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Abstract: At present, road continuity is a major challenge, and it is difficult to extract the centerline
vector of roads, especially when the road view is obstructed by trees or other structures. Most of
the existing research has focused on optimizing the available deep-learning networks. However,
the segmentation accuracy is also affected by the loss function. Currently, little research has been
published on road segmentation loss functions. To resolve this problem, an attention loss function
named GapLoss that can be combined with any segmentation network was proposed. Firstly, a
deep-learning network was used to obtain a binary prediction mask. Secondly, a vector skeleton was
extracted from the prediction mask. Thirdly, for each pixel, eight neighboring pixels with the same
value of the pixel were calculated. If the value was 1, then the pixel was identified as the endpoint.
Fourth, according to the number of endpoints within a buffered range, each pixel in the prediction
image was given a corresponding weight. Finally, the weighted average value of the cross-entropy of
all the pixels in the batch was used as the final loss function value. We employed four well-known
semantic segmentation networks to conduct comparative experiments on three large datasets. The
results showed that, compared to other loss functions, the evaluation metrics after using GapLoss
were nearly all improved. From the predicted image, the road prediction by GapLoss was more
continuous, especially at intersections and when the road was obscured from view, and the road
segmentation accuracy was improved.

Keywords: deep learning; loss function; road extraction; remote sensing image; sematic segmentation

1. Introduction

Roads are an indispensable element of human life and production activities, including
navigation, traffic management, electronic map making, urban planning, and so on. In
the field of surveying and mapping, roads are one of the main contents of geographic
information data. Manually extracting road information from remote sensing images can
meet the needs of most applications, but it is very labor-intensive, so many researchers
have studied how to automate road extraction from remote sensing images.

In the early stages, automated road extraction methods primarily used the spectral
features of remote sensing images supplemented by a morphological algorithm and then
selected the appropriate threshold to segment the road. Laptev et al. [1] extracted roads
from aerial images based on scale space and snakes. Maboudietal et al. [2] and Xue et al. [3]
analyzed the spectral characteristics of water, vegetation, bare soil, buildings, cement roads,
and asphalt roads using IKONOS satellite imagery, and while roads could be distinguished
from some features, they were difficult to distinguish from, for example, a house, due to
the spectra of roads and houses being too similar. Cai et al. [4] used a watershed algorithm
based on region merging to segment roads, but the challenge of using this algorithm was
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that the threshold was difficult to determine, and the segmentation accuracy was dependent
on the accuracy of the threshold.

Some researchers have applied machine-learning methods, such as random forest [5],
SVM [6], Markov random fields classifier methods [7–9], mean-shift-based methods [10],
and K-means clustering algorithms [11,12], to extract roads from remote sensing images,
but the success of these methods depends on artificial design features, which is yet another
challenge. Deep-learning technology has interrupted traditional research methods. Deep-
learning networks, such as UNet [13], DeepLab family [14–17], SegNet [18], PSPNet [19],
UNet++ [20], and MUNet [21], can extract features from an image and have proved to be
more accurate and reliable than traditional machine learning, so they have become the
main methods used in road segmentation research.

Many researchers have applied deep-learning technology to road segmentation using
remote sensing images. Zhong et al. [22] applied FCN to extract roads and buildings
in aerial images and achieved reliable results for the Massachusetts Roads Dataset [23].
Panboonyuen et al. [24] improved road segmentation results using a SegNet network and
an ELU activation unit. Wei et al. [25] strengthened the weight of pixels near the label using
a cross-entropy function to improve the accuracy of road recognition. Mattyus et al. [26]
used ResNet as an encoder and a fully deconvolutional network as a decoder to acquire
the topology of roads in aerial images. Gao et al. [27] proposed a multiple-feature pyramid
network, which was similar to the RSRCNN. Zhang et al. [28] proposed a deep residual
UNet to perform road extraction. Xu et al. [29] proposed a network named GL-Dense-UNet
to extract roads. D-LinkNet [30] was selected as the best network solution in the 2018 Deep-
Globe Road Extraction Challenge [31], and the second-best solution in the challenge [32]
used ResNet-34 pretrained on ImageNet as its encoder and a decoder adapted from a
“vanilla” UNet. A weakly supervised learning method for global-scale road extraction was
proposed in [33]. Wu et al. [34] used weakly labeled data to extract roads. Wang et al. [35]
proposed a coord-dense-global model (CDG) that used DenseNet, a coordconv module,
and a global attention module to construct a road map from remote sensing imagery.

The accuracy of the segmentation results is determined by both the network model and
the applied loss function [36], but there have been few achievements to provide evidence.
Cross-entropy [37] has been the most widely used loss function in semantic segmentations
of images; the other loss functions have been designed for unbalanced datasets, such as
focal loss [38], dice loss [39], Tversky loss [40], log-cosh dice loss [41], and generalized dice
loss [42], and they have not been capable of accurate road continuity, as they were not
designed for linear object recognition.

There are very few loss functions designed for road extraction. Batra et al. [43]
regarded roads as directional objects and then employed network sharing so that the
two tasks, segmentation and direction learning, could be completed simultaneously to
enhance the accuracy of road continuity. However, this process required the label to be
segmented into line-strings, and the preprocessing calculations were too labor-intensive.
In addition, the loss function they applied was integrated into their own network, which
means that it cannot be adapted to another network or to networks developed in the future.
Mosinska et al. [44] also proposed a topology-aware loss function. Instead of computing
and comparing topology, their approach used selected filters from a pretrained VGG19
network to construct the loss function. These filters preferred elongated shapes and, thus,
alleviated continuous road issues. However, this method is hard to adapt to more complex
settings with a variety of arbitrary shapes, and the loss function for this method was also
integrated into the segmentation network proposed by the authors, which means that it, too,
cannot be adapted to any other or future networks. Xiaoling Hu [45] proposed a topological
loss function. Since the Betti number is a discrete number and cannot be directly derived,
the theory of persistent topology was used to construct the loss function. Although it can be
combined with any segmentation network, its operation was resource-demanding. Deep-
learning training may involve millions of iterations that increase the time and decrease the
speed of network pretraining. Furthermore, at the initiation of training, the network likely
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may not have enough prediction results for accurate topology assessment, which relegates
this method for use only for fine-tuning already-acquired results from other methods. While
this method improved road continuity, it did not enhance road segmentation accuracy.

In this study, we propose a loss function that can be combined with any road segmen-
tation network so that both the loss function and the network can be chosen independently
based on the goals of the task. The contributions of this research are as follows:

(1) This study proposes an attention loss function named GapLoss, which is specifically
designed to address road continuity issues. It should improve road connectivity and
road segmentation simultaneously.

(2) GapLoss can be combined with any segmentation network currently available and
with those that may be developed in the future for the best results, and the calculations
are streamlined, so models can be trained on computers with older hardware.

(3) This study proposes a method that optimizes the numerical calculations to define the
endpoints of road segmentation.

(4) We compare the segmentation results of the selected segmentation network with
different loss functions on the Massachusetts Roads Dataset and the DeepGlobe Road
Extraction Dataset. Our results show that GapLoss can improve the road segmentation
of a network with known accuracy issues to surpass even networks with known
proficiency in road segmentation.

2. Materials and Methods
2.1. Massachusetts Roads Dataset and Preprocessing

An open-access remote sensing dataset named Massachusetts Roads Dataset was
used as the experimental data. The dataset was located in Massachusetts, USA, with
1108 training images, 14 validation images, 49 test images, and corresponding label images.
The data format was TIFF, the number of channels was 3, the size was 1500 × 1500 pixels,
and the spatial resolution was 1 m.

There was no validation in this experiment, so the validation images and test images
were combined into the test data, resulting in a total of 63 images. Due to the limitations
of our computer-processing ability, each image was cropped to 512 × 512 pixels, as the
value of the no-image pixels in the original data was 255; in order to maintain consistency,
the insufficient images were supplemented with 255 and, finally, saved as 24-bit JPG
images. The label images were cut according to the same method and converted into 8-bit
monochrome images, and for the convenience of loss function calculation, the label value of
road was set as 1 and the background value as 0. A total of 9972 training data and 567 test
data were obtained.

Due to the slow speed of reading raw images, the speed of model training would be
decreased. We used Python to write programs that could convert images into the TFrecord
format of TensorFlow to process the training dataset and test dataset.

In order to solve the problem of insufficient model training due to insufficient training
data, a data augmentation method was proposed [46]. However, since all of the images
were generated using the existing data and the augmented and real data had similar differ-
ences, this method did not promote generalizing the model. Therefore, some researchers
attempted a few-shot model in order to circumvent deep learning’s need for large amounts
of labeled data [47]. Compared with other remote sensing datasets, such as the ISPRS Vai-
hingen dataset, the amount of data in Massachusetts was significantly larger. In addition,
the same training and test data could exclude the differences in evaluation metrics caused
by the training data so that other researchers could compare their research results. Based
on the above factors, this paper only used the original dataset for model training.

2.2. DeepGlobe Road Dataset and Preprocessing

The dataset of the 2018 DeepGlobe Road Extraction Challenge contained 6226 training
images, 1243 validation images, and 1101 test images. These remote sensing images were
located in Thailand, India, and Indonesia, and they included cities, villages, suburbs,
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seashores, tropical rain forests, etc. However, only the training dataset had corresponding
road labels. We assigned the final 2000 of these training images as the test dataset, so the
training dataset was 4226 images. The size of each image was 1024 × 1024 pixels. The
image data format was JPG with 3 channels, and the label data format was PNG with
1 channel.

As performed on the Massachusetts Roads Dataset, each image was cropped to
512 × 512 pixels, so an original image was cropped into four images and saved as a 24-bit
JPG image. The label images were cropped according to the same method and converted
into 8-bit PNG images, and for the convenience of the loss function calculation, the label
value of road was set as 1 and the background value as 0. A total of 16,904 training data
and 8000 test data were obtained. It could be seen that, compared to other open datasets
such as the ISPRS Vaihingen dataset with only hundreds of 512 × 512-pixel images, the
amount of data in the DeepGlobe Road Extraction Dataset was very large, so it was not
augmented. We used the same programs as when processing the Massachusetts Roads
Dataset to convert the images into the TFrecord format of TensorFlow, and we processed
the training and test datasets.

2.3. Aerial Image Segmentation Dataset and Preprocessing

The aerial dataset [48] included six regions: Berlin, Chicago, Paris, Potsdam, Zurich,
and Tokyo. The images of the dataset were from Google Maps and GroundTruth for Berlin,
Chicago, Paris, Potsdam, and Zurich, including pixel-wise building, road, and background
labels from OpenStreetMap. GroundTruth for Tokyo was manually generated, including
pixel-wise building, road, and background labels. Berlin had 200 aerial images with a reso-
lution of 2610 × 2453 pixels and corresponding annotation. Chicago had 457 aerial images
with a resolution of 3328 × 2560 pixels and corresponding annotation. Paris had 625 aerial
images with a resolution of 3328 × 3072 pixels and corresponding annotation. Potsdam
had 24 aerial images with a resolution of 3296 × 3296 pixels and corresponding annotation.
Zurich had 364 aerial images with a resolution of 3072 × 2816 pixels and corresponding
annotation. Tokyo had only one aerial image with a resolution of 2500 × 2500 pixels and
corresponding annotation.

Since we only extracted roads from image in this paper, the pixel value of the road label
was set to 1, and the house and background labels were set to 0. Although the resolution of
images in the dataset was large, it was impossible to crop an image to several subimages,
such as the Massachusetts Roads Dataset and the DeepGlobe Road Dataset because, in this
way, the roads in a single image were not mesh or linear. Therefore, we resized the images
to 512 × 512 pixels directly; the annotations are also processed in the same way. Finally, the
training and test datasets were converted to TFRecord files.

2.4. GapLoss Methodology

When a general segmentation network and a loss function are used to extract roads in
remote sensing images, a major challenge is that, depending on how the network has been
trained and what the loss function considers, roads can appear disconnected, particularly
at intersections or sections beneath tree cover. The inaccuracy of road segmentation can
lead to significant problems when used in subsequent applications that rely on the accuracy
of the data.

As shown in Figure 1, Figure 1a represents the input remote sensing image, Figure 1b
represents the corresponding label, and Figure 1c is the segmentation result of the general
semantic segmentation network and cross-entropy loss function. In Figure 1c, we found
that there were many gaps in roads that should be connected. Due to the tree cover, the
segmentation network classified the pixels that should have been roads as non-roads due
to the visual interference of the trees, as shown in the blue circle of Figure 1c. Additionally,
since most of the pixels comprising roads form linear shapes, the segmentation network was
trained to judge only linear pixel shapes as roads; therefore, the road intersection shown
in the red circle of Figure 1c was ignored, as it was not linearly shaped. Furthermore, we
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could not directly predict a more accurate image using topological algorithms to eliminate
these gaps since, in reality, roads are disconnected sometimes, as shown in the green circle
of Figure 1c.
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Figure 1. Calculation diagram of GapLoss. (a) Input remote sensing image, (b) corresponding label,
(c) predicted road by deep-learning network, (d) skeleton of predicted road, (e) weight map by
buffering of endpoint, and (f) a partial enlarged view of (e). In (a–c), the blue circle is the road covered
by trees, the red circle is the road intersection, and the green circle is the unconnected road. The red
square of (e) is the range of figure (f) in figure (e). The purple pixels in (e,f) represent the buffer area
generated by the end point of the road, and the red pixels represent the overlapping area of the two
end point buffers.

The reason why a linear road may be disposed to being disconnected is due to only a
few misjudged pixels needed to indicate a break in road continuity; 10 pixels, or sometimes
even less, can indicate a break, depending on the road width and the ground resolution
of the image. As the misjudged pixels account for an insignificant portion of the whole
image, the general segmentation model and loss function cannot sufficiently capture its
features in training. However, the weight of these gap pixels in the loss function can be
increased to make the network pay more attention to these misjudged pixels. If these pixels
are indeed errors, they are then corrected during the training of deep-learning network
and decrease the loss function value, which can improve the connectivity and accuracy of
road prediction.

In order to improve the proportion of these misjudged pixels that can lead to the
disconnection of the predicted road in cross-entropy, these pixels must first be identified.
In addition, the calculation method cannot be overly complex, as that would increase the
training time and require more GPU memory, which makes it difficult, if not impossible, to
complete on computers running older hardware similar to those often found in academic
research environments.
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A way to identify the gap pixels that cause road disconnection is to use the endpoints
of road segments. Therefore, we extracted the vector line of the prediction road, as shown
in Figure 1d. Next, we determined the endpoint pixels of each line and added a buffer
range where the network should pay more attention, as shown in Figure 1e. The purple
pixels indicate where the weight would be increased. The red pixels indicate where the
two endpoints overlapped, and their weight would be doubled, as shown in the magnified
image in Figure 1f. These red pixels were farther from the predicted road than the purple
pixels and were, thus, prone to be misjudged more easily, so they needed doubled weight
to overcome the error.

The algorithm steps of GapLoss were as follows:

(1) Firstly, the predicted values of all the pixels were processed using the softmax function
to acquire cross-entropy map L; then, the predicted values were binarized to acquire
image A:

A =

{
0 y′i < 0.5
1 y′i ≥ 0.5

(1)

where yi
′ is the prediction value of the pixel i after the softmax function.

(2) The skeleton was extracted from the binarized image A, as shown in Figure 1c, and
the binarized skeleton image B was obtained, as shown in Figure 1d.

(3) Considering each pixel in image B, if there was only one pixel with a value of 1 in
the 8 neighboring pixels, then that pixel was the endpoint, the value was set as 1, the
other pixel values were set to 0, and the image was named C.

(4) Considering each pixel in image C, if there was one endpoint in the neighborhood of
9 × 9 pixels, the weight of the pixel was set as K; if there were two, the weight was
2K; if there were three, the weight was 3K, and so on. If there was no endpoint in
the neighborhood of 9 × 9 pixels, the weight of the pixel was set as 1. Therefore, we
acquired weight map W.

(5) Each pixel in weight map W was multiplied by the corresponding cross-entropy map
L, and the average was calculated to acquire the GapLoss:

GapLoss = F(W × L) (2)

where L is the cross-entropy map, F is the mean function, and W is the weight map.

The pseudo code of GapLoss is shown in Algorithm 1.

Algorithm 1: GapLoss

Input: prediction of remote image by network
Output: loss function value of GapLoss
1: Input is processed by softmax function to acquire cross-entropy map L
2: Input is binarized to acquire image A
3: Skeleton image B is obtained from A
4: Generate a zeros matrix C with the same size of B
5: for pixel in B
6: if There is only one pixel with value of 1 in the 8 neighboring pixels, pixel is endpoint
7: The corresponding pixel in C is set to 1
8: end if
9: end for
10: Generate a ones matrix W with the same size of B
11: for pixel in C
12: Obtain sum of pixel values in the 9 × 9 neighborhood as N, N is the number of endpoints

in the neighborhood buffer
13: If not N==0 then
14: Set the corresponding pixel in W to K × N, K is a super parameter
15: end if
16: end for
17: return the mean of W × L



Remote Sens. 2022, 14, 2422 7 of 20

3. Experiment and Results
3.1. Evaluation Metrics

In order to objectively verify our method, we used three evaluation metrics, including
the mean intersection-over-union (mIoU), Accuracy, and the F1 score for comparison
and analysis.

The equation for mIoU was:

mIoU =
1

N + 1

N

∑
i=0

TP
TP + FN + FP

(3)

The equation for Accuracy was:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

The equation for the F1 score was:

F1-Score =
2× Precison× Recall

Precison + Recall
(5)

where Precision and Recall were:

Precison =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where N is the number of the foreground class plus the background, and the total class
number is N + 1. In this study, N was taken as 1. TP refers to a true positive, and r is
the number of foreground pixels predicted as foreground correctly. FP is a false positive,
which indicates the number of background pixels erroneously predicted as foreground. TN
is a true negative, which indicates the number of background pixels correctly predicted
as background. FN is a false negative, which indicates the number of foreground pixels
erroneously predicted as background. Equation (3) used the background and road as
positive samples to calculate the evaluation index and then used the average value to
obtain the mIoU. The positive samples in Equations (4)–(7) were roads.

3.2. Hardware and Software

The hardware configuration of this experiment was as follows: the CPU model was
Intel i5-9400F, the memory was 16 gb, the model of the graphics card was NVIDIA GeForce
RTX 2060 super 8 gb, and the CUDA library version was 10.0.

Estimator, which is the official library of TensorFlow, was employed as a deep-learning
framework to save on coding work. The Adam Optimizer [49] algorithm was used to find
the optimal solution, and we set the learning rate at 0.0001, which was assigned as the
optimal value in previous research. In addition, in order to overcome fitting issues, L2
regularization was used in the loss function, so the total loss included GapLoss and L2, as
shown in Equation (8):

TotalLoss = GapLoss + L2
L2 = ||w||22 = ∑

i

∣∣w2
i

∣∣ }
(8)

The test dataset was evaluated per epoch. If the metrics no longer increased for
10 periods consecutively or the max epoch number was over 100, the model training
stopped immediately.
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3.3. Results and Discussion of Massachusetts Roads Dataset

The evaluation metric results of the four main segmentation networks for the test
set of the Massachusetts Roads Dataset are shown in Table 1. After using GapLoss, the
evaluation metric values of the four segmentation networks all improved compared to
those using cross-entropy.

Table 1. The results of Massachusetts Roads Dataset.

Methods mIoU Accuracy F1 Score

SegNet and Cross-Entropy 69.6 96.7 59.6
SegNet and GapLoss 71.6 96.4 63.8

UNet++ and Cross-Entropy 70.4 96.7 61.2
UNet++ and GapLoss 74.6 97.1 68.6

PSPNet and Cross-Entropy 71.2 96.7 62.8
PSPNet and GapLoss 73.8 96.9 67.4

MUNet and Cross-Entropy 71.9 96.7 64.2
MUNet and GapLoss 74.0 97.2 67.4

SegNet and UNet++, which had lower segmentation accuracy with cross-entropy,
were significantly improved after using GapLoss. UNet++ was the most improved network,
with its mIoU increased by 4.2%, its accuracy increased by 0.4%, and its F1 score increased
by 7.4%. SegNet also significantly improved, with its F1 score increased by 4.2% and its
mIoU increased by 2%; its accuracy decreased slightly by −0.3%.

PSPNet and MUNet, which had higher segmentation accuracy with cross-entropy,
were less improved after using GapLoss compared to UNet++. The mIoU of PSPNet
increased by 2.6%, its accuracy increased by 0.2%, and its F1 score increased by 4.6%.
The mIoU of MUNet increased by 2.1%, its accuracy increased by 0.5%, and its F1 score
increased by 3.2%.

Moreover, based on the results of UNet++, choosing a better loss function made a
segmentation network with lower segmentation accuracy become a network model with
better segmentation accuracy, which further confirmed that the segmentation results were
affected by both the segmentation model and the loss function and affirmed the importance
of loss function research.

As can be seen from the prediction images of the four segmentation networks for the
test dataset, the prediction results using GapLoss were improved compared to cross-entropy.
As shown in the circle in Figures 2–5, the prediction images using GapLoss showed more
continuous road, and road disconnection was significantly improved. In the middle of the
road, due to vehicles or trees covering the road in the remote sensing images, the predicted
roads using the cross-entropy loss function had less road connection accuracy compared to
the improvements using GapLoss.

At the same time, the focus of each network was different, and network with the best
segmentation accuracy may not have had the most accurate connectivity, regardless of the
loss function used, because the feature capture architecture of these networks was designed
to focus more on reducing the probability of pixel misclassification than the topology of
roads. For example, whether using cross-entropy or GapLoss, the evaluation metrics of
MUNet were better than those of PSPNet, but the connectivity of the prediction image of
PSPNet was better than that of MUNet.
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3.4. Results and Discussion of DeepGlobe Roads Dataset

In order to that verify our conclusion that GapLoss made roads more continuous
and have higher accuracy was not only applicable to the Massachusetts Roads Dataset
but was also applicable to other datasets, we also compared these network models using
the DeepGlobe Dataset. The evaluation metric results of the test set for the DeepGlobe



Remote Sens. 2022, 14, 2422 11 of 20

Dataset are shown in Table 2. After using GapLoss, the evaluation metric values of all the
segmentation networks were improved compared to those using cross-entropy.

Table 2. The results of DeepGlobe Roads Dataset.

Methods mIoU Accuracy F1 Score

SegNet and Cross-Entropy 68.8 97.1 57.8
SegNet and GapLoss 70.3 97.0 60.7

UNet++ and Cross-Entropy 68.2 96.9 56.8
UNet++ and GapLoss 72.5 97.2 64.8

PSPNet and Cross-Entropy 71.6 97.1 63.1
PSPNet and GapLoss 74.4 97.4 68.0

MUNet and Cross-Entropy 71.1 97.1 62.2
MUNet and GapLoss 75.9 97.6 70.4

As can be seen from Table 2, the network whose evaluation metrics improved the
most was MUNet. The mIoU of MUNet increased by 4.8%, its accuracy increased by 0.5%,
and its F1 score increased by 8.2%. The second was UNet++, where its mIoU increased
by 4.3%, its accuracy increased by 0.3%, and its F1 score increased by 8%. The third was
PSPNet, where its mIoU increased by 2.8%, its accuracy increased by 0.3%, and its F1 score
increased by 4.9%. The last was SegNet, where its F1 score increased by 2.9%, and its mIoU
increased by 1.5%, but its accuracy decreased by 0.1%.

These results differed from those found for the Massachusetts Roads Dataset, in which
UNet++ was the most improved network. For the DeepGlobe Dataset, MUNet was the most
improved network, but UNet++ was also the second-most improved, and the improved
value was no less than that of the Massachusetts Roads Dataset.

As evidenced by the prediction images of the four segmentation networks for the test
dataset, although road continuity was different in the prediction images for the different
segmentation networks, the prediction results using GapLoss were better than those found
using cross-entropy. As shown in Figures 6–9, the prediction images using GapLoss
had improved road continuity. Intersections were better-recognized, as indicated in the
blue circle in Figures 6–9. In the middle of the road, due to possible vehicles or trees
covering the road in the remote sensing images, the predicted road using cross-entropy
was disconnected, whereas GapLoss accurately connected the road, as shown in the red
circle in Figures 6–9.

The road continuity predicted by the MUNet network was the best one among the
four networks for the DeepGlobe Dataset. As shown in the red circle in the first row of
Figure 9, the prediction results of GapLoss were barely affected by trees covering the road.
The second-best was PSPNet, which ranked second in accuracy after using GapLoss, where
the continuity of road intersections in the prediction image was significantly improved
after using GapLoss, as shown in the blue circle in the second row of Figure 7. SegNet was
the network with the worst continuity improvement among the four networks, which was
consistent with the rankings of the evaluation metrics.

3.5. Results and Discussion of Aerial Image Segmentation Dataset

We also compared these network models with the Aerial Image Segmentation Dataset.
The evaluation metric results of the test set for the Aerial Image Segmentation Dataset
are shown in Table 3. After using GapLoss, the evaluation metric values of the all the
segmentation networks were improved compared to those using cross-entropy. At the
same time, we saw that the improvement was less than that of the first two datasets. This is
because the ground resolution of the image in this dataset was higher, so the roads were
more sparse, and the characteristics of mesh and linearity were not obvious, which led to
inaccurate endpoints when calculating with GapLoss.
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Table 3. The results of SegNet and UNet++ on Aerial Image Segmentation Dataset.

Methods mIoU Accuracy F1 Score

SegNet and Cross-Entropy 71.0 92.1 67.2
SegNet and GapLoss 72.0 92.5 68.6

UNet++ and Cross-Entropy 70.5 92.1 66.3
UNet++ and GapLoss 71.5 92.1 68.0

PSPNet and Cross-Entropy 70.3 91.8 66.2
PSPNet and GapLoss 72.4 92.2 69.5

MUNet and Cross-Entropy 71.0 92.4 66.7
MUNet and GapLoss 72.3 92.7 68.9

However, as can be seen from Table 3, the network whose evaluation metrics improved
the most was PSPNet. The mIoU of PSPNet increased by 2.1%, its accuracy increased by
0.4%, and its F1 score increased by 3.3%. The second was MUNet, where its mIoU increased
by 1.3%, its accuracy increased by 0.3%, and its F1 score increased by 2.2%. The third was
UNet++, where its mIoU increased by 1.0%, and its F1 score increased by 1.7%. The last
was SegNet, where its mIoU increased by 1.0%, its accuracy increased by 0.4%, and its F1
score increased by 1.4%.

As can be seen from the circle in Figures 10–13, as mentioned before, the ground
resolution of this dataset was higher, and the road was wider. Therefore, it could be
inaccurate in calculating the endpoint of GapLoss, and the buffer may not cover all the
road pixels that are obscured by trees or misjudged. However, the prediction results of
GapLoss were still improved, and the road continuity was better than that of cross-entropy.
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3.6. Comparison of Different K

There was a hyperparameter K found when using GapLoss. In order to verify the
influence of its value on the results and to find the optimal value of K, we used the PSPNet
network model as an example, which was considered the best network and is well-known,
and we conducted experiments on the Massachusetts Roads Dataset from K = 0 to K = 100
at intervals of 10. The results are shown in Table 4.

Table 4. The results of PSPNet with different K values on Massachusetts Roads Dataset.

K mIoU Accuracy F1 Score

10 72.7 96.9 65.4
20 72.7 96.9 65.4
30 73.3 96.9 66.5
40 73.8 97.0 67.2
50 73.6 97.0 67.0
60 73.8 96.9 67.4
70 73.4 97.0 66.6
80 73.5 96.9 66.9
90 73.4 97.0 66.7

100 73.4 97.0 66.7

As shown in Table 4, with the increase of the K value from 10, the evaluation metrics
also improved until reaching K = 60. After this point, there were no further drastic changes
in the evaluation accuracy beyond K = 60. This was because, when the K value was
relatively small, increasing the K value effectively increased the proportion of the road
gap and the intersection in the loss function of the whole image so that the network could
better capture the features of these error-prone places and ensure the predicted road was
accurately continuous with improved evaluation metrics. However, once the K value
reached an optimal number, further increases pushed the proportion of the road gap and
intersection in the loss function of the whole image too high, resulting in a decline in the
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network feature-capture abilities for other pixels, resulting in segmentation errors of other
pixels and causing the evaluation metrics to decrease slightly.

However, no matter how the K value changed, the evaluation metrics of GapLoss were
better compared to those of cross-entropy. In order to achieve the best performance, the K
value of all GapLoss calculations in this study was set as 60.

3.7. Comparison of Different Loss Functions

The loss functions proposed by Batra et al. [43] and Mosinska et al. [44] were integrated
with their network models and could not be combined with other network models. The loss
function proposed by Xiaoling Hu [45] could not run on a computer with older hardware
due to its resource-demanding calculations, and in the early stage of training, the lack
of data meant the model could not calculate the topological loss function values, so it
could only be used to fine-tune the training results of other loss functions. Therefore, we
selected the most widely used loss functions of focal loss and dice loss for comparison to
cross-entropy. Similarly, PSPNet, which is considered the best network, was selected for
experimentation with the Massachusetts Roads Dataset. The results are shown in Table 5.

Table 5. Comparison of different loss functions on Massachusetts Roads Dataset.

Methods mIoU Accuracy F1 Score

PSPNet and Cross-Entropy 71.2 96.7 62.8
PSPNet and Focal Loss 68.6 96.8 57.6
PSPNet and Dice Loss 70.6 96.4 62.0
PSPNet and GapLoss 73.8 96.9 65.4

The mIoU of focal loss was only 68.6, while the mIoU of dice loss was only 70.6,
which were not better than those of cross-entropy, but the mIoU of GapLoss was as high as
73.8, which was the best. This was due to both focal loss and dice loss being designed for
unbalanced datasets. If the roads were dense in the image, the roles of focal loss and dice
loss were confused and resulted in a decline in segmentation accuracy, as focal loss would
ignore other road pixels in favor of pixels that were difficult to classify.

3.8. Pseudo-Error

As can be seen in Figures 2–13, after using GapLoss, the road connectivity was signifi-
cantly improved, not only at the intersection but also in the middle of the road. Theoretically,
as roads account for less in an overall image, once the road connectivity is improved, the
proportion of correctly predicted pixels of the total roads should increase, and the evalu-
ation metrics should increase significantly. However, the experimental results indicated
that the evaluation metrics did not increase as much as we had anticipated. This was
attributed to the labeling accuracy of the Massachusetts Roads Dataset being low. Some
roads were not labeled due to manual error based on the predefined knowledge of the
annotator. We referred to these faults as “pseudo-errors” (i.e., the actual predictions were
correct but, as they were not labeled, they were considered as errors when calculating the
evaluation metrics).

As shown in the red circle of the first and third rows of the remote sensing images in
Figure 14, there was a road between the main road and the house, but it was not annotated
in the label. The prediction result of the cross-entropy loss function found the path, but it
was not connected with the main road, so there were a few false error pixels. However, in
the prediction results of GapLoss, the path was complete, so there were more false errors.
The second row in Figure 14 shows a more obvious example where many roads in the red
circle were not marked in the label. The annotator may have thought that it was an internal
road and should not be marked, but this is a subjective judgment. For a computer, these
pixels definitely indicate a road, and they make up a large proportion of this image and will
impact the evaluation metrics. Therefore, after using GapLoss, although the connectivity of
the road was improved and the prediction accuracy was improved, the false errors also
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increased, which lowered the accuracy. The final accuracy increase was not as evident as
what was observed in the images.
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4. Conclusions and Future Work

In this work, a loss function called GapLoss was proposed to solve the discontinuity
issues in roads extracted from remote sensing images by deep-learning networks. GapLoss
can be chosen independently from the segmentation network model chosen, as it can be
combined with any existing or future segmentation network model, so the best choice for
each can be chosen based on the proposed task. Experiments on four main segmentation
networks were performed using the Massachusetts Roads Dataset and the DeepGlobe
dataset using both cross-entropy and GapLoss. The results indicated that GapLoss greatly
improved the road connectivity, especially at intersections and when the view of the
road was obscured by trees or other structures. The road prediction by the segmentation
networks with GapLoss was also more continuous.

Based on the evaluation metrics, after using GapLoss, nearly all the evaluation metrics
of the four segmentation networks were improved. GapLoss not only improved the
connectivity of the predicted road, but also simultaneously improved the accuracy of road
prediction at the same time, which topological loss has not been able to achieve. Therefore,
GapLoss as proposed in this paper has the potential to play a significant role in the semantic
segmentation of roads in remote sensing images.
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In this experiment, we used only three bands for image segmentation. In future
research, we will examine the role of multispectral bands in remote sensing image road
segmentation. GapLoss is applicable when roads are mesh or linear. If the ground resolution
of the image is too high, the roads are wide and it is inaccurate in calculating the endpoint
of GapLoss. In this case, the buffer may not cover all the road pixels that are obscured by
trees or misjudged, and the improvement from GapLoss will not be obvious.
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