contains
many different Land Cover (LC) classes, we focused purely on the grassland/herbaceous
class as identified in the National Land Cover Database 2016 (NLCD 2016). Because of the
large geographic extent of the study area, livestock management strategies vary based on
location-specific characteristics.
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Figure 1. Location of the study area. Region A represents the Great Plains with higher percentage of
herbaceous cover, while Region B represents the southern and western areas with much lower total
herbaceous cover. The green areas display the distribution of areas that were identified as suitable for
placement of model training points. Locations of ground-based validation are displayed as red dots.

3. Methods

This study builds upon the methods used in a proof-of-concept study by
Poděbradská et al. [3]. We introduce the forage production model methodology but focus
primarily on the adjustments made to the methodology of Poděbradská et al. [3] with
emphasis on additional steps necessary for regional application at that larger scale that is
more variable in climate, land cover, elevation, and land use.

A data-driven, rule-based Regression Tree (RT) model is used to estimate annual
forage production based on a combination of remotely sensed site-specific characteristics
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and seasonal climate data [3]. RT models provide an accurate representation of complex
systems and bring insight to non-linear relations and higher-order interactions that occur
between the dependent and independent variables [40]. In RT models, the input data space
is stratified into several small multi-dimensional zones. In each zone, a linear regression
model is fit to predict the dependent variable using some or all of the independent variables.
Each zone is then represented by the definition of the zone (similar to decisions trees) and a
corresponding regression equation [44].

The output of our RT model is the EEP, which represents a proxy for the total annual
biomass expected to be produced at a specific location under certain climate conditions,
omitting other influencing factors like management, fire, or pests, which are not model
input variables. The ecosystem performance approach was originally developed for boreal
forest ecosystems [40] but has been frequently used in grasslands [3,45–48].

3.1. Model Inputs

The RT model was designed and run using Cubist® software [49]. The target (de-
pendent) variable in the RT model was the Growing Season NDVI (hereon called GSN), a
proxy of annual vegetation growth, e.g., [26,50,51]. The NDVI is one of the most widely
used vegetation indices capturing changes in vegetation greenness. It uses information
about the reflectance of the red and near infrared (NIR) portion of the electromagnetic
spectrum (Equation (1)), which can be utilized for assessing vegetation health, drought
stress, biomass production, and other vegetation-related information [28–30].

NDVI =
NIR − Red
NIR + Red

(1)

The GSN is often approximated using an integral of the NDVI collected multiple times
between the start and end dates of the growing season [52,53]. In large geographic areas,
the start and end dates of the growing season can vary considerably with location and
from year to year. To address this, we developed a method to dynamically approximate
the GSN without defining the specific start and end dates of the growing season using
archived modified NDVI data obtained from the U.S. Geological Survey Earth Observation
and Science Center (USGS EROS). The modified NDVI (mNDVI data) consists of Expedited
Moderate Resolution Imaging Spectroradiometer (eMODIS) weekly NDVI composites with
250-m spatial resolution [54] from the MODIS Terra collection 5 (2000–2002) and MODIS
Aqua collection 6 (2003–2018) that are quality masked, temporally smoothed [55], and
scaled to 0–200. The GSN was calculated as the sum of weekly (n = 52) positive differences
(negative differences are omitted) between the mNDVI and the scaled NDVI value 120
(hereafter called the base NDVI), which corresponds to a NDVI of 0.2 (0.2 NDVI * 100 + 100).
The base NDVI represents a signal from soil background and dead vegetation [56]. The
calculation of the GSN is expressed as:

GSN = ∑n=52
i=1

{
0 mNDVIi − 120 < 0

mNDVIi − 120 mNDVIi − 120 ≥ 0
(2)

This approach ensures that the GSN represents forage growth during the growing
season, which varies in start, end, and duration based on geographical location, site specific
characteristics, and interannual differences in growing conditions.

The independent (explanatory) variables in the model include: seasonal climate
data, site potential, and a long-term mean absolute error of the GSN (MAE GSN). Sea-
sonal climate data were calculated from monthly climate variables (minimum, mean, and
maximum temperature, and precipitation) obtained from the PRISM Climate Group [57].
Monthly data, available at a 4-km spatial resolution, were bilinearly interpolated to 250 m
and converted to seasonal values (winter—December, January, February; spring—March,
April, May; summer—June, July, August) depending on the specific variable—mean of
3 months for temperature variables and sum of 3 months for precipitation. Site poten-
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tial (Figures 2 and A1), defined as the mean of annual GSN values that are higher than
long-term GSN median, represents the spatial variability in forage production potential
governed by local biogeophysical properties that stay relatively stable across time. This
method of site potential approximation has been previously used in grassland areas [3,45].
The MAE GSN (Figure 2) serves as the measure of mean interannual variability in forage
growth and has been used in estimates of annual exotic herbaceous cover in the sagebrush
ecosystem [58]. These independent variables were selected based on their relationship with
plant growth, data availability, and appropriateness of their spatial and temporal resolution.
Additionally, these variables correspond to those used in the proof-of-concept case study
by Poděbradská et al. [3] and similar studies, e.g., [45–48,58].
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Figure 2. Distribution of site potential (a) and long-term Mean-Absolute Error (b, MAE) in units of
mNDVI across the study area for grassland land cover.

3.2. EEP, EB, Annual Biomass Deviation, and Percent Normal Biomass

The GSN serves as the predicted (dependent) variable in the EEP model. Site potential,
the long-term MAE of the GSN, and seasonal climate variables are used as the explanatory
(independent) variables (Figure 3). Thus, EEP is solely based on climate and long-term site-
specific variations and lacks inputs that would explain EEP variability due to management
or disturbances included in the model training database. This facilitates the isolation of
climate driven dynamics for the EEP predictions. The number of rules and other model
parameters were based on the recommendations of Gu et al. [59] that aim to minimize over-
and under-fitting tendencies. Model output, specifically, a set of rules and multiple linear
regressions, was further used to develop maps of EEP in MapCubist, an internal USGS
EROS code for application of Cubist model output. MapCubist can be substituted with
open-source python modules (e.g., GDAL, Pickle) as underlying mapping applications.
The method for delineating the area that was used for placement of model training points
and displaying of model results is described in Appendix A (Table A1).
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Performance (EEP) model and annual maps, conversion to expected biomass and validation of
the results.

The rangeland productivity dataset within the Soil Survey Geographic Database
(SSURGO, obtained from https://nrcs.app.box.com/v/soils, last accessed on 18 Novem-
ber 2021) was used to convert a unitless EEP to biomass units for producers (Figure 3).
Biomass values, typically measured in kg ha−1 or lbs acre−1, are more relevant to rangeland
managers and livestock producers than GSN index values. Accordingly, we established a
relation between EEP and dry matter biomass values obtained from the SSURGO range
production database. The SSURGO database contains three biomass categories that illus-
trate low, representative, and high production years. We created a dataset of the 25th, 50th,
and 75th percentiles from the time-series of annual EEP values (2000–2018) to match these
three categories. We extracted SSURGO and EEP values from randomly located points
(n = 37,455) within the mapped areas across the three production categories to establish an
empirical relation using weighted least squares (WLS) regression (R2 = 0.7), which was used
to convert EEP maps into values of Expected Biomass (EB, kg ha−1 yr−1 of dry biomass
matter) for each pixel and year. The WLS regression model, which was chosen instead of
an ordinary least squares regression due to an observed heteroscedasticity, was fit to the
data. The pixel-based EEP was converted to annual biomass values (in kg ha−1) using the
resulting regression equation (Equation (3)).

Forage production (kg ha−1 yr−1) = 2.18 ∗ EEP + 340.4 (3)

To reduce the observation bias in EEP and SSURGO productivity values, the randomly
located points were grouped into 20 clusters of EEP values equally spaced along the range
of the values. The mean and standard deviation of the SSURGO productivity was calculated
for these clusters. A regression analysis was performed on the cluster EEP and SSURGO
data. This approach gives a near-equal importance to data along the entire range of the data
values and avoids over- or underestimation biases in the lowest or highest range, which
are relatively rare occurrences in the space for time dataset of the regression equation.

The annual biomass deviation was calculated as the EB in a given year minus the
long-term biomass median on a pixel basis. The percent anomaly was calculated as the
division of EB in a given year by a long-term EB median multiplied by 100. We used
the long-term median (as opposed to long-term mean) to calculate the annual biomass
deviation and the percent normal biomass. Compared to the mean, the use of the median
does not assume the data to be normally distributed and this statistical measure is also less
affected by outliers.

We used the Standardized Precipitation Index (SPI, [60]) to qualitatively assess the
spatial distribution of abnormally dry and wet conditions and compared it to areas of

https://nrcs.app.box.com/v/soils
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abnormally high and low biomass production as estimated by the EEP model. Specifically,
we used SPI for August 31 with a 6-month time-step that summarizes the moisture condi-
tions over the period of the growing season (from the beginning of March through to the
end of August). The SPI data were obtained from https://www.drought.gov/data-maps-
tools/us-gridded-standardized-precipitation-index-spi-nclimgrid-monthly (last accessed
on 18 November 2021).

3.3. Ground Validation

We obtained long-term ground clipping biomass data from multiple sources for 11 sites
in five states of the study region (Figure 1) with details of each found in Table 2. The mean
of biomass from multiple clipping locations established in each pasture was used to repre-
sent a pasture-wide biomass. The collection of data and the management of the specific
data collection pastures differed based on the validation location and its primary research
purpose. In some locations exclosure cages were used to completely eliminate grazing
pressure on the collected biomass, and in some locations samples were collected from
pastures with low grazing pressure, while in others the entire stands were harvested and
weighed at the end of the season. These differences can introduce certain inconsistencies
when validating the modeled biomass; however, we argue that on a moderate spatial scale
these differences are expected to be fairly negligible. The methodology of data collection
for each validation site is described in detail in Table 2. We spatially matched the pastures
where clipping data were obtained and averaged the pixel biomass values matching the
extent of these pastures. A regression and a time-series analysis were performed on the
dataset. Data from Texas were excluded from the regression analysis due to a difference
in collection methodology (collecting all standing biomass from the stands and weighing
non-dried samples), and data from Oklahoma were excluded from the time-series analysis
due to a short period of record. We also estimated historical biomass since 1982 (moderate
and heavy grazed) and 1991 (light grazed) using our established EB model output by ex-
trapolating the model output using historical climate data and validated these results using
long-term ground observations from the USDA Agricultural Research Service research site
located near Cheyenne, Wyoming. This site was chosen due to data availability prior to
our model training period. We compared the validation results of the historical estimates
to estimates created within the model training period (2001–2018). Additionally, we also
examined the annual sign of trend (increase/decrease) when compared to a previous year’s
production for all locations of modeled and observed data.

https://www.drought.gov/data-maps-tools/us-gridded-standardized-precipitation-index-spi-nclimgrid-monthly
https://www.drought.gov/data-maps-tools/us-gridded-standardized-precipitation-index-spi-nclimgrid-monthly
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Table 2. Summary of the ground-based observations used for a validation of our modeled results.

Location. Research Station Site Name Method of Data Collection Validation Years Source More Info

Whitman, Nebraska Gudmundsen Sandhills
Laboratory, NE GSL Each pasture contained multiple 0.25-m2 exclosed cages in

pastures grazed the previous year. Biomass clipping was
performed in mid-August, which was considered peak

production for warm-season grasses for that year.
Clipping samples were dried and weighed.

2004–2018

UNL [33]
Bassett, Nebraska Barta Brothers Ranch NE BBR 2000–2017

Nunn, Colorado
Central Plains

Experimental Range
Study

CO Light Each pasture (~130 ha) contained 12 temporarily exclosed
cages that were annually moved. Biomass clipping was
performed in early August, which is considered peak
production in this system. Different grazing pressures
were applied for the three sites—light, moderate, and

heavy. Clipping samples were dried and weighed.

2000–2018 USDA ARS [61]
CO Moderate

CO Heavy

Cheyenne, Wyoming High Plains Grasslands
Research Station

WY Light Each pasture contained 3 temporarily exclosed cages that
were randomly moved each year along a 50-m permanent

transect. The sites were of different size and grazing
pressure—WY Light ~80 ha, WY Moderate ~12 ha, and
WY Heavy ~8 ha—and grass clipping was performed in

mid-July, which is considered peak production in this
system. Clipping samples were dried and weighed.

1982–1999,
2001–2018

USDA ARS [13,61]
WY Moderate

WY Heavy

El Reno, Oklahoma
Grazinglands

Research
Laboratory

OK P11

Clipping samples were collected destructively from
0.25-m2 quadrats and collected in five random locations
along a 100-m transect in the north-south directions. The

clipping areas were not located in exclosed cages and
therefore the measurements represent biomass under low

grazing pressure. Clipping samples were dried and
weighed.

2014–2016, 2018 USDA ARS [62]

OK P13

Temple, Texas
Grassland Soil and Water

Research
Laboratory

TX

Large stands (0.25–0.37 ha) were planted with switchgrass
or a mixture of native grassland species. At the end of the
growing season, the stands were harvested with typical

haying equipment. Hay bales were weighed and
converted to kg ha−1 to represent the entire stand. For the
purpose of this study, the stands were averaged each year.

The grass samples were not dried.

2010–2018 USDA ARS N/A
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4. Results
4.1. Site Potential and MAE GSN

The site potential captured a productivity gradient over the Great Plains from southeast
to northwest (Figure 2). The long-term interannual variability captured by the MAE GSN
did not follow the same spatial patterns. Lower, long-term interannual variability was
observed in the Middle Rockies, Wyoming Basin, Nebraska Sandhills, and Flint Hills.
Higher interannual production variability was observed generally in Texas and South
Dakota with spots scattered around the entire study area (Figure 2).

4.2. EEP Model

The EEP model was trained on 80% of the total points (n = 277,931) with 20% of the
points used for independent model validation. The model was limited to 33 rules and used
three committee models (which use mean predictions from multiple model runs to fine-tune
the model [63]). Table 3 provides a list of the independent variables used in the model
ranked by overall importance and the model evaluation on training and testing datasets.

Table 3. Summary of independent variables used in the Expected Ecosystem Performance (EEP)
model and their overall importance expressed as the mean of the frequency with which they were
used in the model stratification and prediction.

Independent Variable Overall Importance (%)

Site Potential 80.5
Summer Precipitation 77.0

MAE 69.0
Spring Precipitation 67.5
Winter Precipitation 63.0

Maximum Summer Temperature 51.0
Minimum Spring Temperature 45.0
Maximum Spring Temperature 44.5
Maximum Winter Temperature 43.5

Mean Winter Temperature 37.5
Minimum Summer Temperature 36.0
Minimum Winter Temperature 33.5

Mean Summer Temperature 26.5
Mean Spring Temperature 26.5

Model Structure 33 rules, 3 committee models, 80% training points

Training Dataset
R2 0.93

Average Error 91.40
Relative Error 0.22

Testing Dataset
R2 0.93

Average Error 91.30
Relative Error 0.22

Plotting EEP model estimates against the GSN observations (Figure 4) reveals a good fit.
The distance between each point and the 1:1 line represents the model residual. Residuals
located within the 90% confidence interval represent the model prediction variability within
the error term of the model. Residuals that fall beyond this limit represent significant under-
and overperformance anomalies and demonstrate the influence of land management and
disturbances (vertical movement of points).



Remote Sens. 2022, 14, 4 12 of 27Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 27 
 

 

 
Figure 4. Growing Season Normalized Difference Vegetation Index (GSN) regressed on Expected 
Ecosystem Performance (EEP) predicted from the EEP model with 1:1 line, regression line, and 90% 
confidence limits (normal, gray color) displayed. Over- (purple color) and underperformance (green 
color) points located outside of the 90% confidence limits represent the influence of non-climatic 
and site factors (e.g., overgrazing, fire, pests). 

4.3. Conversion to Biomass 
Annual EEP values serve as a proxy for forage production. The scatter plot of the 

annual EEP and SSURGO production shows a strong relation (R2 = 0.70) between these 
two variables (Figure 5). We observed some non-linear tendencies in the higher values of 
the EEP (EEP > 1500). Despite these, the linear fit between EEP and SSURGO productivity 
was found to be stronger than other non-linear fits (2nd degree polynomial and logarith-
mic). The observation density indicates that most observations fall along the regression 
line, while lower densities are associated with higher biomass values and points that are 
farther away from the regression line. This finding together with the increasing error rate 
(higher standard deviation for higher values) for higher biomass values might imply a 
lower predictability of biomass from EEP for high biomass areas. We observed a very 
strong relation (R2 = 0.99) between the cluster-averaged variables (Figure 5). 

Figure 4. Growing Season Normalized Difference Vegetation Index (GSN) regressed on Expected
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color) points located outside of the 90% confidence limits represent the influence of non-climatic and
site factors (e.g., overgrazing, fire, pests).

4.3. Conversion to Biomass

Annual EEP values serve as a proxy for forage production. The scatter plot of the
annual EEP and SSURGO production shows a strong relation (R2 = 0.70) between these two
variables (Figure 5). We observed some non-linear tendencies in the higher values of the
EEP (EEP > 1500). Despite these, the linear fit between EEP and SSURGO productivity was
found to be stronger than other non-linear fits (2nd degree polynomial and logarithmic).
The observation density indicates that most observations fall along the regression line,
while lower densities are associated with higher biomass values and points that are farther
away from the regression line. This finding together with the increasing error rate (higher
standard deviation for higher values) for higher biomass values might imply a lower
predictability of biomass from EEP for high biomass areas. We observed a very strong
relation (R2 = 0.99) between the cluster-averaged variables (Figure 5).

4.4. EB, Annual Biomass Deviation, and Percent Normal Biomass

EEP was converted to biomass and is displayed for two years as examples in Figure 6.
Annual EB maps for the entire study period (2000–2018) can be found in Appendix B
(Figure A2). These maps capture the spatial and temporal variability of biomass across the
study area and years of analysis. The EB data are publicly available [64].

Annual biomass deviation maps (Figures 6 and A3) provide information of biomass
departure from the long-term median value. Two example years of biomass deviation are
presented in Figure 6, and all years (2000–2018) can be found in Appendix B (Figure A3).
These maps show areas in specific years where biomass was lower or higher than normal.
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Figure 5. Relation between Expected Ecosystem Performance (EEP) and Soil Survey Geographic
Database (SSURGO) productivity across the study area and productivity categories. The scatter plot
displays observation density where green points represent low density and red and white points
represent high density of observations. The magenta elements (regression line, equation, and R2)
represent the Weighted Least Squares (WLS) regression. The blue squares represent the mean of
SSURGO values from bins of 20 clusters equally spaced along the range of the EEP values, and
the blue elements represent regression of the binned values. The black error whiskers represent
2 standard deviations of the SSURGO values for each averaged cluster.

The percent anomaly maps (Figures 6 and A4), derived from the EB and long-term
median EB, effectively show the spatial distribution of areas where the seasonal climate had
a positive or a negative effect on biomass. Example percent anomaly maps from 2012 and
2017 are displayed in Figure 6. Maps for all years (2000–2018) can be found in Appendix B
(Figure A4). In 2012, the biomass deviation map and the percent anomaly map showed low
biomass production in the majority of the Great Plains region. On the other hand, in 2017,
there was higher than normal biomass in the southern Great Plains and the Great Basin
area, while a reduction was observed in the northern Great Plains. The areas of abnormally
low and high production correspond to areas of drought and abnormally high precipitation
as summarized for the period of the growing season (from the beginning of March through
the end of August) using the SPI with a 6-month time-step (Figure 6).

4.5. Validation of the EEP Model

Comparison of the model-derived and the ground-observed biomass showed a mod-
erately strong relation for the overall relation across time and space (Figure 7). Based on the
regression analysis, the model explained 67% of the overall ground-observed variability.
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Figure 6. Two example years (2012 and 2017) for annual expected biomass (kg ha−1), annual biomass
deviation (kg ha−1), percent anomaly (%), and 6-month Standardized Precipitation Index (SPI) at the
end of August in the study region.

The time-series of modeled and observed biomass revealed that the model captured the
variability in ground-observed biomass (Figure 8) across spatial and temporal dimensions.
Underprediction of higher observed ground biomass was more pronounced for more sites
in Colorado and Wyoming. The annual trend analysis revealed that the modeled data
follow the same trend (decrease/increase) when compared to a previous year of production
as the observed data in 75% of cases.

Time-series and regression analyses were performed separately for three validation
sites near Cheyenne, Wyoming, to assess the model predictions beyond the time period
of the model training database (Figure 9) using extrapolation of the model output using
the historical climate data. The time-series plots (Figure 9A) capture the similarities and
differences in the peaks and troughs between the modeled and ground-observed biomass,
while the regression plots (Figure 9B) show the similarities of the model predictions, with
respect to ground-observed data, in the training period and prior to it. The regression lines
created for the historical and recent data (1982–1999 and 2001–2018, respectively) fell within
the 90th confidence limits of the recent data regression (2001–2018).
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Figure 9. Time-series (A) and regression (B) analyses of the observed versus modeled values of
annual biomass for historical and present observations. In plot A, the modeled annual biomass in
kg ha−1 is displayed in yellow, while the ground-observed biomass is green. In subplot B, the blue
dots represent historical annual biomass values (from 1982 for Wyoming heavy and moderate and
from 1991 for Wyoming light) until the year 1999. The orange points represent values from 2001 until
2018 (hereby recent). The blue line represents regression for historical and recent data, while the
orange line with gray area of 95th confidence limits represent regression only for the recent data. The
gray line represents a 1:1 relation.

5. Discussion and Conclusions

The remoteness of certain U.S. areas makes tracking changes and quantifying impacts
of drought on vegetation difficult to monitor [51]. Our findings contribute to this effort by
providing a landscape-scale understanding of forage dynamics across major U.S. semi-arid
grasslands. For this area we developed an EEP model that estimates the amount of annual
forage in a specific location based on seasonal and interannual climate variability, reducing
the effect on non-climatic influences. The EEP was converted to biomass (kg ha−1 yr−1) and
compared to ground-based biomass observations resulting in moderately strong relations.
The maps of percent anomaly from a long-term median derived from the EEP model
capture the effect of interannual climate variability on forage production with respect to
a long-term production at a specific location. Because the regression lines created for the
historical and recent data (Figure 9B) are sufficiently similar, we conclude that the model
can be used for estimating forage production in years prior and after the model training
period (2000–2018).

The ecosystem performance approach, used in this study, has been well established for
the observation of ecosystem performance anomalies (difference between observed GSN
and EEP) caused by fire, management, and other non-climatic factors [40,45,47,48,50]. Our
study focused on the opposite process, using the EEP to capture the interannual variability
of specific locations caused explicitly by changes in seasonal and interannual climate, while
reducing the effect of non-climatic factors, a concept used by Poděbradská et al. [3]. Based
on the model evaluation using the testing dataset we conclude that the model prediction
was robust with a low degree of over- and underfitting, as well as minimal bias (Figure 4).
The model under- and overperformances can be attributed mostly to non-climatic factors
such as, fire, pest or disease infestation, land use and land cover changes, and management
(e.g., overgrazing). Based on the model attribute usage, we found that the site potential
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is the most important factor when estimating grass biomass, which is consistent with
findings of Wylie et al. [50]. The second most important factor is the accumulated summer
precipitation in June, July, and August. These two variables were also found to be the most
important in the Nebraska Sandhills, only in the opposite order (summer precipitation
the most important, site potential the second most important) [3]. This result is expected
because our model represents much larger growth potential variability than represented
in the Nebraska Sandhills and therefore can capture more differences in annual biomass
production across the area than the summer precipitation.

The site potential captures areas of higher and lower grass growth potential (Figure 2).
The spatial patterns of growth potential are consistent with previous findings. For example,
the site potential reflects a production gradient across the Great Plains from the more
productive south-east region to the less productive north-west region [11], a similar gradient
across the Greater Platte River Basin [48,65] and Nebraska Sandhills [3], and depicts similar
patterns of growth potential across the Upper Colorado River Basin as found by Gu and
Wylie [47].

The MAE of long-term GSN provides insight for areas with high and low interannual
variability in forage production. We found an agreement with Reeves et al. [5] in certain
locations of low (e.g., Flint Hills, Nebraska Sandhills, and north-central Wyoming) and
high (e.g., central and western South Dakota and southern Texas) variability, while there
were also differences in our findings (e.g., eastern Texas and eastern Wyoming). Based on
the combined information from the site potential and MAE of long-term GSN, locations
across the western United States can be categorized into four groups: (1) low growth
potential with high interannual variability, (2) low growth potential with low interannual
variability, (3) high growth potential with high interannual variability, and (4) high growth
potential with low interannual variability. This information can be related to adaptive
range management and flexible stocking. For example, areas characterized by low growth
potential with high interannual variability (e.g., some areas in Utah, southeast Montana,
and western Texas) might benefit from highly flexible livestock operations. On the other
hand, areas that are highly productive and with low interannual variability (e.g., Flint Hills)
may be able to manage their operations in a more conservative way without implementing
highly flexible management strategies.

The results of conversion between unitless EEP and SSURGO show good relations
for both the entire dataset and the binned values. The observed noise in this relation can
be mostly attributed to the characteristics of the SSURGO dataset. The values of biomass
production in SSURGO are determined based on ground observations and further assigned
to areas that have the same biophysical properties (e.g., soil associations). This sometimes
leads to large areas having the exact same biomass production values, which is unrealistic.
Similar results were found by Gu et al. [65] for the Greater Platte River Basin. Gu et al. [65]
used a slightly different method for representing the GSN and used only the representative
SSURGO values depicting a “normal year” for precipitation and forage production. We
observed a non-linear relation between EEP and SSURGO for higher EEP values, due to
an underestimation of ecosystem productivity in dense vegetation canopies as found by
previous studies [66,67].

We used the time-integrated NDVI as a proxy for annual forage production because
it has been widely used both for biomass estimation and in EEP models. However, some
studies observed better relations between biomass and other remotely sensed biomass
proxies, for example, the Absorbed Photosynthetically Active Radiation (APAR, [68]).
Future research could investigate the use of these or other vegetation indices such as the
leaf area index, enhanced vegetation index, and APAR in EEP models.

The EB maps captured the wet and dry years as well as the variability in growth
potential across the study area (Figures 6 and A2). The maps of annual biomass deviation
(Figures 6 and A3) depict the biomass departure from the long-term median, which reflects
the effect of seasonal and interannual climate conditions on biomass production. Maps
of percent anomaly (Figures 6 and A4) depict the percent departure from the long-term
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median biomass, which captures the effect of seasonal and interannual climate conditions
on biomass production with respect to production at a specific location. These maps are the
most intuitive for depicting the below and above normal biomass conditions in different
years caused by intra- and interannual climate variability and can be connected to the four
groups of site potential and long-term MAE. For example, during the drought year 2012, the
biomass in the Flint Hills (eastern Kansas) was around 3500 kg ha−1. The biomass deviation
maps show a negative departure between 250 and 500 kg ha−1, which is depicted as two of
the most severe negative categories, but the percent anomaly maps revealed only a 10–20%
departure. The Flint Hills are in a category of high site potential and low interannual
variability. On the other hand, low-productive areas in northern Utah showed a slight
negative biomass deviation (~−150 kg ha−1) while also having a high negative percent
anomaly (less than 70% of normal). This is also observed for positive biomass deviations
and percent anomalies (e.g., as observed in the same Utah area in 2017, Figure 6). If these
maps were provided as predictions during the growing season, livestock producers and
land managers would be able to see where the major positive and negative departures from
normal are expected to occur, which they could use as a basis for their decision-making
(e.g., where to relocate cattle or buy additional feed).

To validate our EEP model together with the conversion to biomass using SSURGO
data, we compared the modeled biomass data with long-term grass clipping data from
various locations in the study area. The R2 value of the observed versus modeled biomass
indicated a moderately strong relation and was comparable to values observed in other
studies [3,26,69]. The ground-observed clipping data were in most cases obtained from
multiple small rectangles (0.25-m2) and scaled to the entire pasture, while the modeled
data captured much larger areas (62,500-m2) averaged over a few pixels covering the entire
pasture. Both techniques can introduce errors that can result in lower R2 values. In most
cases the ground observations were obtained from small areas that were not grazed during
the current season, while the modeled data that are based on satellite observations capture
a signal from the entire pasture that was under a certain grazing pressure. This can partially
explain the bias in the observed versus modeled data. Additional errors could also have
been introduced during the conversion of the EEP values to biomass using the SSURGO
database. This database is known to contain state and county discontinuities that are caused
by differences in survey methods over decades of soil data collection; however, there are
emerging techniques that address this issue (e.g., the POLARIS soil series map, [70]). The
time-series validation plots reveal that the model reasonably predicts the trend in biomass
amount. However, overestimation of very low and underestimation of very high ground-
observed biomass can be observed. The time-series and regression analysis on the extended
historical data from the Cheyenne, Wyoming, area indicate that the model can be used
beyond its training period, creating opportunities for analysis of temporal trends of forage
production in the past and future.

Using this modelling method, we established a relation between biomass production
and seasonal climate for western U.S. semi-arid grasslands. This relation can be utilized for
creating historical and future biomass estimates without the use of remotely sensed data.
This is especially valuable for time periods when remote sensing data are not available,
for example, before the Landsat era starting in 1972 or for future climate change scenarios.
However, these estimates warrant interpretation with caution as some important local
characteristics such as species composition and land use can change over longer time
periods. Additionally, the older historical gridded climate data are created from a smaller
number of weather stations leading to more extrapolation between the observed data
and to potential errors in the climate data, an input of the forage model. The model
can also be used for early predictions of annual biomass together with seasonal climate
forecasts and scenarios to support within-season decision-making of livestock producers
and land managers.

Future research could focus on comparison of the annual biomass estimates in this
study with other similar approaches like the Rangeland Production Monitoring Service,
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Rangeland Analysis Platform, and Grass-Cast end-of-season estimates. Grassland biomass
growth is affected by many complex processes that occur on the stand level. Further
research could be helpful to understand the effect of hot dry summer conditions on the grass
dormancy. A better understanding and effective large scale monitoring of the geographic
distribution of warm and cool season grasses can help better explain the dynamics of forage
production in the future. Because grasslands are not the only component of rangelands,
which also include shrublands and savannas, exploring application of this methodology to
other rangeland land covers is desirable. The method introduced in this manuscript can
be used with global NDVI and climate datasets to develop estimates of forage biomass
across global grassland areas. Finally, higher spatial resolution (e.g., 30-m) would lead
to an improvement in capturing the within-pasture variability in forage production and
would be more relevant for individual livestock operations and from the perspective of
fire fuel load modeling. Newly emerging data fusion techniques (e.g., fusion of NDVI
observations from Landsat and Sentinel-2) can leverage this type of spatial resolution with
high observation frequency, which is important for characterization of growing season
phenology [71] and precise estimates of the growing season NDVI [72]. Future efforts
could explore the use of these or similar NDVI datasets in the forage production model.
However, it is important to note that other datasets used in the forage production model
would need to match the spatial resolution of the NDVI data. This is problematic especially
for temperature and precipitation data, which are usually produced with a coarser spatial
resolution (e.g., 1-km).
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Appendix A. Delineation of Model Training Areas and Placement of Training Points

The selection of training points (pixels), their location, distribution, and number are
important factors for developing a Regression Tree (RT) model that aims to be representative
of the entire study area and the modeled Land Cover (LC) class. Our study focused only
on grassland LC. To limit an effect of mixed pixels (signal coming from multiple LC classes)
in the model training database, we used LC data with higher spatial resolution (30-m,
National Land Cover Database 2016 (NLCD 2016)) to identify 250-m pixels (resolution
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of the model input data) that contained a high percentage of herbaceous cover. The
signal can therefore be attributed mostly to herbaceous LC. Specifically, we used the
NLCD (available on www.mrlc.gov) in multiple epochs (2001, 2003, 2006, 2008, 2011,
2013, and 2016) and the National Gap Analysis Project Land Cover mapping (available on
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap, last
accessed on 18 November 2021) for identification of 30-m LC categories. Irrigated land (from
Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture available
on https://www.usgs.gov/special-topics/monitoring-vegetation-drought-stress/science/
modis-irrigated-agriculture (last accessed on 18 November 2021) was excluded from the
suitable training areas, because the relation between vegetation condition and climate
can be altered by application of irrigation water. Areas with a high percentage of annual
cheatgrass cover (https://rangelands.app/cheatgrass/, last accessed on 18 November 2021)
were excluded from training and mapped areas due to difference in seasonality compared
to perennial vegetation [73]. Areas with a high amount of elevation variation (from The
National Map available on https://nationalmap.gov/elevation.html, last accessed on 18
November 2021) can experience high variability in precipitation and temperature over
small linear distances [74] and therefore were excluded due to uncertainties connected
to the climate data downscaling process. Finally, alpine tundra (data from the National
GAP Land Cover mapping) was excluded from the training and mapped areas due to
frequent snow cover and lower responsiveness to the variability in precipitation [51]. The
remaining pixels were identified as suitable for our model training database. Table A1
summarizes the criteria based on which pixels were considered suitable for placement of
training points and criteria used for displaying the model results (mapped areas), which use
slightly less restrictive criteria. The criteria were more restrictive for Region A (Figure 1),
which has more continuous herbaceous cover, than Region B, which is characterized by
high occurrence of shrubland LC with scattered herbaceous areas.

Table A1. Summary of conditions for selecting representative pixels for the model training database
and for identifying areas that can be displayed as herbaceous using our model output. The percent
herbaceous, water, wetlands, and cheatgrass are relevant for each 250-m pixel of the study site.

Criteria Regions
Percent

Herbaceous
Cover

Percent Water
and Wetlands

Percent
Cheatgrass

Cover

Number of Years
Classified as Grassland

in NLCD Epochs
Elevation Variation

Training areas

Region A 100

0

N/A 7 out of 7 Standard deviation of
elevation in the

surrounding 4-km
area < 150 m

Region B 80 20 5 out of 7

Mapped areas
Region A 90

10
N/A Correspond to the

closest NLCD
mapping year

Not consideredRegion B 75 15

The suitable training areas determined pixels where the model database training
points could be placed. The number of points used for the model training database
was based on the number of points from Poděbradská et al. [3] and scaled to the total
mapped area (n = 347,414). The placement of the training points should be stratified across
space, time, and forage production gradient. The number of training points placed in
each Omernik Level III ecoregion (L3E, [75]) was determined based on a logarithmically
weighted proportion of the mapped area within each ecoregion compared to a total mapped
area. This ensured an inclusion of training points from areas with both high and low density
of herbaceous cover. To represent a range of possible annual forage production, the GSN in
every L3E was divided into 6 groups for every year of our analysis (2000–2018). One-sixth
of the training points for each L3E was then randomly placed into the suitable training
areas of each productivity category for each year. This ensured that both extremely low
and high productivity values are represented equally in the model and theoretically lead to
a better estimation of extreme values as recommended by Poděbradská et al. [3].

www.mrlc.gov
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap
https://www.usgs.gov/special-topics/monitoring-vegetation-drought-stress/science/modis-irrigated-agriculture
https://www.usgs.gov/special-topics/monitoring-vegetation-drought-stress/science/modis-irrigated-agriculture
https://rangelands.app/cheatgrass/
https://nationalmap.gov/elevation.html
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Figure A1. The study area with site potential values and the distribution of model training points
for one year of the study period (a). Maps (b,d) depict the site potential for the central Great Plains
and the northwest part of the study area, respectively. Maps (c,e) show the difference between pixels
identified as suitable for training point placement and the areas for which our results were displayed
in year 2016.

The total unmasked study area was over 3 million km2, while the area considered for
displaying results was around 550 thousand km2 or about 17 percent of the entire study area.
The area used for placement of model database training points was considerably smaller,
around 400 thousand km2 or 12.5 percent of the entire study area. Larger differences in
mapped and training areas were observed for the western part of the study region (Region
B) due to the smaller size of grassland patches and intermixed shrubland components. An
example of these differences is provided in Appendix A (Figure A1).
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