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Abstract: The Real-Time Kinematic (RTK) positioning algorithm is a promising positioning technique
that can provide real-time centimeter-level positioning precision in GNSS-friendly areas. However,
the performance of RTK can degrade in GNSS-hostile areas like urban canyons. The surrounding
buildings and trees can reflect and block the Global Navigation Satellite System (GNSS) signals,
obstructing GNSS receivers’ ability to maintain signal tracking and exacerbating the multipath effect.
A common method to assist RTK is to couple RTK with the Inertial Navigation System (INS). INS can
provide accurate short-term relative positioning results. The Extended Kalman Filter (EKF) is usually
used to couple RTK with INS, whereas the GNSS outlying observations significantly influence the
performance. The Robust Kalman Filter (RKF) is developed to offer resilience against outliers. In
this study, we design an algorithm to improve the traditional RKF. We begin by implementing the
tightly coupled RTK/INS algorithm and the conventional RKF in C++. We also introduce our specific
implementation in detail. Then, we test and analyze the performance of our codes on public datasets.
Finally, we propose a novel algorithm to improve RKF and test the improvement. We introduce the
Carrier-to-Noise Ratio (CNR) to help detect outliers that should be discarded. The results of the tests
show that our new algorithm’s accuracy is improved when compared to the traditional RKF. We
also open source the majority of our code, as we find there are few open-source projects for coupled
RTK/INS in C++. Researchers can access the codes at our GitHub.

Keywords: RTK; INS; tightly coupled; RKF; CNR

1. Introduction

Global Navigation Satellite Systems (GNSS) have developed rapidly in recent decades.
The introduction of new satellites, new signals, and multiple positioning algorithms is
constantly driving the development of precise navigation [1,2]. The Real-Time Kinematic
(RTK) technique is a representative positioning solution that is widely used to meet the
requirement for high positioning precision [3]. RTK utilizes a reference station to obtain
the Double-Differenced (DD) GNSS measurements, which significantly mitigate common
errors between the reference station and the movable receiver [4]. Furthermore, RTK
uses both the pseudo-range and carrier phase measurements to provide centimeter-level
precision [5]. The carrier phase is much more precise than the pseudo range. However,
the carrier phases are ambiguous by an unknown integer number of wavelengths, as the
phase tracking loop can only match the phase of the local and received signals within one
cycle [6]. As a result, the Ambiguity Resolution (AR) procedure plays an important role
in RTK. Only when the ambiguities in the phase are accurately resolved can RTK provide
centimeter-level precision [7]. Dual-frequency RTK and triple-frequency RTK benefit from
the combination of different signals. The wide-lane and extra-wide lane combinations
with longer wavelengths make AR more efficient [8]. Studies have proven that dual-
frequency short-baseline RTK can finish fast AR while triple-frequency signals significantly
contribute to the long-baseline RTK [9,10]. In contrast, it is difficult for single-frequency
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RTK to achieve a high correct ambiguity fixed rate, especially in dynamic conditions,
which means its performance is restricted, as the wavelength of a single signal is not long
enough [11,12]. Notably, the expansion of GNSS constellations brings more visible satellites
and better spatial geometric distribution, which greatly improves the performance of single-
frequency RTK and other GNSS positioning algorithms. The main GNSS systems include
the Global Positioning System (GPS), the China-developed Beidou Navigation Satellite
System (BDS), the European Galileo system, the Russian GLObal Navigation Satellite
System (GLONASS), and the Japanese Quasi-Zenith Satellite System (QZSS) [13]. Many
studies have proven the benefit generated by the multi constellations on the performance
of RTK, including GPS/BDS [14], GPS/Galileo [15], GPS/Galileo/BDS/QZSS [16], and
GPS/BDS/GLONASS [12]. We implement our code to process single-frequency GPS/BDS
measurements in our work. The GPS signal is L1 C/A at 1575.42 MHz whereas the BDS
signal is B1I at 1561.098 MHz.

It is stringent for the receiver to simultaneously track dual frequency or triple fre-
quency, which leads to the high cost of the geodetic-grade multifrequency receivers. In
comparison, single-frequency consumer-grade receivers offer a more comprehensive range
of applications. Receivers used in urban areas are often confronted with GNSS-hostile or
even GNSS-denied environments. The surrounding buildings, bridges, trees, and tunnels
can reflect and block the GNSS signals, causing multiple errors like the multipath effect on
the measurements and obstructing GNSS receivers’ ability to maintain signal tracking [17].
The errors in the measurements can degenerate the positioning accuracy. RTK or other
GNSS methods cannot provide positioning results when the number of satellites is insuffi-
cient. Other sensors should be introduced to overcome the issues to provide continuous
and accurate positioning results in harsh urban environments. The Inertial Navigation
System (INS) is a common auxiliary solution [18]. INS is based on an Inertial Measurement
Unit (IMU) consisting of gyroscopes and accelerometers. INS is a self-contained system
to track the position, velocity, and attitude of an object, which means INS is immune to
environmental disturbances [19]. However, INS can only output a relative solution from a
starting point that must be provided by other absolute positioning systems, such as GNSS.
Furthermore, INS is subject to error accumulation, which means a standalone INS without
external correction can drift from the ground truth rapidly [6,20]. Cameras, Lidars, and
odometers can also be used to assist RTK [21–23].

There are three main GNSS/INS integration strategies: loosely coupled (LC), tightly
coupled (TC), and deeply coupled (DC) integration [24]. The integration implementation
is usually based on an Extended Kalman Filter (EKF). In LC integration, GNSS and INS
work independently to generate their own navigation solution. Then, the GNSS outputs,
including position and velocity, are used as measurements to correct the bias of INS. The
LC integration process is easy to implement and achieves higher accuracy and integrity
when compared to standalone GNSS. However, LC integration does not contribute to
GNSS receiver acquisition and tracking. Furthermore, LC integration can only depend on
standalone INS during GNSS outages as the GNSS receiver cannot generate a navigation
solution when visible satellites are less than four [25,26]. TC integration replaces the sep-
arate filter for the GNSS receiver with a centralized EKF that simultaneously processes
INS parameters and GNSS raw observations, including pseudo range, carrier phase, and
Doppler. TC integration is optimal in preventing GNSS outages because the INS correction
is continuous even though there are less than four available satellites. However, the imple-
mentation complexity of TC integration is higher when compared to that of LC integration.
In addition, TC integration still does not improve the GNSS tracking loop [27,28]. DC
integration is developed from TC integration. DC integration uses the GNSS tracking
loop’s parameters, including code phase error and carrier frequency error estimations,
to form the measurements of the integration EKF. Then, the dynamic information from
INS is fed back to assist the tracking loop. The optimal fusion of GNSS and INS brings
higher accuracy and disturbance resistance. Furthermore, DC integration provides better
acquisition performance. However, researchers have to face the highest cost and complexity.
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What is more, DC integration is limited in commercial use because users can hardly have
access to the baseband processing systems of commercial GNSS chipsets [29–31]. Notably,
LC integration uses the GNSS positioning results for EKF, whereas TC integration and DC
integration use separate satellite measurements for EKF. TC integration and DC integration
provide the possibility to use INS to assist in excluding potential outlying satellite mea-
surements [31]. The characteristics of these three integration strategies are summarized in
Table 1 to make the comparison clearer.

Table 1. The characteristics of three integration strategies.

Characteristics
Strategies

LC TC DC

EKF measurements GNSS outputs
(position and velocity)

Raw observations
(pseudo range, phase, Doppler)

Loop parameters
(code error, phase error)

Minimum number of
available satellites Four One One

Aiding receiver No No Yes

Acquisition and tracking
performance improvement No No Yes

Disturbance resistance No No Yes

Cost and complexity Low High Highest

Possible to use INS to
exclude outlying
measurements

No Yes Yes

In this study, we focus on the TC RTK/INS integration. Many researchers have stud-
ied the improvement of the TC RTK/INS integration when compared to standalone RTK
and LC RTK/INS. The introduction of INS can help detect and repair cycle slips caused
by signal loss. INS is particularly useful in single-frequency RTK cycle slip detection
because dual-frequency RTK can fully utilize the geometry-free phase combination [32].
Commonly used INS-based methods for detecting cycle slip include innovation tests [33]
and time-differenced residuals methods [34,35]. AR also benefits from INS aiding as prior
information from INS can be used to improve the accuracy of float solution and reduce the
search space of AR [12,36]. Studies have shown INS can provide high-precision short-term
positioning results, which act as a strong constraint or “virtual measurements” to improve
the probability of correctly fixing the ambiguities [12,37]. In recent years, researchers have
continued improving the architecture of TC RTK/INS integration, which attains better
accuracy and stability of AR [38]. Furthermore, TC RTK/INS integration can utilize some
innovation-based strategies to detect and resist large errors in the measurements, which
makes the filter more robust and reliable [39]. This is because of the above-mentioned func-
tion of INS: TC RTK/INS integration can provide more accurate, reliable, and continuous
navigation solutions in urban areas [40–42].

As mentioned above, the GNSS/INS integration is usually based on EKF. The process
and observation noises are both assumed to be zero-mean multivariate Gaussian noises. The
parameters of the covariance matrices of the noise have a large influence on the performance
of EKF. However, urban areas are often GNSS-hostile areas, which leads to gross errors,
including noise and multipath effects in GNSS measurements. The GNSS faults, also
known as GNSS outliers, can cause degeneration or even divergence of the GNSS/INS
integration [43]. As a result, a reliable algorithm to deal with the GNSS outliers is important,
especially for high-precision GNSS techniques, including RTK [39]. Many researchers have
studied algorithms to down weight and exclude the outlying measurements to weaken their
effects. Test-based outlier detection and adaptively robust estimation are two main streams
to handle outlying measurements [44]. Test-based outlier detection generally utilizes
the filter’s predicted residuals or innovations to form test statistics [45]. The innovation-
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based Detection, Identification, and Adaptation (DIA) technique is representative and has
been widely used in GNSS/INS integration [46,47]. The adaptation procedure in DIA
means eliminating the state’s bias caused by the identified outlier. DIA and the GNSS
receiver autonomous integrity monitoring (RAIM) have a strong connection. Many RAIM
algorithms are developed from DIA, such as eRAIM [48]. The adaptively robust estimation
methods aim to make the state estimations insensitive to outliers [44]. These methods
generally adjust the noises’ covariance matrices to meet the actual situation. The Kalman
filter based on the robust estimation can be called RKF. The Sage-Husa filter uses the
time-varying noise statistical estimator to adjust the process noise and the observation
noise, which is widely used in GNSS/INS integration [49,50]. Many researchers introduce
the M-estimation based on the Bayesian estimation and the principle of equivalent weight
to make their filters more robust [51]. These filters utilize the covariance inflation factor to
inflate the noise covariance matrix parameters corresponding to the possible measurement
outliers [52]. The classic equivalent weight functions include Huber, Tukey, and IGG-III,
which are both widely used in GNSS/INS integration [53,54]. Some adaptively robust filters
simultaneously use an adaptive factor to inflate the covariance matrix of the predicted
states, which can weaken the effects of the state modeling error [55]. Notably, a problem
called excessive robustness can happen in these robust filters. Only when the gross errors
contaminate the measurements should the covariance of the corresponding measurement
be adjusted. However, conventional robust filters cannot identify whether faults happen
in the state data or the measurements contain gross errors. The integration can perform
worse if the state data causes the detection anomaly, but the robust filter still magnifies the
measurement noise covariance [56,57]. Some algorithms are proposed to deal with this issue,
including Non-Holonomic Constraint (NHC)-aiding [43,57] and two-step filtering [58,59].
Furthermore, many researchers propose robust GNSS/INS integration algorithms based
on different filters, including the Unscented Kalman Filter (UKF)[24], the Cubature Kalman
Filter (CKF) [56], the strong tracking square-root Kalman filter [60], and the federated
filter [61].

There are many excellent open-source GNSS and GNSS/INS projects. RTKLIB is a
well-known and representative open-source software for calculating high-precision posi-
tioning results [62]. RTKLIB supports real-time mode (RTK) and post-processing mode,
also known as PPK. Furthermore, RTKLIB provides algorithms for Precise Point Position-
ing, another phase-based positioning technique, which is also known as PPP. PPPLIB is
developed from RTKLIB, which focused more on the algorithms of PPP [63]. PPPLIB also
supports PPK mode and LC GNSS/INS mode. The author announces that PPPLIB will
support TC GNSS/INS mode in the future. When it comes to GNSS/INS integration,
Gongmin Yan shares many excellent codes, also known as PSINS software, on his web-
site [64]. PSINS contains Matlab and C++ codes, which significantly drives GNSS/INS
integration research. PSINS mainly concentrates on LC integration and pseudorange-based
TC integration. GINAV is a comprehensive project that combines the advantages of the
above work. GINAV provides Matlab codes and supports different integration modes,
including LC integration, pseudorange-based TC integration, PPK TC integration, and
PPP TC integration [65]. Notably, the i2nav laboratory from Wuhan University shares
an optimization-based GNSS/INS integration strategy called OB-GINS, which adopts a
brand new architecture compared to conventional integration methods [66]. As RTKLIB is
implemented in ANSI C, our previous work implemented the RTK function in C++ and
packaged these codes into a Robot Operating System (ROS) node to fit in SLAM projects
based on ROS [67]. We summarize these projects’ characteristics in Table 2 to make the
description clearer.

The following are the contributions:

(1) We improve our previous work to support GPS/BDS TC RTK/INS integration. Many
related works introduce TC RTK/INS. However, most of them do not go into much
detail about the implementation of the code. Although the TC RTK/INS integra-
tion is not rocket science, the implementation difficulties are easily underestimated,
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especially for the teams and labs just entering the field. This study introduces our
implementations in detail and gives some derivations of key issues. We also open
source our codes to facilitate the work of other researchers. Our codes are in C++
and are based on RTKLIB, PSINS, and GINAV. As mentioned above, GINAV is im-
plemented in Matlab. We believe our C++ implementation can be more suitable for
some engineering applications. Furthermore, GINAV aims to meet the researcher’s
requirements for PPK. GINAV imports all the GNSS measurements and IMU data si-
multaneously when it comes to the input. We let the observations enter the integration
sequentially by timestamp, approaching the real-time operation.

(2) We propose a novel algorithm to improve RKF and test the improvement. We intro-
duce the Cignal-to-Noise Ratio (CNR) to help detect outliers that should be discarded.
We use CNR to decide whether a potential outlier should be maintained for a while
to resist excessive robustness. The algorithm’s performance is tested on open-source
datasets. The test shows that our algorithm’s positioning performance is improved
compared to that of conventional RKF.

Table 2. The characteristics of open-source projects.

Projects
Characteristics Field Frame Language

RTKLIB GNSS (RTK and PPP) EKF C

PPPLIB GNSS (RTK and PPP)
GNSS/INS (LC) EKF C/C++

PSINS GNSS/INS (LC and
range-based TC) EKF Matlab/C++

GINAV GNSS/INS (LC, range-based TC,
PPK TC, PPP TC) EKF Matlab

OB-GINS GNSS/INS (LC) Optimization C++

The remainder of the study is structured as follows: Section 2 discusses the TC
RTK/INS algorithm, the details of the implementation, and the novel algorithm to assist
RKF. Next, Section 3 describes the open-source public datasets, followed by Section 4,
which presents the results of the experiments. Then, Section 5 discusses and summarizes
the results. Finally, Section 6 introduces conclusions and future work.

2. Materials and Methods

The TC RTK/INS integration is based on an EKF consisting of two steps: prediction
and update. The EKF provides floating ambiguity solutions. Readers can refer to [68]
for more details about EKF. The lambda algorithm [69] is then used to search for integer
ambiguity solutions. As RTK is a differential positioning technique, we first introduce the
Single Difference (SD) and Double Difference (DD). Next, we describe the prediction step
and the update step. Then, we introduce some key issues regarding the achievement of the
fixed solution, followed by a comprehensive description of the TC RTK/INS architecture.
Finally, we provide details about our novel algorithm to assist RKF.

2.1. SD and DD

Figure 1 shows how to obtain the SD and DD measurements [6,70].
In Figure 1a, o denotes the unit Line-Of-Sight (LOS) vector from a specific receiver

to a specific satellite. In Figure 1, ρ denotes the pseudo range between a receiver and a
satellite. The carrier phase measurements are denoted by φ. Equations (1) and (2) show the
formulation of the pseudo range and the carrier phase, respectively:

ρ = r + τiono + τtropo + c(ζrec − ζsat) + ωρ, (1)
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φ = λ−1[r− τiono + τtropo + c(ζrec − ζsat)] + N + ωφ. (2)

In Equations (1) and (2), r represents the geometric distance between the receiver
and the satellite in meters; λ denotes the wavelength; ω with different subscripts are
measurement noise and unmodelled error in different measurements; the ionospheric delay
and the tropospheric delay are denoted by τiono and τtropo, respectively; ζrec and ζsat refer
to the clock bias of receiver and satellite, respectively; and c stands for the speed of light in
meters per second. We use N to represent this integer ambiguity.

(a) (b)

Figure 1. SD measurements and DD measurements. (a) Two receivers track the signals of two
satellites. (b) Steps to calculate SD measurements and DD measurements.

Figure 1b uses ∆ρ and ∆φ to denote the SD pseudo range and the SD carrier phase,
respectively. Figure 1b shows that SD measurements remove the effect caused by the
satellite clock bias. When used in short-baseline RTK, the SD technique eliminates most
ionospheric and tropospheric delays. DD pseudo range and the DD carrier phase are
denoted by ∇∆ρ and ∇∆φ, respectively. DD measurements eliminate the influence of the
receiver clock bias. In short-baseline RTK, the DD pseudo-range and DD carrier phase are
represented in meters as Equations (3) and (4) show:

∇∆ρ = ∇∆r +∇∆ωρ, (3)

∇∆φ = λ−1∇∆r +∇∆N +∇∆ωφ, (4)

where ∇∆(·) refers to the DD operator.

2.2. The Prediction Step of the TC RTK/INS Integration
2.2.1. The State Vector

The state vector can be divided into states related to INS and states related to GNSS.
When it comes to INS, we choose the error states of INS to form TC integration’s state vector.
The definition of the error states is vital as the feedback procedure and the fixing procedure
depend on it. The INS states include the attitude represented in the rotation matrix Cn

b , the
velocity in the navigation frame vn, the position in the geographic coordinate system p, the
gyroscope bias in the body frame εb, and the accelerometer bias in the body frame ∇b. The
body frame is defined as “Right-Front-Up,” whereas the navigation frame is defined as
“East-North-Up.” The error states’ definition in our implementation is the same as that in
PSINS, which is shown in Equation (5):
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Cn
n′ = Cn

b Cb
n′ ,

δvn = vn
est − vn

true,

δp = pest − ptrue,

δεb = εb
true − εb

est,

δ∇b = ∇b
true −∇b

est,

(5)

where “est” is used to describe the estimation, whereas “true” describes the true value; n
and b denote the navigation frame and the body frame, respectively; n′ denotes a frame
corresponding to the attitude estimation; δ(·) describes the state error. We generally use ϕ
to denote the attitude error. The relationship between ϕ and Cn

n′ is shown in Equation (6):

Cn
n′ ≈ I +ϕ×, (6)

where the operator× produces the cross-product matrix of a vector.
When it comes to GNSS, we choose the SD ambiguity to form the TC integration’s

state vector. Accordingly, the state vector of TC RTK/INS integration is formulated as
Equation (7) shows:

xk =



ϕ
δvn

δp
δεb

δ∇b

κ

, (7)

where κ refers to the SD ambiguity vector, including multi-GNSS and multi-frequency SD
ambiguity. In our implementation, κ contains GPS/BDS single-frequency SD ambiguity. We
can obtain the state transition matrix Fk

k−1 based on the discretization of the state differential
equation, as Equation (8) shows:

ẋ(t) = A(t)x(t) + ω,

Fk
k−1 ≈ I + A(t)∆t.

(8)

For more details about the INS state error differential equation, readers can refer
to [24,71].

2.2.2. The Covariance Matrix of the Process Noise

The INS process noise is related to the IMU measurement model. We refer to Kalibr to
set the IMU noise model [72]. The model contains two kinds of errors: an additive noise
term that fluctuates very quickly, also known as “white noise,” and a slowly varying sensor
bias, also known as “the random walk.” We use σ with different subscripts to denote the
noise density of corresponding sensor errors, and the covariance matrix of the INS process
noise can be formulated as Equation (9) shows:

QINS =


σ1,gyro I3×3 O3×3 O3×3 O3×3 O3×3

O3×3 σ1,acc I3×3 O3×3 O3×3 O3×3
O3×3 O3×3 O3×3 O3×3 O3×3
O3×3 O3×3 O3×3 σ2,gyro I3×3 O3×3
O3×3 O3×3 O3×3 O3×3 σ2,acc I3×3

, (9)

where σ with subscripts “1” and “2” denote the strength of the white noise and the ran-
dom walk, respectively; O with different subscripts denote zero matrices with different
dimensions. These parameters can be obtained from the datasheet and the Allan Variance
analysis [73].
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GINAV models the SD ambiguity as a random walk process for GNSS process
noise [71]. In our implementation, we directly set the parameters in the SD ambigu-
ity noise covariance matrix to zero as RTKLIB does [74]. In this case, the covariance matrix
of TC integration can be formulated as shown in Equation (10):

Q =

[
QINS O15×m

Om×15 Om×m

]
, (10)

where m refers to the dimension of the SD ambiguity, which means the number of available
satellites is m.

2.3. The Update Step of the TC RTK/INS Integration
2.3.1. The Measurement Vector and the Observation Matrix

As we process (GPS/BDS) dual systems, we should choose two reference satellites to
form DD measurements. Each system has its own time reference and frequency. Suppose we
choose only one reference satellite for different systems. In that case, the relative hardware
delays between systems will be introduced into the measurements, which means the DD
ambiguity cannot be fixed as an integer. The relative hardware delays can magnify the
complexity in AR and degrade the positioning accuracy [75]. For simplicity, the formulas
in this section are in the form of a single system.

We use the notation Sj to denote the jth satellite, and we assume S1 to be the reference
satellite. Equations (3) and (4) show the formulation of DD measurements. It is difficult to
obtain the true DD distance∇∆r in practice. In the TC RTK/INS integration, we can obtain
the nominal DD distance∇∆r̃ based on the position of INS and satellites. The measurement
vector of the TC RTK/INS integration can be formulated as Equation (11) shows:

y =



∇∆φS1,S2 −∇∆r̃S1,S2

∇∆φS1,S3 −∇∆r̃S1,S3
...

∇∆φS1,Sm −∇∆r̃S1,Sm

∇∆ρS1,S2 −∇∆r̃S1,S2

∇∆ρS1,S3 −∇∆r̃S1,S3
...

∇∆ρS1,Sm −∇∆r̃S1,Sm


. (11)

The observation matrix is formulated as Equation (12) shows:

H =

[
DWG O(m−1)×3 DW L O(m−1)×6 λ · D
DWG O(m−1)×3 DW L O(m−1)×6 O(m−1)×m

]
. (12)

In Equation (12), D is the SD transition matrix, as shown in Equation (13):

D =


1 −1 0 . . . 0
1 0 −1 . . . 0
...

...
...

. . .
...

1 0 0 . . . −1


(m−1)×m

. (13)

W consists of LOS vectors for different satellites, as Equation (14) shows:

W =


oS1

T

oS2
T

...
oSm

T


m×3

. (14)
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As mentioned in Section 2.3.1, the INS position is represented by latitude, longitude,
and height in our implementation. However, the DD distance is calculated in the Earth-
Centered and Earth-Fixed (ECEF) coordinate. In Equation (12), G is a transformation matrix
to transform the position error in the geographic coordinate to that in ECEF. In practice, the
IMU cannot be installed at the same place as the GNSS antenna phase center, which causes
the lever-arm offset. In Equation (12), L denotes the lever-arm correction matrix. Many
articles neglect the derivation of the observation matrix of the TC RTK/INS integration.
We provide our derivation in Appendix A for the readers interested in it.

2.3.2. The Covariance Matrix of the Observation Noise

A low-elevation satellite can provide measurements with a lot of noise. We adopt the
elevation-dependent weight model to determine the noise density for GNSS measurements,
as Equation (15) shows [76]:

σ2
ZD,ρ = α2

ρ +
β2

ρ

(sinγ)2 ,

σ2
ZD,φ = α2

φ +
β2

φ

(sinγ)2 .

(15)

In Equation (15), the subscript “ZD” means the measurements are undifferenced. γ
denotes the satellite elevation. α and β with different subscripts refer to the empirical
coefficients for pseudo range and carrier phase, respectively. In general, the coefficients for
the pseudo range should be bigger than those for the carrier phase. Assuming all of the
undifferenced measurements are independent, we can obtain the noise covariance matrix
for the undifferenced measurements, as Equation (16) shows:

RZD =



σ2
ZD,ρ,S1

. . .
σ2

ZD,ρ,Sm
σ2

ZD,φ,S1

. . .
σ2

ZD,φ,Sm


, (16)

where RZD is a diagonal matrix.
The SD measurements eliminate the satellite clock bias at the cost of increased noise.

When it comes to the short-line differential positioning, we can set the noise variance of the
SD measurements to twice the noise variance of the undifferenced measurements of the
user receiver, as Equation (17) shows:

RSD =

[
RSD,ρ

RSD,φ

]

=



2σ2
ZD,ρ,S1

. . .
2σ2

ZD,ρ,Sm
2σ2

ZD,φ,S1

. . .
2σ2

ZD,φ,Sm


,

(17)

where RSD is a diagonal matrix.
The DD measurements suffer more noise when compared to the SD measurements.

The noise covariance matrix for the DD measurements, also known as the observation
noise covariance matrix of the TC RTK/INS integration, can be formulated as Equation (18)
shows:
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R =

[
DRSD,φDT O(m−1)×(m−1)

O(m−1)×(m−1) DRSD,ρDT

]
. (18)

Notably, R is no longer a diagonal matrix, as the different DD measurements are
correlated.

2.3.3. The IGG-III Model

The GNSS measurements are susceptible to multipath errors in urban areas, especially
for the pseudo range. In the TC RTK/INS integration, the gross errors in the pseudo
range can bias the float ambiguity estimation, which will degrade the performance of AR.
Considering the resistance to the measurement outliers, we use the IGG-III model to inflate
the components in the measurement noise covariance matrix [39,53,77].

The IGG-III model is based on the innovation test. The innovation vector s in EKF can
be defined as Equation (19) shows:

sk = yk − h(x̂−k ), (19)

where yk denotes the measurement vector; x̂−k refers to the prior estimation at the kth epoch;
h(·) represents the measurement function.

In the absence of outliers, the innovation vector should be normally distributed with
a mean of zero.The IGG-III model uses the innovation vector and the corresponding
covariance to calculate the normalized innovation and determine the inflation factor. The
νth component of the normalized innovation vector at the kth epoch, s̃k,ν, can be calculated
as Equation (20) shows:

s̃k,ν =
sk,ν√

(HkP̂−k Hk
T + Rk)ν,ν

, (20)

where sk,ν denotes the νth component of the innovation vector at the kth epoch; the subscript
“ν, ν” refers to the component at the νth row and the νth column.

The inflation factor can be formulated as Equation (21) shows:

ηνν =


1, |s̃k,ν| ≤ ξIGG,0

s̃k,ν
ξIGG,0

(
ξIGG,1−ξIGG,0
ξIGG,1−|s̃k,ν |

)2, ξIGG,0 < |s̃k,ν| < ξIGG,1

∞, |s̃k,ν| ≥ ξIGG,1

, (21)

where ξIGG,0 and ξIGG,1 are empirical thresholds.
In Equation (21), the first case means the corresponding measurement is normal. The

second case means the weight of the corresponding measurement should be shrunk. The
third case means a significant gross error has been added to the measurement, and the
measurement should be discarded.

As we mentioned in Section 2.3.2, the DD measurements are correlated. Considering
the correlation, we can calculate the inflation factor related to the non-diagonal components
of R, as Equation (22) shows:

ηνµ =
√

ηννηµµ. (22)

Finally, we multiply the inflation factor with the corresponding components in R to
resist the outliers. Specifically, we assume the dimension of s is w. The corresponding R
is a matrix with w rows and w columns. We use σ with different subscripts to denote the
elements in R. This is to say, σνµ refers to the component at the νth row and the µth column.
In this case, R can be formulated as Equation (23) shows:
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R =



σ11 . . . σ1ν . . . σ1w
...

...
...

...
σν1 . . . σνν . . . σνw

...
...

...
...

σw1 . . . σwν . . . σww

. (23)

The inflation factor will be combined with the corresponding components in R to
obtain R as Equation (24) shows:

R =



η11σ11 . . . η1νσ1ν . . . η1wσ1w
...

...
...

...
ην1σν1 . . . ηννσνν . . . ηνwσνw

...
...

...
...

ηw1σw1 . . . ηwνσwν . . . ηwwσww

. (24)

R will replace R to participate in the update step of EKF to reduce the influence caused
by the outliers. The effect of the multipath on pseudo range is much higher than that on
the carrier phase [6], which means gross errors frequently appear in the pseudo-range
measurements. As a result, we only change the range-related components in R, as GINAV
does.

2.4. The Fixed Solution

The lambda algorithm is used to search for integer ambiguity solutions after EKF
provides the float solution. This section will introduce how to obtain the corresponding INS
solution based on the integer ambiguity solution, as many related articles do not introduce
the details.

We use χ to denote a vector containing the INS states and the DD ambiguity, as
Equation (25) shows:

χ =

[
χINS

χDD

]

=



ξ
vn

p
εb

∇b

Dκ

,
(25)

where ξ refers to the INS attitude.
Notably, the INS-related components in χ are not the same as those in Equation (7).

The former reflects the INS states, whereas the latter reflects the states’ error. We use M to
denote the covariance matrix of χ as shown in Equation (26):

M =

[
MINS MINS,DD

MDD,INS MDD

]
. (26)

We use the notation χ̂DD and χ̌DD to denote the float solution and the fixed solution,
respectively. According to [69], the fixed INS solution χ̌INScan be calculated based on the
float INS solution χ̂INS , as Equation (27) shows:

χ̌INS = χ̂INS −MINS,DD M−1
DD

(χ̂DD − χ̌DD),

M̌INS = M̂INS −MINS,DD M−1
DD

MT
INS,DD

.
(27)
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Equation (27) tells us we should prepare the five values on the right of the equal sign
for the fixed INS solution. It is critical to introduce how to prepare the five values. χ̂INS

denotes the INS states that are corrected by the estimated error states given by EKF. The
other four values on the right of the minus form a correction. We substract the correction
from χ̂INS , the float solution, to obtain χ̌INS , the fixed solution. Here, we call the correction a
“fixed correction.” χ̂DD denotes the DD ambiguity states. We can calculate χ̂DD based on the
transition matrix D and the SD ambiguity states estimated by EKF, as Equation (28) shows:

χ̂DD = Dκ̂. (28)

χ̂INS and χ̂DD are both related to EKF; they are the float solution for the TC RTK/INS
integration. The lambda algorithm will be used following the EKF process. The lambda
algorithm searches for the appropriate integer around the float DD ambiguity, which means
χ̌DD , the fixed DD ambiguity solution, is provided by the lambda algorithm. The covariance
matrix M derives from the posterior estimation covariance matrix P̂ in EKF. Notably, the
EKF state vector consists of the INS states’ error and the SD ambiguity, whereas χ contains
the INS states and the DD ambiguity. P̂ provides the covariance estimation of the INS states’
error, whereas M reflects the covariance of the INS states. The inconsistency can result in a
difference between the corresponding parts of M and P̂. We should calculate the proper M
based on P̂. In contrast, P̂ provides the covariance estimation of the SD ambiguity states,
which means we can focus on the inconsistency caused by INS. We can calculate MDD

based on the transition matrix D and the part corresponding to the SD ambiguity in P̂, as
Equation (29) shows:

MDD = DP̂κκ DT. (29)

When it comes to MINS,DD , let us take vn as an example. The covariance matrix that
reflects the relationship between vn and the SD ambiguity vector κ can be formulated as
Equation (30) shows:

Mv̂κ̂ = E[(v̂n − E(v̂n))(κ̂− E(κ̂))T], (30)

where the notation E denotes a function to calculate the mean value.
v̂n is the posterior estimation corresponding with the corrected INS velocity, which

helps us obtain Equation (31):

v̂n − E(v̂n) = v̂n
est − δvn − E(v̂n

est − δvn)

= −δvn.
(31)

The covariance matrix that reflects the relationship between δvn and the SD ambiguity
κ can be formulated as Equation (32) shows:

P̂v̂κ̂ = E[(δv̂n − E(δv̂n))(κ̂− E(κ̂))T]

= E[(δv̂n)(κ̂− E(κ̂))T]

= −Mv̂κ̂.

(32)

Equation (32) builds the connection between Mv̂κ̂ and P̂. Readers can understand
this equation in the following way. Assume we directly set Mv̂κ̂ as P̂v̂κ̂. The SD to DD
transition will not change the positive or negative nature of the value. We can calculate
the fixed correction for velocity following Equation (27). As we neglect the inconsistency
between Mv̂κ̂ and P̂v̂κ̂, we should compensate for the inconsistency when we calculate the
fixed solution based on the float solution. Specifically, we can not directly subtract the fixed
correction from the float velocity solution, as Equation (27) shows. Instead, we should add
the fixed correction to the float velocity solution to obtain the fixed velocity solution.
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2.5. The TC RTK/INS Integration Architecture

This section describes the TC RTK/INS integration architecture comprehensively. In
addition to what we have described above, the INS mechanization and the initial alignment
are also important parts of the TC RTK/INS integration. The INS mechanization is a
procedure that converts the measurements from the IMU into the position, velocity, and
attitude information in the navigation frame [20]. The EKF measurements in the TC
RTK/INS integration are calculated based on the INS mechanization results. The states’
errors estimated by the TC RTK/INS integration will be fed back to the INS mechanization
to suppress the long-term drift. In our implementation, the INS mechanization operates
at the same frequency as the prediction step, whereas the update step operates lower.
The initial alignment, which refers to the attitude initialization, aims to obtain the rotation
matrix between the body frame and the navigation frame [78]. The TC RTK/INS integration
should operate when the initial alignment has been completed. Readers can refer to the
documents of PSINS for more details on the INS mechanization and the initial alignment.
Notably, when it comes to the outputs, there are three cases. The INS mechanization results
will be directly output when there are no valid GNSS measurements. Otherwise, the states’
errors will be estimated by EKF and fed back to the INS mechanization, which generates
the float solution. The corresponding fixed INS solution will be output if the ambiguity can
be correctly resolved. Table 3 shows these three cases.

Table 3. The outputs cases.

Outputs
Situation Valid GNSS Measurements AR Generation

Fixed Solution Yes Yes Feedback to the float solution

Float Solution Yes No EKF estimation and
feedback to the INS solution

INS Solution No No The INS mechanization

Figure 2 illustrates the overview of the TC RTK/INS integration architecture.

Figure 2. The overview of the TC RTK/INS integration architecture.
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2.6. Modified RKF

This section introduces our proposed algorithm that assists RKF. We use the Modified
RKF (MRKF) to denote our algorithm to distinguish the traditional IGG-based RKF. The
measurements, along with much noise or multipath error, usually provide low CNR. As
the multipath effect generally depends on the environment around the receiver, the fault
caused by the multipath effect can persist for some epochs. Excessive robustness can
happen when RKF incorrectly excludes the measurements that should be retained. We use
CNR to decide whether the detected potential outliers can be maintained for a while or not.
Specifically, we set two thresholds, ξCNR,0 and ξCNR,1 , to classify measurements with different
CNR. If a detected outlier’s CNR is smaller than ξCNR,0 , we discard the measurements
immediately as RKF does. If a detected outlier’s CNR is between ξCNR,0 and ξCNR,1 , we
maintain the measurements for a epoch. The corresponding measurement will be discarded
if it is identified as an outlier at the next epoch. If a detected outlier’s CNR exceeds ξCNR,1 ,
we maintain the measurements for two epochs. Notably, the corresponding components
in R will be inflated during the maintaining epochs to downweight the measurements.
ξCNR,0 can be set in a range from 35 decibels-Hz (dBHz) to 40 dBHz, whereas ξCNR,1 can be
set as 45 dBHz. ξCNR,0 and ξCNR,1 are set based on our experience. Ref. [79] points out that
the dynamic condition and signal strength can determine the true tracking performance.
This literature analyzes the relationship between the tracking threshold and the dominant
error sources. This literature has carried out many simulations with ideal conditions and
concluded that if a measurement’s CNR is lower than 32dBHz, the Phase-Locked Loop
(PLL) error will exceed the 1-sigma tracking threshold, degrading the tracking performance.
We set ξCNR,0 to be bigger than 32 dBHz for two reasons. On the one hand, the simulation
condition in [79] is ideal. On the other hand, we want to minimize the probability and
impact of the wrong retention. When it comes to ξCNR,1 , a measurement with 45 dBHz
CNR can be considered a strong signal of good quality. As ξCNR,1 decides whether a
potential outlier can be maintained for two epochs, we set it as a high value to reduce the
wrong retention. Notably, maintaining a measurement for one or two epochs can also be
considered thresholds for our algorithm. The epoch here means the time interval between
two update steps in the TC RTK/INS integration. We choose a short time for maintenance
because the wrong maintenance for a long time can degrade the positioning performance
significantly.

Considering that some high-CNR signals can also be superimposed with gross errors,
we add some constraints to decide when CNR assistance should be used. If all the DD
pseudo-range measurements are identified as outliers, we think the effects of gross errors
are significant, and the quality of the signals is poor. In this case, we will not use the CNR-
based classification to assist RKF. The DD measurements are calculated separately for the
different constellations in our implementation. If all the DD pseudo-range measurements
in one constellation are identified as outliers, while no DD pseudo-range measurements in
the other constellation are identified as outliers, we believe that one of the constellations
provides a very poor quality signal. In this case, we will not use the CNR-based classifica-
tion to assist RKF. We use these constraints to reduce the probability of incorrectly retaining
true outliers. The CNR-based classification and the constraints form MRKF. Figure 3 shows
the MRKF architecture.
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(a) The CNR-based classification (b) The constraints

Figure 3. The MRKF architecture.

3. Description of the Datasets

We always need an accurate and reliable reference trajectory to verify our algorithms.
The TC RTK/INS researchers generally adopt a navigation product containing a multi-
frequency receiver and a tactical-grade IMU to collect reliable measurements. After that,
some commercial post-processing software like NovAtel’s Waypoint Inertial Explorer [80]
is used to provide a reference trajectory to evaluate the improvement of the novel algo-
rithm [36,39,57]. Unfortunately, our laboratory currently lacks the appropriate specialist
equipment and commercial software. As a result, we turn to a public dataset provided by
Dr. Hsu, Li-Ta, and his team from Hong Kong Polytechnique University [81]. Dr. Li-Ta and
his colleagues collect measurements of multi-sensors in Tokyo. They use the Trimble NetR9
to collect the GNSS measurements at 10 Hz and the Tamagawa-seiki TAG264 to collect the
IMU measurements at 50 Hz. The ground truth is provided by an Applanix POS LV620
GNSS/INS product. Dr. Li-Ta pointed out that the datasets are collected in harsh urban
canyons, which makes the GNSS datasets challenging to process. Furthermore, the team
has not provided extrinsic parameters between sensors, which hinders us from obtaining
an accurate value of the lever-arm offset. In the relevant experiments in this article, we set
the lever-arm offset parameters as zero. This approach is expedient, which can degrade the
performance of the high-accuracy positioning. The dataset contains two subsets collected
in Shinjuku and Odaiba, respectively. We evaluate our algorithm on both subsets. Figure 4
illustrates the reference trajectories:

(a) The Odaiba dataset

Figure 4. Cont.
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(b) The Shinjuku dataset

Figure 4. The reference trajectories of the datasets.

4. Results
4.1. The Solution Visualization

In our implementation, the positioning results can be visualized in real time as the
program runs. Users can monitor the program’s operation with the solution visualization.
Our implementation is based on C++, which does not have the rich visualizing tools of
Matlab and Python. Considering the convenience and versatility, we import Matplotlib-cpp,
a plotting library wrapping Python visualization tools, into our codes to provide real-time
result visualization [82]. Matplotlib-cpp is based on Matplotlib, a comprehensive library for
visualizations in Python [83]. Notably, the solution visualization can slow down the speed
of the program in processing data. Users can control whether the solution visualization
is turned on or off by changing the corresponding parameters in the configuration file.
Furthermore, users can also control the program to store solution results, including the
position, velocity, and attitude, in a text file for post-processing visualization. Figure 5
illustrates the real-time solution visualization:

(a) The horizontal positioning results (Odaiba) (b) The vertical positioning results (Odaiba)

Figure 5. Cont.



Remote Sens. 2022, 14, 2449 17 of 34

(c) The horizontal positioning results (Shinjuku) (d) The vertical positioning results (Shinjuku)

Figure 5. The solution visualization.

4.2. The Performance of the TC RTK/INS Integration without the Outlier Resistance

This section introduces the performance of the TC RTK/INS integration without
the outlier resistance. Firstly, we present the availability of GNSS measurements. We
compare the DD measurements with the INS-based DD ranges to calculate the residuals
in our implementation. The corresponding DD measurement will be discarded if the
residuals exceed the empirical threshold. Both RTKLIB and GINAV adopt the same strategy
to preprocess the measurements. Figure 6 illustrates the number of preprocessed DD
measurements, which equals the dimension of the measurement vector of EKF. As a time-
dependent plot over 1000 epochs does not reveal much, we use a histogram to visualize
the statistical data. Figure 6 is a histogram that shows the distribution of the occurrence of
the measurement number over two datasets. The X-axis in Figure 6 reflects the number of
measurements, whereas the Y-axis reflects the number of epochs when the same number
of measurements is valid. Figure 6 shows that the number of valid DD measurements in
both datasets can be small or even zero. In such cases, RTK can occasionally fail to provide
positioning results, which means a GNSS outage can happen. The TC RTK/INS integration
can help bridge the outage.

The INS drift can be suppressed in TC integration as long as the number of measure-
ments is not zero. Otherwise, the INS solution can be output as the positioning results.
As a result, the TC RTK/INS integration can provide more continuous positioning results
when compared to RTK. Furthermore, as we mentioned in the Introduction part, the fixed
rate and the positioning accuracy can benefit from the TC integration. However, the out-
lying measurements can degrade the performance of the TC integration. The datasets
are collected in harsh urban areas, which means gross errors frequently occur in GNSS
measurements. Figures 7 and 8 show the performance comparison between RTK and
the integration without the outlier resistance. Figures 7a,b show the epochs when valid
positioning results are provided. In Figures 7a,b, a cycle with a specific color means the
specific algorithm can provide a valid positioning result at the corresponding epoch. The
local results in the red rectangles are highlighted in the subfigures. In the subfigures, the
circles associated with RTK are sparser compared to those associated with the TC RTK/INS
integration. Figures 7c,d illustrate the number of epochs in which each algorithm can
provide valid positioning results and the number of epochs in which each algorithm cannot
provide valid positioning results. Accordingly, Figure 7 demonstrates that the TC RTK/INS
integration can provide valid positioning results at every epoch whereas RTK fails to output
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positioning results from time to time, which means the integration’s positioning continuity
is improved. Figure 8 shows the positioning error in meters. In Figure 8, the “TC/EKF”
legend denotes the results provided by the TC RTK/INS integration without IGG-based
outlier resistance. Figure 8a,b show that the positioning results given by the TC RTK/INS
integration are smoother than that given by RTK. There are some large jumps in RTK results,
which means gross errors contaminate the measurements and lead to big positioning errors.
The introduction of INS reduces the magnitude of the unnormal jumps, which means the
integration suppresses the influence of outlying measurements. The integration benefits
from the high short-term accuracy of INS, which mitigates the effects of some sudden gross
errors. However, the positioning accuracy of the TC RTK/INS integration is not satisfying.
At many epochs, the positioning errors provided by the integration are larger than those
given by RTK.

(a) The DD measurements’ number distribution (Odaiba) (b) The DD measurements’ number distribution (Shinjuku)

Figure 6. The number distribution of preprocessed DD measurements.

(a) Valid positioning results (Odaiba) (b) Valid positioning results (Shinjuku)

Figure 7. Cont.
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(c) Statistics on valid positioning results (Odaiba) (d) Statistics on valid positioning results (Shinjuku)

Figure 7. The positioning continuity comparison between RTK and TC RTK/INS.

(a) The positioning error (Odaiba) (b) The positioning error (Shinjuku)

(c) RMSE for each group (Odaiba) (d) RMSE for each group (Shinjuku)

Figure 8. The positioning accuracy comparison between RTK and the TC RTK/INS integration.

In Figure 8a,b, the dots representing the positioning results are too dense, which causes
some inconvenience to the visualization. We divide the positioning results into several
groups by epochs. Except for the last one, each group contains the positioning results of
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100 epochs. Then, we calculate the Root-Mean-Square Error (RMSE) for positioning results
in each group. Figure 8c,d show the RMSE results. In Figure 8c, Group 6 corresponds
to the positioning results for the 501st epoch to the 600th epoch in Figure 8a. Figure 8a
shows, during this period, that some large errors exist in RTK results, especially the results
corresponding to the 524th epoch. In contrast, the TC RTK/INS integration provides more
accurate positioning results for the 501st epoch to the 600th epoch. Accordingly, the TC
RTK/INS integration provides smaller RMSE for results in Group 6. Group 9 is related to
the positioning results for the 801st epoch to the 900th epoch in Figure 8a. Figure 8a shows,
during this period, that the positioning errors provided by the integration are generally
larger than those given by RTK, especially at the 873th epoch. As a result, the TC RTK/INS
integration provides a larger RMSE for results in Group 9. We can observe the same phe-
nomenon comparing Figure 8b,d. Figure 8 demonstrates the importance of outlier detection
and exclusion. The outlying measurements result in biased estimation and inaccurate INS
states correction, which will be accumulated along with the INS mechanization. RKF can
help improve the performance of the TC RTK/INS integration. A more specific quantitative
analysis will be presented in the next section.

4.3. The Performance of the TC RTK/INS Integration with the Outlier Resistance

Our implementation uses the IGG-III model to inflate the noise covariance matrix
components, which can suppress the influence of the outlying measurements. As men-
tioned in Section 2.3.3, the outlying measurements will be discarded if the corresponding
inflation factor is too large. This section introduces the performance of the TC RTK/INS
integration with the IGG-III model. Firstly, we present the effects of the IGG-III model on
the measurements involved in the TC RTK/INS integration. We use Figure 9 to show in
which epochs the outlier exclusion happens and how many measurements are excluded.
We subtract the number of measurements after the IGG-based outlier exclusion from that
before the outlier exclusion and plot the results in Figure 9. A zero-value subtraction result
at an epoch means no outlier exclusion happens at the epoch. In contrast, the outlier exclu-
sion happens, and the value equals the number of the excluded measurements. Notably,
the difference results will not fall below zero, as the number of measurements after the
outlier exclusion cannot exceed that before the outlier exclusion. Figure 9 illustrates the
number difference between valid DD measurements before and after the outlier exclusion.
Figure 9 shows that some measurements are regarded as significant outliers and excluded
at some epochs, which demonstrates that the IGG-III model plays a role in discarding some
potential outlying measurements.

(a) The number of the excluded measurements (Odaiba) (b) The number of the excluded measurements (Shinjuku)

Figure 9. The number of the excluded measurements.
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The integration based on the IGG-III model can provide more accurate positioning
results when compared to the integration without the outlier resistance. Notably, the
introduction of the IGG-III model will not degrade the positioning continuity, which means
the integration based on the IGG-III model can provide positioning results during the RTK
outage like the integration without the outlier resistance. So, we will not use a figure like
Figure 7 to illustrate the positioning continuity of the IGG-based integration. Figure 10
shows the positioning performance comparison between the integration with and without
the outlier resistance. Notably, we use RKF to denote the TC RTK/INS integration with
the IGG-based outlier resistance. Figure 10 shows the positioning errors in meters. As
Figure 10 can provide a qualitative description, we calculate the positioning deviations for
the two datasets to quantitatively analyze the positioning performances. Every epoch, we
calculate the difference between the positioning result given by different algorithms and the
corresponding one given by the reference. Then, we sum up these differences to calculate
the RMSE for a dataset. Tables 4 and 5 show the statistics. For each dataset, we count the
total number of epochs between the completion of the initial alignment and termination.
Then, we count the number of epochs for which the algorithm can provide positioning
results. The ratio of the latter to the former demonstrates the continuity of the algorithm.
Tables 4 and 5 show the TC RTK/INS integration can bridge the RTK outage. Furthermore,
the fixed rate benefits from the introduction of INS obviously, whereas the adoption of
the IGG-III model brings a slight increase. On the whole, the positioning accuracy of the
integration without the outlier resistance is not significantly better than that of RTK or it is
even worse. In contrast, the IGG-III model improves the positioning accuracy significantly.
Figure 10 and the tables show that the positioning errors given by the IGG-based integration
are smaller than those given by the integration without the outlier resistance in general.
Comparing Figures 9 and 10, we can see that the epochs with significantly improved
positioning accuracy correspond to those in which some potential outlying measurements
are discarded, which proves the validity of the IGG-based integration. However, Figure 10
shows that the positioning errors provided by the IGG-based integration can be larger
than those given by the integration without the outlier resistance at some epochs. This
phenomenon is particularly evident in the Shinjuku dataset, which means that excessive
robustness happens. Because the dots denoting positioning results in Figure 10 are too
dense, we use two box plots to visualize the distribution of the positioning error for two
datasets, as shown in Figure 11. A box plot can visualize the distribution of numerical
data and skewness by showing the five-number summary of a set of data, including the
lower adjacent, first quartile, median, third quartile, and upper adjacent values [84]. We
divide the error results into ten groups by epochs and use a box with two whiskers to show
the distribution of errors for each group. In Figure 11a, each group contains 120 results.
The boxes of Group 3, Group 4, Group 5, and Group 8 clearly show the error results given
by the integration with the outlier resistance have a smaller median, third quartile, and
upper adjacent values when compared to those given by the integration without the outlier
resistance, which means RKF is superior to EKF for these groups. Let us turn to the results
at epochs corresponding to these groups in Figure 10a. We can find that the positioning
errors provided by RKF are generally smaller than those provided by EKF. Figures 10a
and 11a show that RKF either outperforms or performs comparably to EKF for all the
groups. In Figure 11b, each group contains 200 results. The boxes of Group 4 and Group 5
also show the benefits of the IGG-based outlier resistance. The boxes of Group 8 and Group
9 are related to the positioning error results from the 1400th epoch to the 1800th epoch in
Figure 10b. Figure 10b shows that excessive robustness happens during the period from
time to time. The boxes of Group 8 and Group 9 also show that RKF degrades during this
period. The box of Group 9 shows the error results given by RKF have larger third quartile
values, and RKF provides a more diffuse error distribution. Our proposed novel algorithm
can assist RKF in improving positioning accuracy.
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(a) The positioning error (Odaiba) (b) The positioning error (Shinjuku)

Figure 10. The positioning accuracy comparison between the integration with and without the outlier
resistance.

(a) The box plot of the positioning error (Odaiba) (b) The box plot of positioning error (Shinjuku)

Figure 11. The box plots show comparison between the integration with and without the outlier
resistance.

Table 4. The positioning performance comparison (Odaiba).

Techniques RMSE (m) Continuity The Fixed Rate

RTK 7.99 86% 20%

TC RTK/INS (EKF) 7.95 100% 26%

TC RTK/INS (RKF) 1.75 100% 27%

Table 5. The positioning performance comparison (Shinjuku).

Techniques RMSE(m) Continuity The Fixed Rate

RTK 13.21 82% 10.0%

TC RTK/INS (EKF) 14.17 100% 12.8%

TC RTK/INS (RKF) 10.01 100% 13.1%
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4.4. The Performance of the TC RTK/INS Integration with the Improved Outlier Resistance
4.4.1. Further Analysis of the Shinjuku Dataset

As excessive robustness is more evident when we process the Shinjuku dataset, we
further analyze the positioning results of the Shinjuku dataset. The measurements, along
with a lot of noise or multipath error, usually provide low CNR. As the multipath effect
generally depends on the environment around the receiver, the fault caused by the mul-
tipath effect can persist for some epochs. As mentioned in Section 2.3.3, we only inflate
the range-related components in R. Figure 12 illustrates the excluded pseudo-range mea-
surements and the corresponding CNR. If the test statistic exceeds the second threshold
of the IGG-III model, which means a significant gross error happens, IGG-III-based RKF
will exclude the corresponding measurement. Notably, the exclusion only happens at the
current epoch. When it comes to the next epoch, the test statistic should be calculated again
to decide whether the gross error still contaminates the corresponding measurement. In
Figure 12, the symbols with different colors and shapes represent different satellites. The
specific symbol at an epoch means the corresponding satellite is excluded at this epoch.
The Y-axis value corresponding to this symbol indicates the CNR of that satellite for that
epoch. A line in a specific color at an epoch means the corresponding satellite contributes
to the TC RTK/INS integration.

Figure 12 shows the CNR of the excluded pseudo-range measurements fluctuates
over a wide range. Some pseudo-range measurements with high CNR are directly ex-
cluded as outliers. Excessive robustness can happen when RKF incorrectly excludes the
measurements that should be retained. The CNR can help RKF detect the fault more
reliably.

(a) The excluded GPS measurements and CNR (b) The excluded BDS measurements and CNR

Figure 12. The excluded pseudo-range measurements and the corresponding CNR.

Figure 13 shows the positioning error from the 1720th epoch to the 1770th epoch.
Excessive robustness happens as the positioning error given by the IGG-based integration
can be larger than that given by the integration without the outlier resistance. The turning
points are the 1731st epoch and the 1732nd epoch, which are marked with two rectangles.
Figure 14 illustrates the excluded pseudo-range measurements and the corresponding CNR
from the 1720th epoch to the 1755th epoch. We use two red rectangles to highlight the
excluded measurements at the 1731st epoch and the 1732nd epoch corresponding to the
turning points in Figure 13. If a symbol with a specific shape appears in the rectangle, the
corresponding measurements will be discarded and not contribute to positioning at a certain
epoch. In contrast, a line in a certain color in the rectangular means the corresponding
measurement is retained for positioning. Figure 14a shows that conventional RKF excludes
some potential outlying GPS pseudo-range measurements at both the 1731st epoch and
the 1732nd epoch. Meanwhile, no BDS pseudo-range measurements are treated as outliers.
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The pseudo range of the 24th GPS satellites is detected to be faulty for only two epochs,
whereas the CNR is around 42 dBHz, which means the signal quality is quite good. Notably,
RKF excludes all the pseudo-range measurements at the 1731st epoch and only excludes
the pseudo range of the 24th GPS satellites at the 1732nd epoch. We manually control the
operation of the outlier exclusion following our proposed algorithm at the 1731st epoch
and the 1732nd epoch to see the influence. Specifically, we exclude all the pseudo-range
measurements at the 1731st epoch as traditional RKF does and retain the pseudo range
of the 24th GPS satellites at the 1732nd epoch. Furthermore, we inflate the corresponding
components in R. The results are presented in Figure 15. Figure 15 shows that the manual
control based on our proposed algorithm reduces the positioning error when compared
to conventional RKF. This fact demonstrates that it is feasible and valid to retain some
detected outliers based on the CNR to resist excessive robustness.

Figure 13. The positioning error in local.

(a) The excluded GPS measurements and CNR (b) The excluded BDS measurements and CNR

Figure 14. The excluded pseudo-range measurements and the corresponding CNR in local.
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Figure 15. The comparison between the performances with and without the manual control.

4.4.2. The Performance of MRKF

This section introduces the performance of the TC RTK/INS integration with improved
outlier resistance. We use MRKF to denote our proposed CNR-assisting algorithm to
distinguish it from the traditional IGG-based RKF. As mentioned in Section 2.6, MRKF
can be divided into the CNR-based classification and the constraints. The CNR-based
classification aims to suppress excessive robustness, whereas the constraints reduce the
probability of incorrectly retaining true outliers. Figure 16 illustrates the performance
of MRKF with and without the constraints. Figure 16a,b both show that the positioning
accuracy is improved around the 1500th epoch and the 1730th epoch. The CNR-based
classification maintains some measurements that are incorrectly identified as outliers, which
reduces the effects of excessive robustness and provides more accurate positioning results.
In Figure 16a, there are two time periods when the positioning errors given by MRKF
without the constraints are larger than those given by RKF, which means some outliers are
retained incorrectly because of high CNR. Figure 16b shows that the constraints eliminate
improper maintenance.

As the dots denoting positioning results in Figure 16 are too dense, we use a box plot
to visualize the distribution of the positioning error to compare TC/EKF, TC/RKF, and
TC/MRKF, as shown in Figure 17. In Figure 17, each group contains 200 results. The boxes
of Group 8 and Group 9 are related to the positioning error results from the 1400th epoch
to the 1800th epoch in Figure 16b. The boxes of Group 8 and Group 9 show that MRKF
significantly reduces the first quartile, median, and third quartile values compared to RKF,
which shows MRKF generally provides more accurate positioning results when compared
to RKF during the corresponding period. Overall, RKF either outperforms or performs
comparably to RKF for all the groups.

Figure 18 shows the positioning error in three dimensions. Notably, Figure 18
shows the positioning error and not the absolute value of the error as in Figure 16.
Figures 16 and 18 qualitatively show the combination of the CNR-based classification and
the constraints can improve the positioning accuracy reliably. We calculate the RMSE
of RKF and MRKF in three dimensions and total. The statistics are presented in Table 6.
Table 6 and Figure 18 also contain the results given by RTK and the TC RTK/INS integra-
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tion without the outlier resistance. Furthermore, Table 6 shows that MRKF makes a small
contribution to AR.

(a) MRKF without the constraints (b) MRKF with the constraints

Figure 16. The performances of MRKF with and without the constraints.

Figure 17. The box plot showing the performance of MRKF.

Table 6. The positioning performance comparison between four techniques (Shinjuku).

Techniques RMSE-X (m) RMSE-Y (m) RMSE-Z (m) Total RMSE (m) Fixed Rate

RTK 8.95 8.07 5.43 13.21 10.0%

TC RTK/INS (EKF) 9.70 8.44 5.94 14.17 12.8%

TC RTK/INS (RKF) 5.49 6.92 4.70 10.01 13.1%

TC RTK/INS (MRKF) 5.44 4.83 3.91 8.26 13.8%
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(a) The positioning error in X-axis (Shinjuku) (b) The positioning error in Y-axis (Shinjuku)

(c) The positioning error in Z-axis (Shinjuku)

Figure 18. The position error in three dimensions (Shinjuku).

Figure 10 shows that evident excessive robustness happens in the Shinjuku dataset,
whereas no apparent excessive robustness happens in the Odaiba dataset. We test the
performance of MRKF on the Odaiba dataset to see whether our proposed algorithm will
degrade when processing datasets without evident excessive robustness. The results are
based on the same CNR thresholds as those used when processing the Shinjuku dataset.
Figure 19 illustrates the positioning error in three dimensions. Figure 20a compares the
total positioning error given by three algorithms at each epoch. Figure 20b is a box plot that
visualizes the distribution of the positioning error for each group. In Figure 20b, each group
contains 120 positioning results. Figure 20a shows the positioning error of RKF and MRKF
is essentially the same at each epoch, whereas Figure 20b shows that the error distribution
for each group is essentially the same. Figure 20 illustrates that MRKF performs comparably
to RKF for the Odaiba dataset. Table 7 shows the quantitative analysis for the Odaiba
dataset. Figures 19 and 20 and Table 7 show that the positioning accuracy is essentially the
same for RKF and MRKF. These facts say that MRKF will not reduce positioning accuracy
when processing datasets where no evident excessive robustness happens. Tests on the
Shinjuku and Odaiba datasets verify our proposed algorithm’s validity and feasibility in
using CNR to assist traditional RKF.
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(a) The positioning error in X-axis (Odaiba) (b) The positioning error in Y-axis (Odaiba)

(c) The positioning error in Z-axis (Odaiba)

Figure 19. The positioning error in three dimensions (Odaiba).

(a) The positioning error in total (b) The box plot showing the error distribution

Figure 20. The performances of MRKF for the Odaiba dataset.
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Table 7. The positioning performance comparison between four techniques (Odaiba).

Techniques RMSE-X (m) RMSE-Y (m) RMSE-Z (m) Total RMSE (m) Fixed Rate

RTK 3.25 5.00 5.31 7.98 20.0%

TC RTK/INS (EKF) 3.58 5.58 4.39 7.95 26.1%

TC RTK/INS (RKF) 0.90 1.08 1.19 1.84 26.8%

TC RTK/INS (MRKF) 0.88 1.08 1.14 1.80 26.9%

5. Discussion

This section provides a summary and analysis of the results. Firstly, we present the
visualization window of our open-source TC RTK/INS implementation. Next, we compare
the positioning performances of RTK and the TC RTK/INS integration. The introduction of
INS improves the positioning continuity and the fixed rate. RTK can provide positioning
results at no more than 90 percent of the epochs for both datasets, whereas the integration
can provide positioning results at every epoch. The fixed rate increases by 6.1% for the
Odaiba dataset and 2.8% for the Shinjuku dataset. However, the integration does not
significantly improve positioning accuracy because of the outliers. Then, we compare
the positioning performance of the TC RTK/INS integration with and without the outlier
resistance. IGG-based RKF uses inflation factors to suppress the outliers. If the inflation
factor is too large, RKF will discard the corresponding measurements. RKF generates a
significant improvement in positioning accuracy on both datasets. The RMSE has been
reduced from 7.95 m to 1.75 m on the Odaiba dataset and from 14.17 m to 10.01 m on
the Shinjuku dataset. However, obvious excessive robustness happens in the Shinjuku
dataset. Taking this into account, we improve the RKF to prevent excessive robustness.
We use MRKF to denote our proposed algorithm. MRKF can be divided into two parts:
the CNR-based classification and the constraints. The CNR-based classification aims to
maintain some measurements that are incorrectly identified as outliers. The constraints
reduce the probability of incorrectly retaining true outliers. MRKF improves the positioning
accuracy for the Shinjuku dataset. RMSE has been reduced from 10.01 m to 8.26 m. When it
comes to the Odaiba dataset without obvious excessive robustness, MRKF will not reduce
the positioning accuracy. RMSE has been changed from 1.84 m to 1.80 m.

6. Conclusions

This study introduces the TC RTK/INS integration implementation in detail. We
give some derivations of key issues, including the formulation of the observation matrix
and the process to obtain the fixed solution. We open source our implementation to
help save the effort and cost of the researchers who are in the same field as us. These
codes can be found at https://github.com/Nronaldo, accessed on 2 April 2022. We test
the positioning performance of the TC RTK/INS integration on two open-source urban
area datasets. The results show that the introduction of INS improves the positioning
continuity and the fixed rate. As outlying measurements frequently appear in urban areas,
the TC RTK/INS integration without the outlier resistance cannot obviously improve the
positioning accuracy. The IGG-based TC RTK/INS integration uses an inflation factor to
suppress the effects of the outliers, which significantly improves the positioning accuracy
for both datasets. As excessive robustness occasionally happens, we propose a CNR-based
algorithm to decide whether a detected outlier should be maintained for a while or not.
Our proposed algorithm improves the positioning accuracy for the Shinjuku dataset, which
presents evident excessive robustness. When it comes to the Odaiba dataset without
obvious excessive robustness, our proposed algorithm will not degrade the positioning
accuracy.

There is still a lot of room for improvement in our work. Two datasets can only verify
the algorithm feasibility on some occasions. Furthermore, our open-source implementation
is only a preliminary architecture. It does not represent the state of the art. The architecture

https://github.com/Nronaldo
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needs more modules, including reliable cycle slip repair, gross error preprocessing, and
fixed solution verification. We will design the hardware platform to collect more datasets
in urban areas in the future. We will seek to obtain professional devices and commercial
software to provide the reference trajectory and improve our proposed algorithm. We
will also develop our current implementation and add new functional modules to our
open-source architecture.
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Appendix A. The Derivation of the Observation Matrix

Let us ignore the lever-arm offset for a moment. We assume there are two satellites, Si
and Sj, and the position error is added to the true position as Figure A1 shows:

(a) The illustration of the position error (b) The illustration of the lever-arm offset

Figure A1. The position error and the lever-arm offset.

The position error can only result in a distance error between the satellites and the
user receiver because the reference station is accurately localized. Because the position
error is small, the LOS vector from the true position to a satellite is the same as that from
the nominal position to the satellite. Furthermore, the change in the distance between the
satellite and the receiver can be calculated based on the LOS vector and the change of the
receiver’s position, as Equation (A1) shows [70]:

rSi
,nominal = rSi

,true − oSi
· δp. (A1)

https://github.com/weisongwen/UrbanNavDataset
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Accordingly, the nominal DD distance ∇∆r̃Si
,Sj

and the true DD distance ∇∆rSi
,Sj

can
be formulated as Equation (A2) shows:

∇∆r̃Si
,Sj

= ∇∆rSi
,Sj
− oSi

· δp + oSj
· δp

= ∇∆rSi
,Sj

+ (oSj
− oSi

) · δp.
(A2)

Because we neglect the lever-arm offset, the INS position is the same as the GNSS an-
tenna. Considering Equations (3) and (4), we can calculate a component of the measurement
vector as:

∇∆ρSi
,Sj
−∇∆r̃Si

,Sj
= (oSi

− oSj
) · δp +∇∆ωρ,

∇∆φSi
,Sj
−∇∆r̃Si

,Sj
= (oSi

− oSj
) · δp + λ · (∆NSi

− ∆NSj
) +∇∆ωφ.

(A3)

Equation (A3) shows that only the position error and the SD ambiguity in the state vec-
tor contribute to the measurement vector when we neglect the lever-arm offset. Considering
all the available satellites, we can obtain Equation (A4):

∇∆φS1
,S2
−∇∆r̃S1

,S2
∇∆φS1

,S3
−∇∆r̃S1

,S3
...

∇∆φS1
,Sm
−∇∆r̃S1

,Sm

∇∆ρS1
,S2
−∇∆r̃S1

,S2
∇∆ρS1

,S3
−∇∆r̃S1

,S3
...

∇∆ρS1
,Sm
−∇∆r̃S1

,Sm


=

[
DW L λ · D
DW L O(m−1)×m

][
δp
κ

]
. (A4)

Readers can refer to the documents of PSINS to find the details about the transforma-
tion matrix L.

The attitude error can generate a position error when the lever-arm offset exists.
Figure A1 illustrates the lever-arm offset in the body frame. We use lb and le to denote
the lever-arm offset in the body frame and ECEF frame, respectively. As the measurement
vector is calculated in the ECEF frame, we should calculate the position of the GNSS
antenna based on the INS position and le. If there is no error, le can be formulated as
Equation (A5) shows:

le = Ce
nCn

b lb. (A5)

In Equation (A5), the attitude error will not influence Ce
n as it can be directly calculated

using the position. Considering the attitude error φ, we can calculate the nominal lever-arm
offset in ECEF frame l̃e, as Equation (A6) shows:

l̃e = Ce
nCn′

b lb

= Ce
n(I −φ×)Cn

b lb

= Ce
nCn

b lb − Ce
n(φ×)Cn

b lb

= Ce
blb + Ce

n((C
n
b lb)×)φ,

(A6)

where Ce
n((Cn

b lb)×)φ is the position error in ECEF frame, which is caused by the attitude
error and the lever-arm offset. Accordingly, we can formulate G in Equation (12), as
Equation (A7) shows:

G = Ce
n((C

n
b lb)×). (A7)
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