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Abstract: In space science and satellite imagery, better resolution of the data information obtained
makes images clearer and interpretation more accurate. However, the huge data volume gained by
the complex on-board satellite instruments becomes a problem that needs to be managed carefully.
To reduce the data volume to be stored and transmitted on-ground, the signals received should
be compressed, allowing a good original source representation in the reconstruction step. Image
compression covers a key role in space science and satellite imagery and, recently, deep learning
models have achieved remarkable results in computer vision. In this paper, we propose a spectral
signals compressor network based on deep convolutional autoencoder (SSCNet) and we conduct
experiments over multi/hyperspectral and RGB datasets reporting improvements over all baselines
used as benchmarks and than the JPEG family algorithm. Experimental results demonstrate the
effectiveness in the compression ratio and spectral signal reconstruction and the robustness with a
data type greater than 8 bits, clearly exhibiting better results using the PSNR, SSIM, and MS-SSIM
evaluation criteria.

Keywords: autoencoder; data compression; remote sensing; satellite images

1. Introduction

Currently, deep learning models are successfully applied in any area of research topic
achieving remarkable results in classification [1], segmentation [2], super-resolution [3,4] and
in different environments such as biology [5], medical imaging [6], geology [7], remote
sensing [8], and space science [9]. In the latter, deep learning can be a powerful instrument
able to resolve complex tasks such as self-driving [10], system recommendation [11], data
compression [12–14], and 3D surface reconstruction [15]. Data compression is the main
focus that we will discuss here considering the implications for space science and Earth
observation [8,16]. It is a necessary step for the space mission context, and it can be useful
to the limited hardware mainly, to preserve as much as possible the hardware life on board
(e.g., satellite, drone, rover) and process the huge incoming information. The deep learning
models (e.g., autoencoder) can be used for signal classification, segmentation, data compres-
sion, clustering discovery, and signal generation. Traditional image compression algorithms
such as JPEG [17] and JPEG2000 [18] act on cosine and wavelet transform jointly with a
quantization step and entropy approach to compress the image. Other methods as CCSDS
123.0 are based on discrete wavelet transform (DWT), which uses low amounts of memory
and computational resources and was developed to balance between compression perfor-
mance and complexity with a particular focus on space science context. Compared to the
JPEG2000 algorithm, it achieves lower performance in terms of image reconstruction [19].
The hand-crafted codec step is not optimal and flexible for all types of signals source (e.g.,
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hyperspectral data) and offers low performance than the deep learning models in compres-
sion ratio and signal reconstruction tasks. Even though JPEG families algorithms are still
used due to simplicity, it causes the generation of artifacts, perceptual distortions, and blur,
above all at lower bit-rate ranges, and for this reason, many postprocessing techniques
have been applied. Deep learning models can play a crucial role in satellite imagery both
in real-time and postprocess steps. In real-time because today, it is possible to handle the
huge computation of parallel paradigms (e.g., Pytorch, Tensorflow) directly on-board using
dedicated hardware [20] or in postprocess exploiting the workstation computational power.
Especially, the autoencoder model can be applied in dimensionality reduction, clustering
discovery, and classifications or can be used as generative learning models. In [21], they
proposed a wavelet-based deep autoencoder network based on image compression using
Haar transformation preprocessing to get different frequency components in an image and
they used convolutional operators in encoder/decoder to reconstruct the original source
given the latent space obtained from the encoder step. In [22], a different architecture is
proposed but using the same Wavelet frequency decomposition, showing better results
than the classical algorithms (e.g., JPEG, JPEG2000). Although the leadership of the deep
models was proved by all the experimental results in the literature, both methods use
only dataset composed by 3-channels without investigating over spectral data information.
In [23], the authors proposed a feedforward neural network as an end-to-end model to re-
produce its input by learning the identity function. The model is trained considering many
selected bands (e.g., channels) conducting extensive experiments showing good robustness
to noise and analyzing three different loss functions. Due to the fully connected layers
of the architecture proposed by [23,24], as the spectral image size increases, the number
of model parameters becomes high, slowing the training time process and cutting off the
model flexibility as the dataset changes, and in addition, the last fully connected layers
can introduce noise and destabilize the learning capability. Moreover, it is mandatory to
use a batch-size iterator to avoid memory saturation (e.g., out of memory), and all models
with a high number of parameters may encounter this problem. Autoencoders confirm the
capability to get better features coded from signals source than existing algorithm as JPEG
and JPEG2000, remaining competitive in performance with the latter using the pretrained
models [21,25,26]. Furthermore, the main model can generalize the reconstruction source
independently by the data type (e.g., >8 bits per pixel) or format type data (e.g., eyes fish
camera images).

We know the reconstruction models (e.g., autoencoder-based) work well from 1 to
3 channels as widely supported by the literature [12,14,27]. Thus, the following question
arises naturally:

Is it still true over multispectral and hyperspectral data information?

Given a training data set, has the model the capability to generalize the learning process using
16 bits per pixel band of the unseen spectral source input instead of 8 bits?

What kind of data compression ratio can be achieved by keeping the reconstructed output signal
as high as possible? Can we achieve better performance than classical image compressors such as
JPEG and JPEG2000?

To complete the lack of tests and analysis of the autoencoder performances on spectral
sources and to avoid the classic feedforward due to the above-mentioned problems, in this
work, we build an autoencoder for the compression of spectral signals based on convolu-
tional linear operators and we demonstrate through experimental results that the proposal
surpasses the classic JPEG and JPEG2000 compression algorithms and neural networks
used as benchmarks, in terms of peak signal–noise ratio (PSNR) and structural similarity
index (SSIM) and about data compression.

The scientific contribution of this work can be summarized as follows:

• Development of a spectral signals compressor based on deep convolutional autoen-
coder (SSCNet), analysing its learning process and evaluating it in terms of com-



Remote Sens. 2022, 14, 2472 3 of 14

pression and spectral signal reconstruction over spectral datasets and Imagenet-
ILSVRC2012 benchmark.

• Definition of two datasets come from the ESA repository (Lombardia Sentinel-2 satel-
lite imagery and VIRTIS-Rosetta hyperspectral data) and development of a python
parser useful to read and handle the calibrated data images.

• Release the PyTorch code for SSCNet, the pretrained models and the parser software
available in [28].

The paper is organized as follow: In Section 2, we describe in detail the proposed
network for spectral signal compression and the experimental setup. In Section 3, the
description of the datasets, discussion results in terms of compression ratio, image recon-
struction analysis and qualitative spectral signals visualization are presented. In the last
part of this paper, we present the Section 4.

2. Spectral Signals Compressor Network

The overview of the proposed spectral signal compressor based on convolutional
autoencoder is shown in Figure 1. In the encoder block, we scale 3× the spectral source
by using max-pooling operation followed by a linear layer to set the final latent space
size (data compression output). The decoder block mirrors the encoder flow using the
convolution transposed with the relative kernel and stride setup. The architecture shown
in Figure 1, is correlated to all experiments carried out over the Lombardia Sentinel-2
dataset (subtle differences are present in the model used in other datasets considered; see
the repository for details [28]). From now, to simplify the nomenclature of the network,
we refer to it as SSCNet. As preprocessing, we apply a normalization on the spectral data
reporting all data in a range between [0, 1] and fed into the end-to-end model. The last
operator of SSCNet is a sigmoid activation function that maps the output of the decoder
block into the [0, 1] range. More formally, given a spectral cube image x in the format:

x ∈ RB×H×W

where B = Bands, H = Line, W = Samples, we search a mapping function as y = f0(x) and
a function useful to approximate the identity function as x̃ = gθ(y) where x, x̃, and y are
the spectral signals source, the approximation identity signal reconstructed, and the latent
space signals (data compression size), respectively. To obtain an arbitrary data compression,
we use a dense linear layer into the last part of the encoder block such that it is possible to
analyze spectral signals compressed and the relative spectral cube reconstructed thanks
to the decoder mirrored block. We apply downsampling using max-pooling operators
and deconvolutions linear operator as upsampling into the decoder step. To obtain an
approximation of the spectral signals source, we use the binary cross-entropy (BCE Loss)
that builds the error surface between the target and the input distributions. More formally,
it is described as:

l(x, y) = L = {l1, ..., lN}T ,

ln = −wn[yn l̇og(xn) + (1− yn)l̇og(1− xn)]
(1)

where N is the batch size and x, y are input and target, respectively. If xn is 0 or 1, the log will
be set to −∞, and the BCE Loss clamps its log function output to be greater than or equal
to a fixed value in order to have a finite loss (rather than infinite value) as well-described
into the PyTorch documentation [29]. For the above-mentioned reasons and the nature of
the BCE Loss, we apply a sigmoid function into the last part of the decoder block. We chose
PReLU (parametric rectified linear activation function) instead of ReLU for the a learnable
parameters of the elementwise function:

PReLU(x) = max(0, x) + a ·min(0, x) (2)
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In our case, we set a equal to the number of the channels (bands) given in input from
the previous layer SSCNet step (except into the first part of the decoder, where we have
learnable parameters for each element of the flattened data information). We analyzed
and discussed the difference comparison using ReLU and PReLU activation functions in
Section 3.

Figure 1. Overview of the architecture proposed for the spectral signals compression. c, k, p, and s
are channels, kernel size, padding, and stride used, respectively. In the encoder block the stride is set
up to 1. The latent space represents the data compression size of the last linear layer. This specific
version model is applied over Lombardia Sentinel-2 dataset and little variations on the other dataset
(see repository code [28] for details).

We used ADAM optimizers [30] able to find global minima or a good approximation
of it from the error surface generated by the BCE loss function. We used a batch size of
128 and trained SSCNet for 400 epochs. The learning rate of 10−4 is handled by cosine
annealing decay achieving 0 to the last epochs. This last technique is useful to stabilize
the learning process step. The optimal convergence in terms of the image reconstructed is
achieved much earlier than 400 epochs (we observe little improvements in terms of cents
into the last 150 epochs over 400 considered). The model validation and metrics used to
evaluate the effectiveness of the SSCNet will be discussed in the Section 3

3. Experimental Results
3.1. Datasets

To prove the effectiveness and robustness of the proposal, we built two types of
datasets in remote sensing and space context, Lombardia Sentinel-2 dataset and VIRTIS-
Rosetta dataset. The main motivation is related to the data type of these datasets. The first
is a multispectral one composed by 9 bands with a spatial resolution of 10 and 20 m, and
the second one is an hyperspectral dataset composed by 432 bands captured by VIRTIS
instrument on-board the Rosetta space mission. We were also motivated to use these
datasets for the reasons of the data type values; in fact, all data types are expressed in
16 bits (unsigned integer) for the Lombardia Sentinel-2 dataset and in float-32 for the
VIRTIS-Rosetta dataset.

3.1.1. Lombardia Sentinel-2 Dataset

We built a subset (100k instances) of multispectral signal information from the Sen-
tinel2 satellite over the Lombardia region in Italy. This dataset has spatial resolutions of 10
and 20 m, both corresponding to the period of 2017. Each spectral cube has 9 bands (chan-
nels) from VNIR (visible and near-infrared). The train-test split to 80:20 ratio, respectively,
each multispectral images is 9× 48× 48 with unsigned integer 16 bits (range = [0, 216 − 1]),
and all data in the cube are given in the Tiff format.
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3.1.2. VIRTIS-Rosetta dataset

The VIRTIS (Visual IR Thermal Imaging Spectrometer) (see the instrument details
in [31]) is part of the scientific payload of the Rosetta Orbiter, and it has detected and ana-
lyzed the evolution of specific signatures as the specifics bands of minerals and molecules
until to ended with the landing of the Rosetta Orbiter on 30 September 2016. The identifi-
cation of spectral features was the primary goal of the Rosetta mission and had allowed
to identify the natures of the main constituent of the 67-P Churyumov-Gerasimenko. The
complex instrument is composed by different parts and it covers a wide wavelength range
from near UV to the near IR making it an essential instrument to analyze the global (e.g.,
albedo) and local properties (minerals signatures). The VIRTIS spectrometer has been suc-
cessfully applied also in other planetary missions such as Venus Express and NASA-Dawn,
producing a huge amount of high-quality data. More precisely, the spectral range (nm)
covered a range from [220.1–1046] for visible bands to 5 micron using VIRTIS-H part data
instrument. We focus on visible bands for this paper of the calibrated data (DATA) using
the full bands available. In this work, we built a dataset of the calibrated data selected
from the NASA repository with a tile of 64× 64 unitary spectral cropping of the relative
signal sources. In general, before feeding spectral data into the SSCNet, we develop a
parser useful to read the VIRTIS data format [32] available from the NASA site [33], then,
we apply a train/test split in 80:20 ratio necessary to train the SSCNet model and validate
it. SSCNet model can cover a fundamental role in similar future missions to handle and
process the huge amount of spectral data information coming from these kind of instru-
ments. In fact, autoencoder models can reduce the access memory (writing and reading)
from internal satellite storage due to compression data learned in the training step, and
depending on the compression ratio applied, it can store a greater amount of data than the
classical compressor (e.g., JPEG2000) algorithm can, maintaining a competitive spectral
signal reconstruction (decoder part) from compressed information (encoder part).

3.1.3. Normalization

The normalization process is widely used in data preprocessing, guaranteeing fast
convergence in learning terms. This process removes the difference in magnitude between
features closing to zero (e.g., max/min normalization), which benefits learning [34]. Con-
vergence is usually faster if the average of each input variable over training data is close to
zero. In the case in which we have all positive input values, the weight updated will have
the same sign of the scalar error computed. Therefore, if the weight vector must change
direction, it can only do so by zigzagging, which is inefficient and can slow the learning
process (see Section 4.5 of [35]). In Rosetta experiments, we apply a spectral normalization
(e.g., max/min) for each spectral signal of the dataset in the data preprocessing step; then,
we use these values for each instance of the training set assuring a correct scaling per band
(see Algorithm 1). In this way, we can take advantage in terms of convergence according
to the above-mentioned information. Per instance, max/min normalization (local normal-
ization) is strongly not recommended in data type >8 bits, because we change the shape of
the original statistical data distribution (e.g., check the kurtosis and skewness modified),
above all, when we have many outliers in the dataset considered. In the experiments, we
used a spectral normalization per band over the VIRTIS-Rosetta dataset in such a way to
have a proper normalization per band (432 bands) and a min/max normalization over all
bands (9 bands) in the Lombardia Sentinel-2 dataset.

3.2. Training Batch Strategy in High-Spatial Resolution Input

Considering the high spatial resolution and the spectral information on a large number
of bands, we adopt a subdivision strategy on each multi/hypercube x ∈ RB×H×W to reduce
the RAM consumption of the GPU (graphic processing unit) and avoid the out of memory
error (see Figure 2).
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Algorithm 1 Pseudo code of the training step. We apply a min/max normalization per
channel taking all min/max from a preprocessing dataset step; then, we feed into SSCNet
xj, which returns the compressed data. Finally, we use the compressed data and feed it
into the SSCNet decoder module for the image reconstruction. The total error will be given
from the binary cross-entropy error between the decoded image reconstructed and the
original source, and the error backpropagation is applied for the learning process.

function TRAINING STEP(X, epochs)
Input: Dataset instances, epochs
Output: Data compressed, Data reconstructed
for n ∈ range(epochs) do

for xi ∈ X do
xj = Min/Max per Channel Normalization(xi)
encoded = SSCNet encoder(xj)
decoded = SSCNet decoder(encoded)
l = bce loss(decoded, xj) . Binary cross-entropy Equation (1)
Error l backpropagation() . Error Backpropagation

end for
end for

end function

Figure 2. Subdivision strategy of multi/hypercube images.

The number of tiles xi ∈ X generated for each cube can be variable and depends on the
available RAM of the GPU; in our case, we divide each multispectral cube of the Lombardia
Sentinel-2 dataset into tiles of size 9× 48× 48, and for the VIRTIS-Rosetta dataset, in tiles
of size 432× 64× 64; then, we select the hypercubes randomly to improve the learning
capability. This training strategy is successfully applied in deep learning context on many
remote sensing tasks [36].

3.3. Generalization Capability

To demonstrate the versatility and effectiveness of SSCNet over the RGB dataset, we
conduct experiments on Imagenet. It is a huge dataset that contains a number greater than
1.2M of RGB images and 1000 different classes. As a test set, we used the Kodak Photo
CD dataset as the benchmark. This last consists of 24 (3× 768× 512) images that contain
landscapes, portraits, and humans. In this experiment, we demonstrate the generalization
capability of a universal compressor trained on a huge dataset, over a never seen test set.
In this experiments we used Adam optimizer with a learning rate of 10−4 and handled by
cosine annealing decay achieving 0 to the last epochs (set up to 200). Since we use patch
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3× 32× 32 of the Kodak images, we run 20 times the test set over different random patch
and average the metrics considered, for a fair comparison with the benchmarks used. Since
the evaluation process is not a trivial task for metric reasons, we do not report the peak
signal-to-noise ratio (PSNR) only because it is biased toward algorithms that have been
tuned to minimize L2 loss. We use Multi-Scale Structural Similarity (MS-SSIM) [37] and
Structural Similarity (SSIM) [38], which are well-established and popular metrics for lossy
compression algorithms comparison. For a fair comparison, we compare SSCNet with [25],
which proposed a general architecture for compressing based on RNNs, content-based
residual scaling, and a new variation of GRU where they achieved better performance
than JPEG. Both works are comparable because we use a huge dataset also and validate
the model over the same test set used as benchmark (Kodak dataset), furthermore, we
used the same bits per pixel ratio (bpp) in different learning processes. We report all the
results in Figures 3 and 4, showing an improvement across all baseline compared in terms
of generalization reconstruction capability.

Figure 3. Rate distortion curve on the Kodak dataset using SSIM as evaluation metric over bits
per pixel. We used all the results reported in [21,26] as benchmarks and demonstrate to overcome
the reconstruction capability of the SSCNet than the others baseline (Balle and WDAED are based
on convolutional neural networks) over a 3 channels dataset. We highlight our use of Imagenet-
ILSVRC2012 as the training set and Kodak as the test set.

Figure 4. Rate distortion curve on the Kodak dataset using MS-SSIM as evaluation metric over bits
per pixel. We show all the results reported by [25] demonstrate the reconstruction capability of the
SSCNet using 3 channels dataset. We highlight our use of Imagenet-ILSVRC2012 as the training set
and Kodak as the test set.

3.4. Coding and Spectral Signal Reconstruction Efficiency

In this subsection, we analyze the performance changing the compression ratio and
evaluating the spectral images reconstruction achieved by the proposed method and
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comparing it with JPEG and JPEG2000. In addition, we analyzed the SSCNet behavior
using PReLU and ReLU activation functions. To prove the effectiveness of the SSCNet
model, we evaluated the method over the test set built; then, we conducted a quantitative
and qualitative analysis using the well-known metrics widely used in the literature (peak
signal-to-noise ratio (PSNR), structural similarity (SSIM), and feature similarity index
(FSIM)). In Table 1, we reported the impressive metric accuracies achieved by SSCNet with
a compression ratio 20:1 over 400 epochs training (using ReLU) and in Table 2 using the
same architecture with PReLU function. Although the performance is similar, we report
the percentage bands variation (see Table 3), suggesting a slight improvement due to the
learnable parameters in the PReLU notation formula; more formally, we define the variance
percentage as:

PSNRPReLU − PSNRReLU
PSNRPReLU

· 100 (3)

Table 1. Compression ratio (20.7):1 over 400 epochs ReLU for the Lombardia Sentinel-2 dataset.

Bands PSNR SSIM FSIM

1 48.106 0.984 0.984
2 49.427 0.988 0.984
3 49.553 0.987 0.983
4 50.914 0.993 0.991
5 49.205 0.990 0.990
6 48.085 0.987 0.989
7 44.259 0.967 0.975
8 50.581 0.993 0.991
9 50.458 0.992 0.991

Table 2. Compression Ratio (20.7):1 over 400 epochs PReLU activation function for the Lombardia
Sentinel-2 dataset.

Bands PSNR SSIM FSIM

1 48.440 0.985 0.985
2 49.709 0.988 0.985
3 49.783 0.988 0.984
4 51.318 0.993 0.991
5 49.569 0.991 0.991
6 48.542 0.988 0.990
7 44.527 0.969 0.977
8 51.043 0.993 0.992
9 50.876 0.992 0.991

Table 3. Percentage variation comparison over Lombardia Sentinel-2 dataset between PReLU and
ReLU activation functions (gain percentage respect to PReLU).

Bands ∆PSNR ∆SSIM

1 0.6895 0.10152
2 0.5673 0.0000
3 0.4620 0.10121
4 0.7872 0.0000
5 0.7343 0.1009
6 0.9414 0.1012
7 0.6018 0.2063
8 0.9051 0.0000
9 0.8216 0.0000
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In Table 4, we report results in image reconstruction by SSCNet than the classic com-
pressor algorithm as JPEG and JPEG2000. We obtain a greater spectral signal reconstruction
over all bands (Lombardia sentinel dataset) than the other compressors in PSNR and SSIM
metrics analyzed. JPEG2000 algorithm has been used for each band available (9 bands),
showing a better compression ratio and reconstruction than the JPEG algorithm. Note
that in the JPEG compressor test, we truncate the data from 16 bits to 8 bits due to the
compression inefficient classical algorithm and apply it for single bands.

(a) Original Source
(band 1)

(b) JPEG2000 (band 1)
PSNR: 40.883 SSIM: 0.9586
Ratio: 9.84

(c) SSCNet (band 1)
PSNR: 53.97 SSIM: 0.9969
Ratio: 20

(d) Original Source
(band 2)

(e) JPEG2000 (band 2)
PSNR: 42.504 SSIM: 0.962
Ratio: 9.80

(f) SSCNet (band 2)
PSNR: 54.753 SSIM: 0.997
Ratio: 20

Figure 5. Comparison using the compression ratio 20:1 for SSCNet and (9.7):1 for JPEG2000 with a
data type 16 bits on the original source tile (a,d) using JPEG2000 algorithm applied over all bands in
(b,e) and SSCNet signal reconstructed in (c,f). We show only bands 1 and 2.

Table 4. Benchmark comparison between two classical compressor algorithms (JPEG, JPEG2000) and
the SSCNet AutoEncoder based over the Lombardia sentinel dataset.

JPEG Ratio (2.5):1 JPEG2000 Ratio (9.7):1 SSCNet Ratio 20:1

Bands PSNR SSIM PSNR SSIM PSNR SSIM

1 19.171 0.908 35.317 0.925 48.440 0.985
2 19.302 0.906 36.249 0.923 49.709 0.988
3 19.404 0.899 35.710 0.912 49.783 0.988
4 21.722 0.945 36.219 0.929 51.318 0.993
5 21.561 0.948 36.570 0.932 49.569 0.991
6 21.523 0.949 36.354 0.931 48.542 0.988
7 18.798 0.916 35.767 0.929 44.527 0.969
8 21.866 0.943 37.444 0.946 51.043 0.993
9 21.904 0.942 35.847 0.938 50.876 0.992
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Table 5. Compression ratio achieved by SSCNet using different latent space output (ls) or with the
last convolution version. We report the PSNR between the original spectral source and the output of
SSCNet (PSNR is averaged over all bands of the VIRTIS-Rosetta dataset). We report the results of
GNN model based-on VGG16.

Compression Ratio SSCNet avg PSNR

7:1 (ls = 1024× 16× 16× 32) last conv 67.677
27:1 (ls = 1024× 8× 8× 32) last conv 66.79

177:1 (ls = 10000× 32) 64.845
353:1 (ls = 5000× 32) 64.841

1769:1 (ls = 1000× 32) 64.729

[24] GNN model (VGG16 + CNN Decoder)
177:1 (ls = 10000× 32) 60.87
353:1 (ls = 5000× 32) 60.87

1769:1 (ls = 1000× 32) 60.71
36k:1 (ls = 48× 32) 59.44

JPEG2000 achieves a significant compression ratio; however, it does not achieve
more competitive results than the SSCNet model. The last model obtains remarkable
results across all the metrics analyzed. From a qualitative visualization point of view,
in Figure 5, we show the difference by the original source, JPEG2000, and SSCNet outputs
over the first 2 bands. We highlight the higher concentration of artefacts generated by the
JPEG2000 algorithm compared to that of SSCNet. The artifacts results that we noticed in
the Lombardia tiles reflect across all bands by JPEG2000 image reconstructed proving the
inefficiency methodology in terms of numerical analysis with data type equal to 16 bits,
and, for this reason, we applied the JPEG2000 compressor for each band to have a better
signal reconstruction quality (see Figure 5).

Table 6. Computational time (over VIRTIS-Rosetta dataset) of the SSCNet with the last convolutional
layer version (SSCnet conv), the last linear layer version (SSCNet linear), and [24]GNN model. We
report the number of parameters for the encoder/decoder networks (P), training time (Train T), test
time encoder/decoder, and global test time (Test G time) using 1064 test instances and 128 as batch
size (1000 epochs). The test of encoder/decoder time is meant as the average time of each batch.

Model P (M) Train T(s) Test T Enc(s) Test T Dec(s) Test G Time

SSCNet conv 8 (enc) 6.7 (dec) 35020 0.219 0.125 ∼ 0.34
SSCNet linear 171 (enc) 168 (dec) 39578 0.220 0.120 ∼ 0.34

[24] GNN model 175 (enc) 0.683 (dec) 30074 0.116 0.090 ∼ 0.20

SSCNet with Last Convolutional Layer

All experiments that we conducted on SSCNet have as the last part a fully connected
layer in order to have the flexibility and rule-specific compression ratio, which are useful to
compare our methods and results with those in the literature. In this version of the proposed
method, we replace the last fully connected layer with a convolutional layer to decrease the
parameters numbers of the model and avoid the square pixel effect and possible noise due
to the large fully layer (see Figure 6). However, we do not have the flexibility to choose
a latent space size a priori and we have to consider a generic compression ratio. In the
experiment reported in Table 5, we apply a compression ratio of from 7:1 to 1769:1 over
the VIRTIS-Rosetta dataset, showing the reconstruction data signals in terms of PSNR
and SSIM metrics, and in Figure 7, we show a qualitative comparison with ourselves,
using a compression ratio of 177:1, 27:1 and 7:1 over a specific tile (band 1). Furthermore,
in Table 5, we implemented and reported the results of the autoencoder architecture
based on [24] demonstrating the main improvements of the SSCNet in terms of image
reconstruction. Moreover, in the SSCNet version with the last convolutional layer, we
reduce the model heavily in the number of parameters than using the last linear layer,
increasing its performance in terms of training time as we reported in Table 6.
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Figure 6. Visual comparison (VIRTIS-Rosetta dataset) using the compression ratio of 27:1 and data
type 16 bits of the original source tile 432 × 64 × 64 × 32 bits (only bands 1, 2, 3, and 432 are
shown) with the relative hyperspectral cube reconstructed by SSCNet from 1024 × 8 × 8 × 32 data
information, using an initial preprocessing for the band normalization (max/min) to obtain a fast
learning convergence.

(a) Original Source (band 1) (b) Last LL (band 1)
PSNR: 75.45 Ratio: 177:1

(c) Last Conv2D (band 1)
PSNR: 77.4 Ratio: 27:1

(d) Last Conv2D (band 1)
PSNR: 77.73 Ratio: 7:1

Figure 7. Comparison using a compression ratio 177:1 (b) and 27:1 (c) and data type 32 bits (over
VIRTIS-Rosetta dataset) of the original source tile (a). In (b), we show the image reconstructed (band
1) using SSCNet with the last linear layer applied and in (c) the SSCNet using the last 2D convolution
layer. In (d), we use SSCNet with a compression ratio 7:1 showing improvements in terms of PSNR
than the others experiments.
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Finally, we show in Figure 8 the difference comparison between the spectral signal
source (blue line) and the spectral signal reconstructed (red line) of two selected pixels from
source and decoded information. We underline the high degree of similarity between the
two plots and demonstrate the validity of the quantitative results (Table 5) obtained in all
the experiments carried out. In the left image showed (only 1, 2, and 3 bands composition
for visualization purpose), we detect noise, probably due to the acquisition source by the
VIRTIS instrument. In conclusion, SSCNet is demonstrated to approximate the identity
function also in the context of hyperspectral sources.

Figure 8. Differences between the source of the spectral signal (blue line) with the spectral signal
reconstructed by SSCNet (red line) (last conv2d version) given two selected pixel coordinates (x, y)
of the hyperspectral cube (source and reconstructed, respectively) on all available bands of the
VIRTIS-Rosetta data (Compression Ratio 27:1).

4. Conclusions

Image compression covers a key role in space science and satellite imagery and, lever-
aging by the lack of investigation of the autoencoder models for data compression over
spectral signals and various data type (greater than 8 bits), in this paper, we develop
a spectral signals compressor based on the deep convolutional autoencoder (SSCNet),
analyzing the learning process and evaluating it in terms of compression and spectral
signal reconstruction over spectral datasets and Imagenet-ILSVRC2012 benchmark. We
detected a light improvement using PReLU activation function instead of ReLU due to
the learned parameters considered; furthermore, we demonstrated that SSCNet version
with the last convolutional layer achieved better performance than SSCNet version with
the last linear layer, even if we drastically reduced the number of parameters. We built
two datasets from the ESA repository (Lombardia Sentinel-2 satellite imagery and VIRTIS-
Rosetta hyperspectral signals information) and developed a Python parser useful to read
and handle the calibrated data images. Furthermore, we release the PyTorch code for
SSCNet, the pretrained models, and the parser software available in [28]. Extensive ex-
periments on several benchmark datasets demonstrated the effectiveness and usability
of the proposed model across RGB, multispectral, and hyperspectral sources, reporting
a high compression ratio achieved and, at the same time, a great reconstruction from the
compressed information. The proposed model outperformed JPEG, JPEG2000, and the
related state-of-the-art techniques used as benchmarks.
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