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Abstract: Due to the discrepancy in spatial structure between multispectral (MS) and panchromatic
(PAN) images, the general fusion scheme will lead to image error in the fused result. To solve this
issue, a differential strategy-based multi-level dense network is proposed, and it regards the image
pairs at different scales as the input of the network at different levels and is able to map the spatial
information in PAN images to each band of MS images well by learning the differential information
of different levels, which effectively solves the scale effect of remote sensing images. An improved
dense network with the same hierarchical structure is used to obtain richer spatial features to enhance
the spatial information of the fused result. Meanwhile, a hybrid loss strategy is used to constrain
the network at different levels for obtaining better results. Qualitative and quantitative analyses
show that the result has a uniform spectral distribution, a complete spatial structure, and optimal
evaluation criteria, which fully demonstrate the superior performance of the proposed method.

Keywords: pansharpening; multi-level; differential; deep learning

1. Introduction

Remote sensing images are widely used in agriculture, the military, and other fields.
Due to the limitation of sensor hardware, the sensor cannot acquire high-resolution mul-
tispectral (HRMS) images directly. In general, sensors provide two types of images that
include high-resolution panchromatic (PAN) images and low-resolution multispectral
(MS) images. However, HRMS images are usually required in most applications, such
as hyperspectral image classification [1], hyperspectral image mixed denoising [2], etc.;
therefore, pansharpening is proposed for fusing the spatial information of PAN image with
the spectral information of MS images to obtain HRMS images.

The existing pansharpening methods can be divided into four branches: compo-
nent substitution (CS) [3–6] methods, multi-resolution analysis (MRA) [7–11] methods,
variational optimization (VO) [12–16] methods, and deep-learning (DL) methods.

CS-based methods replace the intensity component of the MS images with the PAN
image. The classical CS-based methods include the partial replacement adaptive component
substitution (PRACS) [6], the intensity-hue-saturation (IHS) method [3], the principal
component analysis method (PCA) [4], the Gram–Schmidt method (GS) [5], the Brovery
method [17], and others. These CS-based methods are the most widely used, but they often
suffer from spectral distortion.

MRA-based methods inject the high-frequency spatial details of the PAN image into
MS images. The typical MRA methods include high-pass filtering (HPF) [18], the Laplace
pyramid transform method [9], the wavelet transform method [6], the contour wavelet
transform method [10], the curvilinear transform method [11], and more. In contrast to
CS-based methods, MRA-based methods are usually sensitive to spatial distortion but have
less spectral distortion.
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VO-based methods model the pansharpening problem as an optimization problem
using some prior spatial knowledge of the image, and the solution to the optimization
problem comprises HRMS images. At the core of VO-based methods is selecting and
designing a suitable prior-image model. Representative VO-based methods include the
gradient descent algorithm [19], the split Bregman iteration algorithm [20], the alternating
direction method of multipliers (ADMM) algorithm [15], and others. VO-based methods
can reduce the spectral distortion effectively, but they usually cause fuzzy results due to
the lack of an effective prior model for spatial information retention.

In recent years, with the continuous development of deep learning, DL-based methods
have been used in pansharpening. In DL, convolution neural network (CNNs) are the most
widely used models. Therefore, an increasing number of scholars have improved the CNN
and designed many excellent pansharpening models. Inspired by image super-resolution
using deep convolutional networks (SRCNN) [21], Masi et al. proposed a pansharpening
method by CNN (PNN) [22], which is the first time that they have combined CNN with
pansharpening. In PNN, the simple three-layer convolutional architecture obtains spatial
detail information and spectral information from PAN image and MS images, and the
information obtained is used to enhance the spatial resolution of the fused images. PNN is
not sufficiently enhanced for spatial detail as its network architecture is too simple.

To design a deeper CNN model, Wei et al. [23] introduced residual networks that
take advantage of the high nonlinearity of DL models and avoid gradient disappearance
and gradient explosion occurring when the network is too deep. The deep CNN model
extracts deep features from PAN and MS images to improve fusion, but it is similar
to PNN in that it treats the pansharpening task as a black box and does not consider
the retention of spectral and spatial information. Yang et al. proposed a deep network
architecture for pansharpening (PanNet) [24]. The PanNet model is effective in reducing
spectral distortion and is more obvious in spatial detail enhancement, but it ignores low-
frequency information in PAN and MS images, which also plays a role in fusion. To make
better use of the information in PAN and MS images and to further enhance the details
of the fusion images, Deng et al. proposed a detailed injection-based deep CNN [25]
that uses DL combined with traditional methods. Specifically, combining CS and MRA
strategies, Deng et al. proposed a Fusion-Net. The differential information in Fusion-Net
between PAN image and up-sampled MS images is trained in a residual network, and
spectral preservation is performed at the output. Therefore, some scholars have worked
on designing a multi-scale CNN to obtain richer feature information. To obtain different
scale information from source images, Wang et al. proposed multi-scale deep residual
network (MSDRN) [26]. In MSDRN, three-layer network architecture is used to extract and
fuse features at different scales, and a three-layer loss function is designed to control the
training process at each layer. Wang et al. [27] first introduced dense connected blocks and
residual learning for pansharpening to better learn the nonlinear mapping relationship
between the input image and the target image, reducing the number of parameters and
preventing overfitting at the same time. Deng et al. [28] proposed an SSConv to implement
spectral-to-spatial mapping by introducing sub-pixel convolution and to supervise network
training by using a multi-layer loss strategy.

Compared with the other methods, DL-based pansharpening methods can easily
achieve better overall fusion accuracy. However, most DL-based methods are insufficient
in using source image information and have limitations in feature extraction. In this paper,
a differential strategy-based multi-level dense network for pansharpening (DS-MDNP)
is proposed that makes novel changes to the input and the structure of the network and
effectively enhances the spatial detail of fusion results. The main contributions of the paper
are as follows:

1. A DS-MDNP is proposed to solve the pansharpening problem, which combines the
difference strategy with a multi-level structure. Using the difference strategy can map
the spatial information of PAN image to each band of MS images at different levels,
and then the features of different levels are fuses, reducing the global error caused by
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the difference between the two images effectively and enhancing the spatial structure
of the fusion results.

2. A hybrid loss strategy consisting of MSE and MAE was proposed to achieve a balance
between convergence speed and robustness. This hybrid loss strategy supervises and
optimizes different layers of DS-MDNP and is trained by back-propagation, making
full use of the rich feature hierarchy.

3. To learn more discriminative deep spatial features, the improved DenseNet is used as
a backbone feature extraction network, encouraging the reuse of spatial and spectral
features and enhancing feature propagation. In the improved DenseNet, the struc-
ture of the transition layer is modified to better integrate the feature maps in the
DenseBlocks, which reduces the amount of computation and renders the network
more efficient.

The remainder of this paper is as follows. Section 2 introduces the different strategies of
input, and Section 3 presents the proposed DS-MDNP and provides a detailed description
of each part of the network. Section 4 shows the experimental results and compares them
with other methods, Section 5 discusses the experimental results, and Section 6 concludes
the paper.

2. Different Strategies of Input

In DL-based pansharpening methods, different strategies of input have a significant
impact on fusion results. Generally, there are three main input strategies for Pansharpen-
ing’s approach, which are the overlapping original information strategy, the overlapping
high-pass information strategy, and the differential information mapping strategy.

Most CNN-based pansharpening methods first overlap up-sampled MS images and
PAN image, then input the stacked images into the network for training. Alternatively,
methods extract feature maps from PAN image and up-sampled MS images separately and
then stack these feature maps for training. As shown in Figure 1a, this mapping strategy
can achieve good spectral fidelity but have insufficient spatial detail enhancement due to
the spatial detail required for HRMS images mainly being derived from the PAN image.

Another strategy is to obtain the high-pass part of MS and PAN images and then
up-sample the high-passed MS images into the same size as the PAN image. Next, stack
the up-sampled high-passed MS and PAN images into the network, and finally, add the
results with the up-sampled MS images to obtain HRMS images, as shown in Figure 1b.
This strategy does not use the low-pass portion of the PAN image, which may lead to the
under-utilization of spatial information.

To balance spectral fidelity and spatial detail enhancement [29,30], we introduce a new
strategy that uses differential information between PAN and MS, as shown in Figure 1c.
Using the difference strategy can map the spatial information of PAN image to each band of
the MS images. This strategy first copies the PAN image along the channel dimension into
the same channel numbers as the MS images; it then differentiates with the corresponding
band of the up-sampled MS images and the duplicated PAN image.

Each of these three strategies has its own advantages and disadvantages. Finally, the
differential strategy is chosen as the input of DS-MDNP, and the differential information
at different scales is feature extracted and fused in DS-MDNP, which can well preserve
the spatial structure in the image; finally, the up-sampled MS is used for spectral preser-
vation, which allows fused images to possess obvious spatial detail enhancement and
spectral fidelity.
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Figure 1. Different strategies of input: (a) the overlapping original information strategy, (b) the 
overlapping high-pass information strategy, and (c) the differential information mapping strategy. 

3. Proposed Network 
This section introduces the proposed network, which consists of three parts: acqui-

sition of differential information, extraction and reconstruction of spatial features, and 
feature feedback. The structure of DS-MDNP is shown in Figure 2. The white blocks in 
Figure 2 represent differential images obtained from MS and PAN images at different 
scales, and these white blocks’ size and number of channels are kept consistent with the 
corresponding input MS images. 

For the convenience of modeling, the original MS images and PAN image are rep-
resented as MS  and P , specifically,    H W sMS  and   rH rWP . H , W , 
and s represent the height, weight, and channels of MS images, and r represents the 
ratio of spatial resolution between the MS and PAN images. The network flowchart is 
for a 4-band MS image, and the size ratio of PAN and MS images are 4. The 

down-sampled P  with 2 × 2 is denoted 2↓P , and the down-sampled P  with 4 × 4 is 

denoted ↓4P . In contrast, the up-sampled MS  with 2×2 is denoted ↑2MS , and the 

up-sampled MS  with 4 × 4 is denoted ↑4MS . Overall, DS-MDNP can be summarized 
by Equation (1): 

        4↓2 ↓ ↑ ↑↓ ↓
      DS-MDNPΘ 4 22 4MS,MS ,MS =F P,MS , P ,MS , P ,MS  (1)

Figure 1. Different strategies of input: (a) the overlapping original information strategy, (b) the
overlapping high-pass information strategy, and (c) the differential information mapping strategy.

3. Proposed Network

This section introduces the proposed network, which consists of three parts: acquisi-
tion of differential information, extraction and reconstruction of spatial features, and feature
feedback. The structure of DS-MDNP is shown in Figure 2. The white blocks in Figure 2
represent differential images obtained from MS and PAN images at different scales, and
these white blocks’ size and number of channels are kept consistent with the corresponding
input MS images.

For the convenience of modeling, the original MS images and PAN image are repre-
sented as MS and P, specifically, MS ∈ RH×W×s and P ∈ RrH×rW . H, W, and s represent
the height, weight, and channels of MS images, and r represents the ratio of spatial resolu-
tion between the MS and PAN images. The network flowchart is for a 4-band MS image,
and the size ratio of PAN and MS images are 4. The down-sampled P with 2 × 2 is denoted
P↓2, and the down-sampled P with 4 × 4 is denoted P↓4. In contrast, the up-sampled MS
with 2 × 2 is denoted MS↑2, and the up-sampled MS with 4 × 4 is denoted MS↑4. Overall,
DS-MDNP can be summarized by Equation (1):[

M̂S, M̂S↓2, M̂S↓4
]
= FΘDS-MDNP

[(
P, MS↑4

)
,
(

P↓2, MS↑2
)
,
(

P↓4, MS
)]

(1)

where FΘDS-MDNP represents the proposed network, and ΘDS−MDNP denotes the parameters
inside the network. M̂S, M̂S↓2, and M̂S↓4 represent the outputs of DS-MDNP at different
levels, and M̂S are the desired HRMS images.
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Figure 2. The framework of the proposed DS-MDNP.

In DS-MDNP, the PAN and MS images are pre-processed into three different levels
that correspond to the three-layer architecture of DS-MDNP. The differential information is
obtained from the three pairs of images at three different levels, and then the differential
information at the bottom layer is input to an improved DenseNet for feature extraction;
the output of the DenseNet is divided into two branches: One branch is injected into
MS images to generate HRMS at the corresponding level, and the other branch is fused
with differential information from the middle layer. The process in the middle layer is
similar to that in the bottom layer—one branch of the middle layer output is fused with
the differential information from the top layer. In the top layer of DS-MDNP, the output
of DenseNet is injected into MS images to generate the desired HRMS images. At the
same time, the training process is supervised by calculating the hybrid loss between the
output of each layer of the proposed network and the corresponding scale of ground truth
(GT) images.

3.1. Acquisition of Differential Information

To adapt the input to the multi-level network structure, differential inputs at three
different levels are required [31]. The differential objects must have the same size and
dimension; thus, the PAN image must be processed to the same dimension as MS images in
three layers [32]. The copied PAN image along the channel dimension is denoted PD. PD,
PD
↓2, and PD

↓4 are directly copied by P, P↓2, and P↓4, respectively. Finally, we differentiate
the images in the same resolution to obtain the following three differential inputs, as shown
in Equations (2)–(4):

I = PD −MS↑4 (2)

I↓2 = PD
↓2 −MS↑2 (3)

I↓4 = PD
↓4 −MS (4)

where I, I↓2, and I↓4 are the differential inputs in three levels, which are used to extract
features in the next improved DenseNet.
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3.2. Extraction and Reconstruction of Spatial Features

We use the improved DenseNet to extract and reconstruct spatial features from dif-
ferential inputs. In Figure 2, the three Improved DenseNets used in the three different
branches of the overall proposed network comprise three distinct networks. However,
these three improved DenseNets are designed to the same architecture to make better
use of the different levels of features. Different levels of DenseNet yield output feature
maps of corresponding sizes depending on the input, and these DenseNets are designed
to extract deeper spatial features from source images. The idea of DenseNet is to enhance
the spreading of features and to encourage feature reuse. The improved DenseNet consists
of convolution (Conv), batch normalization (BN), DenseBlock, and the Transition layer, as
shown in Figure 3.
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The DenseBlock is used to stack features, which consists of three types of operation:
BN, rectified linear unit (ReLU), and Conv, with a kernel size of 3 × 3, as shown in Figure 4.
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Figure 4. Architecture of DenseBlock.

In the DenseBlock, the feature maps are denoted xl , Hl(·) represents the three succes-
sive operations: BN, ReLU, and Conv. The l-th layer feature map xl is calculated as shown
in Equation (5):

xl = Hl([x1, x2, . . . , xl−1]) (5)

where x1, x2, . . . , xl−1 are the result of stitching the feature map from the first layer
to the (l − 1)-th layer. In Figure 4, the feature map after each Hl(·) is stacked with all
previous feature maps; we denote x1 ∈ RH×W×s, and then the final output is denoted as
xl ∈ RH×W×ls. For each layer of the DenseBlock, the feature maps of all previous layers
are used as the input of the current layer, while their own feature maps are the input of
the subsequent layers. The extracted feature maps from each layer are available for use
in subsequent layers. This effectively prevents gradient disappearance, enhances feature
propagation, and reduces the number of parameters. DenseBlock stacks all the layers
into a feature map that has a large number of channels. This feature map contains much
information but complicates computation, so the feature map needs to be compressed and
is fused by a transition layer.

The transition layer is a module that connects different DenseBlocks, which integrate
the features obtained from the previous DenseBlock. The structure of the transition layer is
shown in Figure 5.
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The traditional transition layer comprises BN, ReLU, Conv, and Average Pooling, as
shown in Figure 5a. Average Pooling has a kernel size of 2 × 2 and a step size of 2. The
channel numbers of the output are half of the input of the traditional transition layer. The
improved transition layer comprises BN, ReLU, and Conv, as shown in Figure 5b. The
1 × 1 Conv used in the improved transition layer is different from the traditional transition
layer. Specifically, the number of 1 × 1 Conv kernels in the traditional transition layer is
half of the channel number of the input feature map. The number of 1 × 1 Conv kernels in
the improved transition layer is the same as the channel number of MS image. This method
aimed to reduce the number of channels in the output feature map, which reduces the
computational effort and renders the network more efficient. In addition, in the improved
transition layer, we remove Average Pooling to keep the size of the output feature map
consistent with the input, and we change the number of 1 × 1 Conv kernels to reduce
the number of channels in the output feature map. The purpose of the transition layer is
to integrate the large number of feature maps obtained from DenseBlock. The purpose
of the improved transition layer is to integrate features while keeping the feature size
constant, reducing the loss of spatial information and reducing the computational effort,
thus improving network efficiency.

In Section 3.1, the three differential inputs are obtained, which are then inputted into
the improved DenseNet. The bottom output of DS-MDNP can be calculated as shown in
Equation (6):

M̂S1 = f
(

I↓4
)
⊕MS (6)

where f denotes the improved DenseNet, and ‘⊕’ represents pixel-by-pixel addition. The
output of improved DenseNet f

(
I↓4
)

has two branches: one is constructed in HRMS, as
shown in Equation (6), and the other is fused with the differential information of the middle
layer by feature feedback connection.

3.3. Feature Feedback

To make full use of the features obtained through DenseNet at each layer, feedback
connections were made among the three layers of DS-MDNP. The feedback connection
consists of three parts: up-sampling, stacking, and Conv [33]. The middle output of
DS-MDNP can be calculated as shown in Equation (7):

M̂S2 = f
([

f
(

I↓4
)
↑2, I↓2

]
C

)
⊕MS↑2 (7)

where C represent the Conv with the kernel size of 3 × 3 and the kernel number of 4. The
output of bottom DenseNet is up-sampled to f (I4)↑2 and then stacked with I↓2 along the
channel dimension to obtain the fused feature map, which is convoluted to obtain the
output of the middle layer. The output DenseNet has two branches in the middle layer of
DS-MDNP, which is the same as the bottom layer. One branch is constructed into HRMS,
as shown in Equation (7), and the other branch is fused with the differential information
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of the top layer by feature feedback connection. In the top layer of DS-MDNP, the desired
HRMS can be calculated as shown in Equation (8).

M̂S = f
([

f
([

f
(

I↓4
)
↑2, I↓2

]
C

)
↑2

, I
]

C

)
⊕MS↑4 (8)

Specifically, the output of DenseNet in the middle layer is up-sampled and then
stacked with I to obtain the fused feature; the fused feature is convoluted and then inputted
into DenseNet. Finally, the output of DenseNet is added with MS↑4 to generate the
desired HRMS.

Overall, the main purpose of feature feedback is to fuse the multi-level features. M̂S↓2
and M̂S↓4 are used for the proposed hybrid loss strategy to obtain better fusion results, and
the details are described in Section 3.4.

3.4. Hybrid Loss Strategy

A hybrid loss strategy is proposed to supervise the fusion of features at different layers.
We compare the three outputs of DS-MDNP with the GT images of corresponding size,
respectively. The GT image is denoted G, the medium-size GT is denoted G↓2, and the
low-size GT is denoted G↓4. Finally, the hybrid loss of DS-MDNP is defined as Equation (9):

Loss(ΘDS−MDNP) = λ1Φ
(
G, M̂S

)
+ λ2Φ

(
G↓2, M̂S↓2

)
+ λ3Φ

(
G↓4, M̂S↓4

)
(9)

where Φ(·) is composed of Mean Squared Error (MSE) and Mean Absolute Error (MAE),
as shown in Equation (10). λ1, λ2, and λ3 are three proportionality coefficients, which are
set as [0.5,0.3,0.2] and are inspired by [28] and experimentally validated. Details of the
experiments are shown in Section 4.3.1:

Φ
(
G, M̂S

)
=

1
N

N

∑
n=1

(
G{n} − M̂S{n}

)2
+

1
N

N

∑
n=1

∣∣∣G{n} − M̂S{n}
∣∣∣ (10)

where M̂S{n} are the desired HRMS images generated by the PAN and MS images in a set
of training samples, and G{n} is the GT image in this set of training samples. Some studies
have shown that MSE is sensitive to outliers, producing results that cannot represent the
overall error of the fused image. MAE is more robust to outliers but converges more slowly.
Therefore, the proposed hybrid loss strategy uses a combination of these two losses.

4. Experiments
4.1. Datasets

The network architecture in this study uses the TensorFlow deep learning framework
and is trained on an NVIDIA GeForce RTX 2070 GPU. We set the epochs to 200,000 and
batch size to 64, and we use the Adam optimization algorithm to optimize the model by
setting the learning rate to 0.001. Three datasets from different satellites were used to
evaluate the performance of DS-MDNP. The three datasets are QuickBird, GaoFen-1, and
WorldView-2, which are described in detail next. Our experiments are performed on three
datasets, which is trained first, respectively, and then tested on each dataset.

4.1.1. QuickBird Dataset

The QuickBird satellite is one of the world’s first commercial satellites to offer a sub-
meter resolution, and it has high geolocation accuracy. The QuickBird dataset provides
a PAN image resolution of 0.61 m and MS images resolution of 2.44 m. The QuickBird
dataset can be used for drawing maps, changing detection, and image analysis. Generally,
we use the QuickBird dataset with four bands: blue, green, red, and near-infrared (NIR).
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4.1.2. GaoFen-1 Dataset

GaoFen-1 satellites are the first satellite in the National High-Resolution Earth Obser-
vation System (NHROS) Major Project Space-Based System. NHROS provides PAN image
resolutions of 2 m and MS images resolutions of 8 m. The GaoFen1 dataset we used has
four bands: blue, green, red, and NIR.

4.1.3. WorldView-2 Dataset

WorldView-2 satellites are the first commercial satellites in the world to use Controlled
Moment Gyros (CMGs). This high-performance technology provides up to 10 times more
acceleration for attitude control operations, allowing for more accurate targeting and
scanning. The WorldView-2 dataset provides a PAN image resolution of 0.5 m and MS
images resolution of 1.8 m. Normally, the WorldView-2 dataset we use has four bands,
which are blue, green, red, and NIR.

4.1.4. Dataset Preprocess

We divided the dataset into a training set and a validation set in a 4:1 ratio by cutting,
disrupting, and randomly selecting the original satellite images, as shown in Table 1.

Table 1. Size of training and validation sets for GaoFen-1, QuickBird, and WorldView-2.

Dataset Training Set Validation Set Size of Original
PAN Image

Size of Original
MS Images

QuickBird 2187 546 16,251 × 16,004 4063 × 4001 × 4
GaoFen-1 2779 694 18,192 × 18,000 4548 × 4500 × 4

WorldView-2 1603 400 16,384 × 16,384 4096 × 4096 × 4

To facilitate training and testing, we cropped the images of all three datasets to the
same size, as shown in Table 2. To reduce training time, we use images with a size of 64× 64
for training. To show more details of the fused image, we use images with a size of 256× 256
for testing and evaluation indices with reference assessment in comparative experiments.
To verify the robustness of the model on real experiments and to demonstrate the variability
of different methods for spectral and spatial enhancement, we use images with sizes of
1024 × 1024 for real experiments and non-referenced evaluation index assessment.

Table 2. Size of PAN image, MS images, and GT images for GaoFen-1, QuickBird, and WorldView-2.

Dataset PAN MS GT

QuickBird 64 × 64 16 × 16 × 4 64 × 64 × 4
GaoFen-1 64 × 64 16 × 16 × 4 64 × 64 × 4

WorldView-2 64 × 64 16 × 16 × 4 64 × 64 × 4

4.2. Quantitative Evaluation Indices

The evaluation method can employ subjective visual evaluation as well as objective
evaluation indices. Specifically, subjective visual evaluation relies on the human eye to
make subjective judgments on the effect of fusion images. However, many objective
evaluation metrics can be used to accurately evaluate fusion results; thus, we selected five
commonly used evaluation indices with references, which are the spectral angle mapper
(SAM) [34], Erreur Relative Global Adimensionnelle de Synthèse (ERGAS) [35], correlation
coefficient (CC) [36], universal image quality index (Q) [37], and an extended version of Q
(Q2n) [38]. We have also chosen a non-referenced evaluation index, namely quality with no
reference (QNR) [39].

Specifically, SAM is an evaluation indicator that measures the spectral distortion of
the fused image compared to the reference image, which is expressed as the absolute value
of the spectral angle between the two images. The smaller SAM is, the lower the spectral
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distortion; that is, if SAM is zero, then there is no spectral distortion. ERGAS represents
the synthetic error for all bands. The smaller ERGAS is, the better the spectral quality of
the fused image over the spectral range. CC is the most widely used similarity metric
in the field of pansharpening, quantifying the proximity between the fused image and
the reference image based on a correlation function. The higher the CC, the more spatial
information present in the fused image. Q is a universal objective quality index that is
simple to calculate and is suitable for the quality assessment of various image applications:
the value of Q is −1 to 1, and the closer the value of Q is to 1, the higher quality of the
fused image. Q2n is a common quality evaluation index and global metric in the field of
pansharpening. QNR is a method for the quantitative evaluation of pansharpening images
without reference. QNR is calculated from two factors, the spectral distortion index and
the spatial distortion index, and these two indexes are based on the Q. A maximum value
of 1 is obtained for QNR when both the spatial and spectral distortions of the fused image
are zero; the formula is shown in (11):

QNR = (1− Dλ)
α · (1− DS)

β (11)

where spectral distortion and spatial distortion are quantified by Dλ and DS.

4.3. Experiments and Analysis

In this section, we present ablation experiments and comparative experiments. The
ablation experiments demonstrate the process of optimizing the proposed framework
and ultimately identifying the option with the best fusion performance. The comparative
experiments are designed to demonstrate the superiority of our proposed framework
compared to traditional methods and classical approaches of DL-based methods.

4.3.1. Ablation Experiments

To design an optimal scheme for fusion, we designed five experimental approaches
based on different input information, feature extraction networks, and loss functions. In
detail, the input can use differential information or stacked information, the loss function
can use MSE or a hybrid loss of MSE and MAE, and the feature extraction network can use
ResNet [40] or DenseNet. The experimental results are shown in Table 3, and experimental
results are plotted in Figure 6.

Table 3. Quantitative evaluation results of ablation experiments on the WorldView-2 dataset. The
values in bold represent the best results.

Method Strategies Quantitative Evaluation Indices

Differential DenseNet Hybrid Loss SAM ERGAS Q Q2n CC

1 3.5142 2.1057 0.9342 0.9309 0.96439
2

√
2.6416 1.8835 0.9432 0.9473 0.9754

3
√

2.6377 1.8916 0.9595 0.9479 0.9785
4

√ √
2.6085 1.8952 0.9456 0.9509 0.9757

5
√ √ √

2.5606 1.8755 0.9751 0.9624 0.9865

By comparing ablation experiments 1 and 2, it can be found that the differential
input is more effective in improving model performance because more spatial structure
information can be obtained from differential information, which is more obvious for the
detail enhancement of fusion results. By comparing ablation experiments 1 and 3, using
the dense network as the backbone network to extract features has a better advantage on
feature enhancement than the residual network, because the network in the dense network
is deep enough to obtain deep features and, at the same time, can reuse shallow features
to enhance feature propagation, which allows the model to perform better. By comparing
ablation experiments 4 and 5, using the hybrid loss strategy in DS-MDNP has better results
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than single loss. In Figure 6, by comparing the fused images of the ablation experiments,
DS-MDNP has the best performance in spatial detail enhancement.
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To verify the parameter settings in the mixture loss, we performed some experiments.
The experimental setup was to first select one of the parameters to be kept constant and
then change the other two parameters using Q2n, CC, and QNR as evaluation metrics.
Since the size of the first layer of the network is the same as the size of the fusion result, we
assumed that the feature contribution of the first layer is the largest, and we set the weight
of the first layer to 0.5, and the remaining 0.5 is divided into two parts and allocated to the
other two parameters. In Figure 7, the experimental results show that the model performs
best when λ1, λ2, and λ3 are set to 0.5, 0.3, and 0.2, respectively.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

better results than single loss. In Figure 6, by comparing the fused images of the ablation 
experiments, DS-MDNP has the best performance in spatial detail enhancement. 

To verify the parameter settings in the mixture loss, we performed some experi-
ments. The experimental setup was to first select one of the parameters to be kept con-
stant and then change the other two parameters using Q2n, CC, and QNR as evaluation 
metrics. Since the size of the first layer of the network is the same as the size of the fu-
sion result, we assumed that the feature contribution of the first layer is the largest, and 
we set the weight of the first layer to 0.5, and the remaining 0.5 is divided into two parts 
and allocated to the other two parameters. In Figure 7, the experimental results show 
that the model performs best when λ1, λ2, and λ3 are set to 0.5, 0.3, and 0.2, respectively. 

 
Figure 7. Line graph for mixed loss parameter validation. 

4.3.2. Comparative Experiments 
In this subsection, to demonstrate the effectiveness of DS-MDNP, we compare sev-

eral traditional MRA-based and CS-based methods and some classical CNN-based 
pansharpening methods. Specifically, these methods are IHS [3], Wavelet [8], HPF [18], 
PRACS [6], PNN [22], Fusion-Net [25], SSConv [28], and DS-MDNP. To verify the ro-
bustness of DS-MDNP, we use three datasets for our experiments, namely, QuickBird, 
GaoFen-1, and WorldView-2. For QuickBird, the experimental results with reference 
evaluation indicators are shown in Table 4, and the experimental results are shown in 
Figure 8. 

Table 4. Quantitative evaluation comparison of fusion results on the QuickBird dataset. The values 
in bold represent the best result. 

Method SAM ERGAS Q Q2n CC 
IHS 4.6574 2.6945 0.9137 0.6521 0.9141 

Wavelet 4.2887 3.4220 0.9068 0.6884 0.8771 
HPF 4.5232 2.7628 0.9134 0.6617 0.9022 

PRACS 2.7181 1.8431 0.9640 0.7682 0.9668 
PNN 2.6906 1.7205 0.9635 0.8718 0.9687 

Fusion-Net 1.7285 1.2036 0.9497 0.9172 0.9840 
SSConv 1.7875 1.2364 0.9818 0.9086 0.9825 

DS-MDNP 1.7560 1.1964 0.9834 0.9231 0.9857 

In Table 4, it is obvious to see that SAM of the traditional methods, such as IHS, 
Wavelet, and HPF, are higher, which indicates that the spectral distortion of these tradi-

Figure 7. Line graph for mixed loss parameter validation.



Remote Sens. 2022, 14, 2347 12 of 21

4.3.2. Comparative Experiments

In this subsection, to demonstrate the effectiveness of DS-MDNP, we compare several
traditional MRA-based and CS-based methods and some classical CNN-based pansharp-
ening methods. Specifically, these methods are IHS [3], Wavelet [8], HPF [18], PRACS [6],
PNN [22], Fusion-Net [25], SSConv [28], and DS-MDNP. To verify the robustness of DS-
MDNP, we use three datasets for our experiments, namely, QuickBird, GaoFen-1, and
WorldView-2. For QuickBird, the experimental results with reference evaluation indicators
are shown in Table 4, and the experimental results are shown in Figure 8.

Table 4. Quantitative evaluation comparison of fusion results on the QuickBird dataset. The values
in bold represent the best result.

Method SAM ERGAS Q Q2n CC

IHS 4.6574 2.6945 0.9137 0.6521 0.9141
Wavelet 4.2887 3.4220 0.9068 0.6884 0.8771

HPF 4.5232 2.7628 0.9134 0.6617 0.9022
PRACS 2.7181 1.8431 0.9640 0.7682 0.9668

PNN 2.6906 1.7205 0.9635 0.8718 0.9687
Fusion-Net 1.7285 1.2036 0.9497 0.9172 0.9840

SSConv 1.7875 1.2364 0.9818 0.9086 0.9825
DS-MDNP 1.7560 1.1964 0.9834 0.9231 0.9857
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In Table 4, it is obvious to see that SAM of the traditional methods, such as IHS, Wavelet,
and HPF, are higher, which indicates that the spectral distortion of these traditional methods
is more pronounced in contrast to the DL-based method, which has less spectral distortion,
while DS-MDNP and Fusion-Net have the lowest spectral distortion. For multiple band
spectral quality, ERGASs of the DL-based methods are lower than these traditional methods,
which indicates that the spectral quality of the fusion results by DL-based methods is better,
and DS-MDNP achieves the best spectral quality with a value of 1.1964, which validates
the advantages of DS-MDNP in terms of spectral retention. Finally, Q and Q2n are global
quality evaluation criteria that can objectively reflect the overall effectiveness of the fusion
results. In Table 4, we can see that the values of Q2n obtained by the DL-based methods
are all above 0.80, which indicates that the DL-based methods are more effective in the
overall evaluation than these traditional methods, and DS-MDNP is able to obtain the best
value of 0.9231. CC reflects the correlation between the fusion results and the reference
image. According to Table 4, we can see that the correlation between the fusion results and
the reference image is not very different for all methods, except for Wavelet. DS-MDNP
and Fusion-Net were able to achieve the best correlation, reaching above 0.98. In summary,
DS-MDNP is able to obtain good fusion performance for the reference evaluation. In
addition, in Figure 8, we clearly see that DL-based methods (e), (f), (g), and (h) are the
closest to reference image (i). The fused images obtained by the traditional methods are
slightly less spatially detailed.

To verify the robustness of DS-MDNP, we also experimented in GaoFen-1. In detail,
the experimental results with reference evaluation indicators are shown in Table 5, and the
experimental results are shown in Figure 9.

Table 5. Quantitative evaluation comparison of fusion results on the GaoFen-1 dataset. The values in
bold represent the best result.

Method SAM ERGAS Q Q2n CC

IHS 1.2739 1.1711 0.9438 0.6288 0.9480
Wavelet 1.3809 1.0898 0.9593 0.7231 0.9567

HPF 1.3013 1.0562 0.9638 0.7634 0.9614
PRACS 1.2743 0.9921 0.9642 0.7705 0.9645

PNN 1.1612 0.8953 0.9586 0.8486 0.9528
Fusion-Net 1.0354 0.8778 0.9577 0.8956 0.9546

SSConv 1.0315 0.7912 0.9590 0.9012 0.9551
DS-MDNP 1.0276 0.6907 0.9682 0.9240 0.9703

In Table 5, the experiments show that the values are quite different from the results
trained on QuickBird: The reason is that different datasets are collected in different scenar-
ios. The spectral information collected for the same material varies depending on various
factors such as the weather and temperature of the environment. In GaoFen-1, we can see
that SAMs for all eight methods chosen are not very different, which indicates that the
spectral losses for these fusion methods are low for GaoFen-1. In contrast, the difference
of ERGAS is large, specifically, the traditional methods have an ERGAS above 0.9, while
DL-based methods have an ERGAS below 0.9, and DS-MDNP ahieved the lowest value of
0.6907, which again demonstrates the advantage of DS-MDNP in terms of spectral reten-
tion. In addition, the fusion quality Q for each band shows that, band-by-band, DS-MDNP
fusion results are also the best among these methods. Finally, overall quality evaluation
Q2n shows that the DL-based methods generally have higher fusion quality than these
traditional methods, and DS-MDNP is the highest among the DL-based methods. Similarly
to QuickBird, the correlation coefficients for all these methods are not very different. In
Figure 9, by looking at the fusion result plots in the figure, we can clearly see that DS-MDNP
outperforms other methods in terms of texture and detail, and its fusion results are closest
to Ground Truth, which fully demonstrates that DS-MDNP has also good fusion results
in GaoFen-1.
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To verify the generalization of DS-MDNP, we also conducted a comparison experiment
on WorldView-2. Compared with the above two datasets, the WorldView-2 dataset has
obvious geometric structure and texture features of the image features; for example, river
and channel mines and water works are clearly visible. Thus, there is more information
available in this dataset for DS-MDNP. The specific experimental results are shown in
Table 6, and the experimental results are shown in Figure 10.

Table 6. Quantitative evaluation comparison of fusion results on the WorldView-2 dataset. The
values in bold represent the best result.

Method SAM ERGAS Q Q2n CC

IHS 4.7252 3.5953 0.9343 0.8487 0.9577
Wavelet 5.5041 3.7325 0.9211 0.8417 0.9500

HPF 4.7003 3.7872 0.9278 0.7992 0.9458
PRACS 4.6301 3.1958 0.9356 0.8706 0.9587

PNN 3.7531 2.9329 0.9563 0.9007 0.9708
Fusion-Net 2.6965 1.9571 0.9703 0.9559 0.9849

SSConv 2.5626 1.8764 0.9746 0.9580 0.9860
DS-MDNP 2.5606 1.8755 0.9751 0.9624 0.9865
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In Table 6, we can see that the values of Q2n are better in WorldView-2 compared
to QuickBird and GaoFen-1. The reason is that the dataset collected by WorldView-2 has
richer texture features, which also proves that the variability of different datasets also has
an impact on the training of the network. By looking at SAM and ERGAS in Table 6, it
can be seen that the spectral distortion of these traditional methods is more pronounced,
and the spectral quality is relatively poor. In Figure 10, we can see that DS-MDNP appears
sharper in the edge texture parts of roads and looks closer to GT.

We compared the times of the selected methods for experiments on the WorldView-
2 dataset, as shown in Table 7. Due to the complex design of the network structure,
a large number of feature maps are generated in the process using the improved DenseNet.
Although the number of feature maps is compressed at each transition layer, a considerable
amount of computation is inevitably required to compress these feature maps, and each
layer of the network has to output HRMS images for calculating the loss; thus, the training
time of the proposed method becomes longer. However, for testing, only desired HRMS
images are generated, eliminating the need to reconstruct the intermediate and underlying
layers of the network; therefore, the testing time is relatively short. The superiority of
DS-MDNP is further demonstrated by the fact that the proposed method maintains as
much testing speed as possible while ensuring good performance.
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Table 7. Comparison of training and testing times on WorldView-2.

Method Training Time (s) Testing Time (s)

IHS - 1.44
Wavelet - 1.17

HPF - 7.98
PRACS - 0.43

PNN 3.99 0.36
FusionNet 4.57 0.41
SS-Conv 5.52 0.30

DS-MDNP 11.14 0.38

4.3.3. Real Experiments

In practical applications, we need to fuse the original MS and PAN images. In the
actual experiments, MS and PAN images, which are not degraded, are used as input
to generate fused images using the parameters trained in the simulation experiments.
Specifically, the fusion results of WorldView-2 are shown in Figure 11, the fusion results
of QuickBird are shown in Figure 12, and the fusion results of GaoFen-1 are shown in
Figure 13.
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Figure 12. Fused images of QuickBird where (a) IHS, (b) Wavelet, (c) HPF, (d) PRACS, (e) PNN,
(f) Fusion-Net, (g) SSConv, (h) DS-MDNP, and (i) Bicubic.

In Figures 11–13 we can see that the fused results were significantly enhanced com-
pared with those obtained by Bicubic, particularly for the framed parts, and the bottom
right corner shows the framed parts with 3X magnification. In detail, the framed parts
in Figures 11 and 12 are roads, and the framed parts in Figure 13 are buildings. By com-
paring the three figures, it is noticeable that there is a significant difference in the clarity
of the datasets collected by different satellites. In our selected images, it can be seen that
WorldView-2 is clearer compared to QuickBird and GaoFen-1. Similarly, in the experimental
results of each dataset, the comparison between DL-based methods and the traditional
methods can be seen as a significant difference, and the fused results of DL-based methods
have richer texture and detailed information. Specifically, in Figure 11, in the framed part
of the fused result obtained by Wavelet and HPF, we can see that there is distortion, as the
edges are jagged for most of the amplification. In Figure 12, the colors of the fused images
obtained by these methods are different because the degree of preservation of spectral
information in each band is distinctive. In addition, the fused images obtained by Wavelet
and HPF have some blurring, which indicates the poor performance of these two methods
in QuickBird dataset.
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Fusion-Net, (g) SSConv, (h) DS-MDNP, and (i) Bicubic. 
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In addition, the fused images obtained by PNN, Fusion-Net, and SSConv are darker
in color but superior in clarity compared to traditional methods, and DS-MDNP is more
similar in color and is relatively clear in resolution relative to the results obtained by Bicubic,
which also deconstruct a better generalization of DS-MDNP. In Figure 13, we can see that
GaoFen-1 has poorer image resolutions than the other two datasets, and the fusion results
obtained by the DL-based methods perform better overall than the selected traditional
methods. In these traditional methods, the fusion results obtained by IHS have obvious
spectral distortion compared to PRACS, which is closer to the fusion results obtained by
DL-based methods. In the enlarged image, it can be found that the fused image obtained
by DS-MDNP has more obvious enhancements for texture edges; in detail, the layering
between buildings is clearer and the edge parts of each building are recognizable. Finally,
by evaluating the indicators, we use a non-reference evaluation metric for objectively
evaluating the spectral and spatial distortion of the fusion results, as shown in Table 8.
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Table 8. Quantitative evaluation comparison of real data experiments on three datasets. The values
in bold represent the best result.

Method QuickBird GaoFen-1 WorldView-2

QNR Dλ DS QNR Dλ DS QNR Dλ DS

IHS 0.8278 0.0899 0.0904 0.8032 0.0246 0.1753 0.8893 0.0267 0.0855
Wavelet 0.5479 0.3132 0.2023 0.9300 0.0153 0.0464 0.8257 0.1149 0.0628

HPF 0.8505 0.0416 0.1126 0.9320 0.0078 0.0607 0.8479 0.0580 0.0999
PRACS 0.8463 0.0472 0.1118 0.9284 0.0643 0.0507 0.8852 0.0326 0.0850

PNN 0.9235 0.0405 0.0375 0.9369 0.0260 0.0380 0.8587 0.0355 0.0785
Fusion-Net 0.9399 0.0268 0.0342 0.9504 0.0152 0.0347 0.9202 0.0271 0.0541

SSConv 0.9331 0.0337 0.0342 0.9673 0.0101 0.0227 0.9162 0.0290 0.0563
DS-MDNP 0.9455 0.0239 0.0312 0.9841 0.0044 0.0115 0.9206 0.0240 0.0501

In Table 8, we can see on the one hand that the traditional method has more spectral
and spatial distortion on the QuickBird and GaoFen-1, while the DL-based method has
an advantage in spectral and spatial preservation. On the other hand, DS-MDNP has the
best spectral and spatial retention values among these methods in terms of both spectral
retention and spatial retention. The spectral distortion of the DL-based methods is worse on
WorldView-2 than QuickBird and GaoFen-1, but in this case, DS-MDNP still ensures the best
spectral retention, which also proves that DS-MDNP has a good generalization property.

5. Discussion

Extensive experiments have been designed to verify the effectiveness of MS-MDNP.
We conducted ablation experiments using various strategies to determine the final net-
work architecture. The ablation experiments demonstrated that the best performance is
obtained when the input uses the differential strategy, the feature extraction network uses
the improved DenseNet, and loss uses hybrid loss strategy, which draws on the hybrid
attention-based residual network [41]. To validate the effectiveness of DS-MDNP, we
chose four traditional methods including IHS [3], Wavelet [8], HPF [18], and PRACS [6]
for comparison and three DL-based methods including PNN [22], Fusion-Net [25], and
SSConv [28] for comparison. By comparing the results of the comparison experiments on
the three datasets, in Figures 8–10 it is clear that DS-MDNP is more advantageous in terms
of spectral preservation and spatial detail enhancement, and it is closer to the GT image in
subjective visualization. In addition, by comparing the objective evaluation metrics [42] on
the three datasets, in Tables 4–6 DS-MDNP has optimal results both in terms of spatial and
spectral aspects. Finally, in real experiments, our method still has good robustness, the best
quality evaluation, the clearest subjective visual effects, possesses good spectral fidelity,
and DS-MDNP can have relatively fast testing speed while maintaining good accuracy;
overall, DS-MDNP has the best performance.

6. Conclusions

Deep learning techniques are increasingly applied in more fields and have achieved
impressive results. In this paper, we proposed a pansharpening method named DS-MDNP,
which obtains MS images at different levels by up-sampling operations on original MS im-
ages. A PAN image is obtained at different levels by performing down-sampling operations
on the original PAN image. Using the difference strategy, we can map the spatial informa-
tion of PAN image to each band of the MS image in different levels. These different-level
MS and PAN images can be used to generate differential images of different levels as the
input of DS-MDNP. The different layers of DS-MDNP use the same feature extraction and
reconstruction network, which is the improved DenseNet. The features at different levels
obtained by DenseNet are correlated by feedback connections, while the features extracted
from the bottom layer network are fed back to the upper layer network to make full use
of the features at different levels. The training process of different layers is controlled by
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a hybrid loss strategy to obtain more expected spatial information; finally, the spectral
information of the MS images are injected into the extracted information to obtain a fused
image with high spatial resolution and high spectral information.

In future work, a feasible solution to improve the performance of the network could be
to combine DS-MDNP with traditional methods. Additionally, a spectral feature extraction
network could be proposed for the preservation of spectral information rather than simply
injecting MS images’ spectral information. In addition, our scheme can be improved by
applying multi-level features to the fusion of hyperspectral and MS images or the fusion of
hyperspectral and PAN images.
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