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Abstract: UAV-based photogrammetry is becoming increasingly popular even in application fields
that, until recently, were deemed unsuitable for this technique. Depending on the characteristics
of the investigated scenario, the generation of three-dimensional (3D) topographic models may in
fact be affected by significant inaccuracies unless site-specific adaptations are implemented into the
data collection and processing routines. In this paper, an ad hoc procedure to exploit high-resolution
aerial photogrammetry for the multitemporal analysis of the unstable Sciara del Fuoco (SdF) slope
at Stromboli Island (Italy) is presented. Use of the technique is inherently problematic because
of the homogeneous aspect of the gray ash slope, which prevents a straightforward identification
of match points in continuous frames. Moreover, due to site accessibility restrictions enforced by
local authorities after the volcanic paroxysm in July 2019, Ground Control Points (GCPs) cannot be
positioned to constrain georeferencing. Therefore, all 3D point clouds were georeferenced using
GCPs acquired in a 2019 (pre-paroxysm) survey, together with stable Virtual Ground Control Points
(VGCPs) belonging to a LiDAR survey carried out in 2012. Alignment refinement was then performed
by means of an iterative algorithm based on the closest points. The procedure succeeded in correctly
georeferencing six high-resolution point clouds acquired from April 2017 to July 2021, whose time-
focused analysis made it possible to track several geomorphological structures associated with the
continued volcanic activity. The procedure can be further extended to smaller-scale analyses such
as the estimation of locally eroded/accumulated volumes and pave the way for rapid UAV-based
georeferenced surveys in emergency conditions at the SdF.

Keywords: UAV; photogrammetry; Stromboli; volcano; remote sensing; multitemporal survey

1. Introduction

UAV-based photogrammetry is a cost-effective technique that allows for the acquisition
of three-dimensional topographic models with centimetric accuracy. When performance
capabilities are optimized, the outcomes are comparable to those derived from more
expensive techniques that involve more elaborate survey campaigns such as Aerial Laser
Scanning (ALS) or Terrestrial Laser Scanning (TLS) [1,2]. The possibility to rapidly acquire
high-resolution photograms at different angles and carry different types of cameras and
sensors makes the technique well suited to large, remote, and/or markedly rough terrains.
Such quality may be highly instrumental in enhancing the assessment and management of
natural hazards, especially if affected areas are inaccessible for in situ investigations [3].

As a result, it has proven to be an effective and flexible tool for topographic survey-
ing and monitoring of landslides [4–7], rapidly documenting the damage resulting from
earthquakes [8–11], or evaluating volcanic activity and landform interpretation in active
volcanoes [12–17]. Just to cite a few examples from the latter subject, Turner et al., 2017 [18]
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demonstrated how UAV-based photogrammetry to generate Digital Elevation Models
(DEMs) may provide the basis for estimating future flow path behavior and capturing
topographic changes caused by pāhoehoe flow inflation. Rokhmana et al., 2016 [19] ex-
ploited UAV-based optical products such as DEMs and orthophotos for change-detection
analysis and three-dimensional (3D) volumetric quantification of newly ejected volcanic
products, highlighting how the technique may prove essential for acquiring data in the
immediate aftermath of catastrophic eruptive activity. Darmawan et al., 2018 [20] mapped
the morphology and structure of an active lava dome, which supported the identification
of a fracture encircling an unstable dome sector and the consequent estimation of slope
factors of safety.

In this context, UAVs have a strategic advantage in the sense that they are operated
remotely, which greatly simplifies the data collection procedure. At the same time, oper-
ators can keep themselves at a reasonable distance from the hazardous area [21]. These
advantages become even more crucial when UAV flights have to be repeated frequently to
track the evolution of dynamic processes [22–25].

However, there is also an inherent risk of instrumentation losses; even though drones
can usually make an emergency landing in the event of a breakdown (hence preserving
the vehicle and measuring instruments), this is of no practical benefit if it occurs in an
inaccessible area. Since the photogrammetric technique is commonly associated with
relatively low costs, potential economic impacts are nonetheless minimized.

The positioning of Ground Control Points (GCPs), whose coordinates are to be
recorded by means of a Global Navigation Satellite System (GNSS) device with centi-
metric to subcentimetric accuracy, is highly important to correct possible distortions and
refine georeferencing [25]. Control points can either be permanent ground features or
artificial targets distributed over the site of interest before the flight and clearly visible on
raw images. The required density of GCPs varies according to the cameras used, from
the calibration of the lenses to the image aerial georeferencing precision. Recently, several
studies focused on the minimum number and optimal distribution in photogrammetric
surveying [26–29].

In some cases, placing artificial GCPs on the ground can be logistically problematic or
even impossible depending on the terrain morphology. Moreover, this activity increases the
time that operators are exposed to local risks. Alternatively, other correction techniques such
as Real-Time Kinematic (RTK) and Post-Processing Kinematic (PPK) have been developed to
provide highly accurate georeferenced products [30–32], but systematic elevation errors still
remain significant [25]. Štroner et al., 2021 [33] were among the first to deal with the issue
by showing that elevation errors can be reduced by combining two flights with different
image acquisition axes. However, doubling the number of flights is time consuming and
may not be viable in hazardous areas.

This study describes an ad-hoc methodology that was developed for multitemporal
analysis of UAV-based photogrammetric products acquired in a completely inaccessible
and highly hazardous area, namely the northwestern unstable flank of Stromboli volcano
(also known as the ‘Sciara del Fuoco’ (SdF) depression).

The SdF is a depression located on the northwest flank of Stromboli Island, the
emerging portion of a ~3000 m high stratovolcano located in southern Italy (Figure 1). It is
filled with volcaniclastic deposits and lavas that are emitted from a summit crater terrace
located at≈750 m a.g.l. More in detail, the slope is a subaerial–submarine collapse scar [34],
whose subaerial part has a gradient between 30◦ and 40◦ and is continuously affected by
active instability in the form of gravel flows and rockfalls [35–37]. The area is an exceptional
test site for stressing both instrumentations and methods and at the same time providing
scientific data useful for monitoring the gravitational phenomena of the Stromboli slope
and related impacts.

The main hazard associated with large-scale landslides at Stromboli is their ability
to generate tsunamis, whose effects can propagate far away from the source areas [38–40].
The last relevant tsunami at Stromboli occurred in December 2002 as a result of the collapse
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of a large portion of the SdF during the 2002–2003 eruption. The waves caused significant
damage to the east coast of the island up to an altitude of about 10 m above sea level, to
the near island of Panarea, and were largely detected along the Southern Tyrrhenian Sea
coasts [41].
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Figure 1. Sciara del Fuoco, Stromboli Island (image from Google Earth). Numbered dots refer to
the take-off points. Locations of main craters (NEC: North East Crater; CC: Central Crater; SWC:
South West Crater) are reported. On the left, the lithological map of the Sciara del Fuoco (modified
after [42,43]).

The photogrammetric survey campaigns carried out in situ–generated 3D point clouds,
orthorectified aerial photo mosaics, and high-resolution Digital Terrain Models (DTMs).
These products allow for the evaluation of the morphological evolution of the investigated
area by comparing subsequent surveys over time and acting as a support for the analysis
of data from a GB-InSAR system installed in the area.

2. Materials and Methods

Six UAV surveys have been carried out from October 2016 to June 2019 to model the
Sciara del Fuoco landslide, using traditional GCPs. However, due to the great difficulties in
acquiring centimeter-level GNSS measurements in the area caused by some technical and
logistical aspects, it was necessary to reprocess the whole dataset following a new workflow
that does not include the use of GCPs (Figure 2). Due to the restriction of accessibility after
the 3 July 2019, eruption, the applied methodology is now the only methodology usable in
the area to generate high-resolution georeferenced DEMs. In July 2021, a new survey was
carried out to test the reliability of the developed workflow, which can be applied to any
other inaccessible survey area.
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Figure 2. Methodological flowchart. (A) Processing of the surveys at the Sciara del Fuoco with
traditional Ground Control Points (GCPs) that pointed out distortions and alignment issues. (B) Use
of LiDAR Ground Control Points (LGCPs) (I) to re-process the Stromboli 6 dense cloud and identifi-
cation of stable Virtual Ground Control points (VGCPs) (II). (C) Final re-processing of all the surveys
using LGCPs and VGCPs and use of the ICP alignment tool.

Additionally, the homogenous surface of the slope, characterized by uniform volcanic
ash, encumbers the automated detection of matching points, which are required for gen-
erating accurate 3D point clouds from the Structure-from-Motion (SfM) technique. All of
these aspects contribute to the consideration of the Sciara del Fuoco landslide as a challenge
for the use of UAV-based photogrammetry without GCPs.

Surveys have been carried out with the drone Saturn, entirely designed, developed,
and patented by the Department of Earth Sciences of the University of Florence [24]. Con-
tinuous experimentation and technical improvements allow for the adaptation of the drone
to different scenarios, thus extending the applicability of the photogrammetric technique.

The modeled area of the subaerial portion of the Sciara del Fuoco has a total extension
of about 2 km2 (except for the first survey, which covered a reduced area of about 1 km2).
Seven aerial photogrammetric surveys were carried out in the area between October 2016
and July 2021.

Focusing on the first 6 surveys, over the years, the applied technique has been per-
fected, significantly reducing execution times and increasing the quality of the final products
(Table 1). Among the improvements made:

• The number of planned flights has gone from a minimum of 4 to a maximum of
7 flights to cover the entire area of interest. These were performed by acquiring strips
parallel to the slope, at a variable height, and with nadiral grip geometry. The increase
in flights has made it possible to raise the number of frames and, therefore, the accuracy
of the products.

• The 5 take-off points used in the first reliefs placed at an increasing altitude on the NE
side of the Sciara del Fuoco have been replaced by a unique starting point located at
an altitude of 190 m above sea level (take-off number 1 in Figure 1). The single take-off
point considerably reduced acquisition times and the risk exposure of operators.

• GNSS systems campaigns on the ground with RTK correction, aimed at measuring
the coordinates of control points (Ground Control Points (GCPs)), were carried out
during each drone survey. GCPs were materialized on the ground with specific
targets recognizable on aerial photos and necessary for the georeferencing of three-
dimensional models. The shape, color, and material of the targets were modified
during the surveys to understand which was the most recognizable from the frames
and therefore returned better accuracy and precision. Among those used previously,
the targets used in December 2018 and June 2019 of square shape (20 × 20 cm), orange
color, and with a black central circle with a diameter of 5 cm were the most appropriate.
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Table 1. Stromboli 1 to Stromboli 6 UAV-based photogrammetric survey specifications and
product characteristics.

Stromboli 1 Stromboli 2 Stromboli 3 Stromboli 4 Stromboli 5 Stromboli 6

Date October 2016 April 2017 November 2017 May 2018 December 2018 June 2019

Camera Canon IXUS
240

Canon IXUS
240

Canon IXUS
240

Canon IXUS
240

Canon IXUS
160

Canon IXUS
160

Frames 296 928 1165 1390 1512 1212
Flight plans 4 6 7 7 7 7

GNSS
System - Leica 1200 Leica 500 Leica 500 EMLID REACH EMLID REACH

GCPs 0 17 16 31 32 29
Take-off points 5 5 3 2 1 1

N. Points 232′486 700′460 625′743 882′984 1′772′090 1′585′190
DSM

Resolution
(cm/pix)

10 9.7 10 9.5 7 6.5

GCPs
Average
error (m)

4.7 2.3 0.8 0.3 0.1 0.3

Additionally, thanks to the experience gained, the positioning of the marker was
optimized over time, considering only highly visible and good satellite coverage locations.

Three EMILD REACH GNSS antennas were used for the acquisition of GCPs during
the surveys named Stromboli 5–6 in Table 1, instead of a Leica GPS equipment used for
those called Stromboli 2–3–4. Over the years, these three aspects (shape and position
of GCPs and GNSS quality) have led to a decrease in the average georeferencing error
of products. Regularly and before each campaign, the GNSS antenna was tested on a
referenced calibration point, and the error respected the specifications.

Images were analyzed and processed using a Structure-from-Motion (SfM) software to
obtain three-dimensional representations of the investigated surfaces in point cloud format,
Digital Terrain Models (DTMs), and high-definition orthophotos. The technique takes
advantage of the fundamental concepts of classical analogic photogrammetry to combine
digital images appropriately acquired using matching and triangulation algorithms. These
algorithms allow for the identification of homologous points visible on multiple images,
and to define their exact position in three-dimensional space. Processing was performed
with Agisoft Metashape Professional software [44].

Comparing the generated point clouds, some critical issues emerged in the central area,
that is, the core of the Sciara del Fuoco covered by volcanic ash and continuously rolling
surface material. It was noted that the area was affected by convexity, characterized by a
distortion in the central portion and a consequent fictitious distance that made impossible
any reasonable comparison between different models (Figure 2A). The offset was not
constant (therefore not removable manually) and in the order of a few tens of meters. The
cause is due to both intrinsic limitations of the technique and to logistical problems. Firstly,
the area under examination was reconstructed starting from extremely homogeneous
frames both in shape and in color, representative of part of the slope of the volcano covered
mainly by monochromatic and one-dimensional ash. This makes it difficult to identify
match points or points that are clearly distinguishable by shape and color and therefore
identifiable in multiple frames, which, in the technique used, are the essential keys for the
reconstruction of the three-dimensional model.

In addition, the total absence of GCPs in the central area of the survey meant that the
georeferencing in that area was a secondary one, i.e., consequent to the GNSS measurements
carried out along the sides of the relief in aid of the metric georeferencing of the drone’s
GNSS antenna. This area is in fact unreachable, and for this reason, during all surveys,
markers were positioned along the trails that run along the Sciara del Fuoco to the east and
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west. The combination of these two factors generated the distortions found in the central
part of the models.

Given the impossibility of solving the problem related to the Structure-from-Motion
technique, to remedy the lack of GCPs in the area, an aerial LiDAR survey carried out
in 2012 was used. In detail, 15 stable and known points were exported from the LiDAR
survey and imported into each survey as GCPs (Lidar Ground Control Points (LGCPs),
Figure 3). These were chosen thanks to a careful morphological analysis in the high-
definition orthophotos aimed at identifying clearly recognizable morphological features
that have not undergone any change from the execution of the Airborne Laser Scanning
(ALS) survey since June 2019, the date of acquisition of the Stromboli 6 dataset.
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and Lidar Ground Control Points (LGCPs) obtained from the LiDAR survey carried out in 2012.

The point clouds of the UAV survey of Stromboli 1 to Stromboli 6 were then reworked
by anchoring them to the aforementioned LGCPs points, so as to impose the georeferencing
of the area not covered by the markers and subject to distortions (Figure 2B(I)).

Although the addition of the markers obtained from the ALS survey solved the
convexity in the central portion of the Sciara del Fuoco in all the models, these remained
affected by other problems, compromising the multitemporal analysis. In the distal areas
of the Sciara del Fuoco, or those covered by GCPs and which should have been perfectly
aligned between the whole dataset, some horizontal translations of the order of the meter
were still present. In addition, misalignments of entire strips of contiguous frames or
limited portions were identified in most of the surveys.

Some discrepancies and errors were probably introduced over the years by the GNSS
instrumentation used in the first measurement campaigns. Having verified some recog-
nizable structures with the new GNSS instrumentation and having improved the visibility
and positioning of the markers in the last measurement campaigns, it was decided to
georeference all the surveys using the GCPs of the Stromboli 6 dataset.

The reliability of the DSM generated with the Stromboli 6 survey (June 2019) was veri-
fied by comparing it with the model obtained on the same day using high-resolution satellite
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images taken from the PLEIADES-1 constellation (Figure 4). The difference in evaluation
between the two shows in fact excellent correspondence within the measurement error.
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acquired on the same day. On the left side, three cross sections highlighting the correspondence of
the two models.

Thanks to the very high-resolution orthophotos (from 10 to 7 cm/pixel), taken periodi-
cally, it was possible to verify and recognize 23 known points in the different datasets and
georeference them with respect to the last acquisition campaign (Stromboli 6); these points
were called virtual markers (VGCPs, Figure 2B(II) and Figure 3).

All the point clouds were then reworked using Agisoft Metashape Professional
1.7 software using both VGCPs and the 15 known LGCPs obtained from the 2012 air-
borne LiDAR survey.

As a further precaution adopted in the re-elaboration phase, the image alignment
optimization procedure was not adopted. The optimization algorithm recalculates the
position and inclination of the camera once the point cloud is corrected in the function of
the GCPs’ position, allowing for a reduction in the average georeferencing error. In the
particular case of the Sciara del Fuoco; however, it was observed that the optimization
process causes misalignments of groups of images, as well as the formation of secondary
alignment planes of point clouds in some sectors, worsening the accuracy of the final result.
The optimization assumes that the position measurements on the ground are less affected
by errors than those in flight; altitude variations, together with vibrations and delays in
image shooting or simply GNSS measurement errors, can cause georeferencing errors of
the image (height and angles of grip), so as to cause errors of alignment and accuracy
of georeferencing on the ground. If there is good coverage of GCPs or a complex and
well-defined structure is visible on the ground, the algorithm allows effectively correcting
the position data of the images; otherwise, it can cause distortions and errors. In the case
of the SdF, the presence of large, dark, homogeneous, and sandy areas, together with
the impossibility of positioning GCPs, has led to the deduction that the position data
recorded in flight by the drone are more reliable than those algorithmically derivable from
the ground.

Given the nature of the surveys aimed at a multitemporal analysis, it was therefore
decided not to use algorithms for optimizing the position of the images in order to reduce
artifacts and distortions, although it increased the estimated error on the GCPs.
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Table 2 shows the main characteristics of the surveys after their reprocessing; the
average error is in most cases significantly higher than it was after the first elaboration
(Table 1). The increase in the error on the GCPs, however, allows the comparison of
multitemporal data with greater reliability within the measurement errors detected.

Table 2. UAV-based photogrammetric survey specifications and product characteristics after the
finest realignment processing.

Stromboli 1 Stromboli 2 Stromboli 3 Stromboli 4 Stromboli 5 Stromboli 6

VGCPs 27 19 21 29 29 29
LiDAR GCPs 3 13 14 5 15 15

N. Points 309′058 857′445 625′743 1′229′068 1′735′945 1′585′190
DSM Resolution

(cm/pix) 9.8 9.9 9.6 10 7 6.5

GCPs Average error
(m) 10.9 9.8 2.4 0.6 2.4 2.6

It was possible to apply the optimization only in the case of Stromboli 4. The model
had various misalignments mainly due to a significant change in the illumination of
the slope due to weather conditions. Processing the entire dataset of images minimizes
errors in georeferencing accuracy. In this case, however, a better result was obtained by
dividing the entire dataset into two parts: the first including the first 3 flights starting from
the coast and the second including those upwards, grouping frames with homogeneous
lighting. Therefore, a clear line dividing the two parts is visible. Although the survey is
not continuous, two sections were obtained that are comparable with the data obtained in
the other measurement campaigns. Probably due to the smaller areal extension processed,
in this case, the optimization tool worked successfully, minimizing the error without
generating distortion and artifacts. This particularity is subject to analysis and verification
and will be clarified in the continuation of the research activities.

To further improve the results and eliminate rotation and translation errors of the
model axes, point clouds were finally realigned using the Fine Registration tool, Iterative
Closest Point (ICP), available on CloudCompare 2.11 software (Figure 2C) [45]. The tool
improves the georeferencing accuracy of a point cloud by aligning it to a reference point
cloud based on the search of pairs of nearest points in two adjacent scans.

The state of emergency declared after the eruption on 3 July 2019, made it impossible
to continue making UAV surveys at regular intervals. For this reason, the first available
data after Stromboli 6 were obtained in July 2021 (hence Stromboli 7, whose specifications
are listed in Table 3).

Table 3. Stromboli 7 UAV survey specifications and product characteristics.

Stromboli 7

Date July 2021
Camera Canon IXUS 160
Frames 1102

Flight plans 7
GNSS System EMLID REACH
Take-off points 1

VGCPs 29
LiDAR GCPs 15

N. Points 1′922′353′547
DSM Resolution (cm/pix) 4.8
GCPs Average error (m) 1.2

On this occasion, the described procedure was tested. The aerial photogrammetric
survey was carried out without positioning any Ground Control Points (GCPs). After
processing the images, the model was then georeferenced only using GCPs from Stromboli 6
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and from the 2012 ALS LiDAR survey (VGCPs and LGCPs in Figure 3) and successively
realigned by means of the ICP alignment tool, precisely following the explained method.
The result is a georeferenced high-definition 3D point cloud, as shown in Figure 5.
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July 2021. Details of the Stromboli 7 3D point cloud, highlighting the high resolution.

3. Results
3.1. April 2017 to June 2019 DEMs Comparison

The point clouds resulting from the elaboration of the images belonging to the first six
surveys were used to generate DSMs to calculate new difference maps with the ArcGIS
Desktop software (v. 10.7.1) (Figure 6) [46]. Due to its partial coverage of the SdF area and
the lack of GCPs for correct georeferencing, the comparison with the first survey, Stromboli
1, was not taken into account. The errors due to the rotations between the models have been
corrected, pointing out an optimal result. The change detection analysis allows therefore to
identify and map numerous areas characterized by accumulation and/or erosion of volcanic
materials. Since stable areas, such as the trails running along the SdF, are characterized
by values of less than ± 1 m, all the areas with difference values less than 1 m have been
considered as not affected by any geomorphic variation. This is not in any case feasible
for the comparison with the Stromboli 2 survey where, for the problems pointed out in the
previous section, the realignment is affected by a significant error. It is, however, possible
to relatively identify the areas affected by meaningful geomorphic changes.

Starting from the difference between the last two flights, Stromboli 6 and Stromboli 5
(June 2019–December 2018) in Figure 6a, and moving backward, it is possible to identify an
erosion area, between −1 and −2 m deep, in the middle of the shoreline. This area became
bigger and moved up to the slope in the difference between Stromboli 6 and Stromboli 4
(June 2019–May 2018) in Figure 6b, reaching the border of the volcano crater. In this case,
the difference between the two DEMs along the shoreline surfaces is up to −10 m. Similar
differences in distribution can be found in Figure 6c, where Stromboli 6 and Stromboli 3
(June 2019–November 2017) are compared. Here, the area suffering from erosion (negative
differences) is wider, but it is side by side with an area in blue tones on the southwestern
side of the shoreline, with positive differences up to 10 m (within the red box in Figure 6c).
However, through a visual examination of the two orthophotos, we can easily avoid the
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mistake of interpreting this area as one caused by a thick deposition. The square shape of
the blue area identifies indeed a misalignment error caused by an excessive difference in
illumination due to the different positions of the sun between the two surveys (carried out
in summer and in winter, respectively).
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3.2. Application on July 2021 DEM

The potential of the presented methodology is evident looking at the difference be-
tween the Stromboli 7 and Stromboli 6 models (Figures 7 and 8). The two DSMs are
correctly aligned, and the analysis points out significant changes in the morphology, due to
erosion processes, gravitational phenomena, lava overflows, and mostly the paroxysm that
occurred on 3 July 2019.
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Looking at the lowest sector of the SdF in Figure 8, in proximity to the A-A’ cross-
section, the main morphological changes are related to coastal erosion phenomena rather
than deposit due to lava overflows shown in the figure as orange and blue areas, respec-
tively. Similarly, the portion crossed by section B-B’ includes the North East Crater (NEC)
overflows. Among all the visible differences, the accumulation in the northwest sector of
the map stands out. The growth in elevation is due to the very intense Strombolian activity
that occurred in Stromboli between the two acquisitions [43,47–55]. The above-mentioned
phenomena are entirely attributable to the activity described in Table 4, where the main
events that occurred between June 2019 and July 2021 are listed.

Table 4. Events occurred at Stromboli volcano between June 2019 and July 2020. The position of
South West Crater (SWC) and North East Crater (NEC) is shown in Figure 1.

Date Event Description Reference

3 July 2019–30 August 2019
Lava flow from SWC

associated with
paroxysmal explosion

Di Traglia et al., 2022 [43];
Plank et al., 2019 [47]

12 July 2019 Lava flow from NEC Di Traglia et al., 2022 [43]

18 January 2020 Lava overflow from NEC Di Traglia et al., 2022 [43]

5 February 2020 Lava overflow from NEC Di Traglia et al., 2022 [43]

28 February 2020 Lava overflow from NEC Di Traglia et al., 2022 [43];
Calvari et al., 2020 [48]

28 March–1 April 2020 Lava overflows from NEC Di Traglia et al., 2022 [43];
Calvari et al., 2020 [48]

15 April 2020 Lava overflows from NEC UNIFI-CPC 2020a [49]

19 April 2020 Lava overflows from NEC UNIFI-CPC 2020b [50]

24 April 2020 Lava overflows from NEC UNIFI-CPC 2020c [51]

18–24 January 2021 Lava overflows from NEC and
major explosion UNIFI-CPC 2021a [52]

19 May 2021 Lava flow from NEC UNIFI-CPC 2021b [53]

17 June 2021 Lava overflows from NEC UNIFI-CPC 2021c [54]

25 November 2021 Lava overflows from NEC UNIFI-CPC 2021d [55]

3.3. Small-Scale Detailed Analysis

As discussed, the setting-up procedure allows us to produce a change detection
analysis for the whole SdF slope and identify significant variations in the morphology.
On the other hand, deeper analysis of less relevant variations, as well as more precise
quantification of involved volumes, can also be performed. The Iterative Closest Point (ICP)
realignment technique indeed allows for the detailed study of small areas. The smaller the
area to be examined, the greater the accuracy of the realignment, and consequently the
more accurate the evaluation of the surfaces involved in morphological processes. In order
to demonstrate the potential of this technique, two areas of detail were analyzed.

The first area is located in the previously described central coastal zone subject to
continuous topographical changes (Figure 9). There, the refinement in the alignment of
the two clouds enabled considering the restricted area inscribed in the yellow square of
Figure 9 and the estimation of deposition area and volume.
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Figure 9. Stromboli 6–Stromboli 5 difference evaluated in an area close to the coastline after the usage
of the Iterative Closest Point (ICP) alignment tool. Points within the yellow square are those taken
into account for the realignment.

Similarly, Figure 10 shows the case of a pre-existing detachment area in the southwest-
ern portion of the Sciara del Fuoco, just below the plateau. The realignment of a small area
of about 150 m × 180 m made it possible to identify some significant gaps that modified its
overall morphology. The whole dataset was compared to date the detachment that took
place between April 2017 and November 2017 (see the difference between Stromboli 3 and
Stromboli 2, Figure 10). Both analyses allow us to appreciate the morphometric variations
at a decimetric scale.
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4. Discussion and Conclusive Remarks

The photogrammetric technique has been already used to model the SdF slope. Baldi
et al., 2005 [56] carried out a helicopter-based photogrammetric survey proving the high
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potential of the tool for rapid data acquisition in inaccessible areas, such as those involved
in volcanic phenomena. Marsella et al., 2012 [57] performed a quantitative reconstruction
of the morphological changes of the SdF between 1868 and 2009, integrating historical
maps, aerial photogrammetric, and Airborne Laser Scanner surveys. Di Traglia et al.,
2018, 2020 [42,58] analyzed the geomorphological responses to the volcanic activity at the
Stromboli volcano by comparing DEMs generated from tri-stereo PLÉIADES-1 imagery
and LiDAR data. The work of Civico et al. (2021) [17] instead focused on the morphological
variations of the crater terrace of Stromboli, detected by using UAVs.

However, in all these studies, DEMs were generated by integrating airborne and
ground-based techniques or only from aerial/satellite photogrammetric survey, thus with
a low resolution unable to identify minor structures. In addition, aerial-based photogram-
metry is an expensive technique that usually requires time-consuming organization and
coordination [59,60]. In this paper, high-resolution aerial photogrammetry for the multi-
temporal analysis of the unstable Sciara del Fuoco (SdF) slope at Stromboli Island (Italy)
has been presented.

During our topographic reconstruction, several difficulties in the alignment and geo-
referencing of the generated 3D point clouds have emerged. Despite the product’s high
resolution and precision, surveys were not in fact comparable and usable for a reliable
change-detection analysis.

This was, however, possible through the development of a specific processing method-
ology, allowing the analysis of morphological variations of a largely inaccessible area at a
decimetric scale. The procedure includes:

• Positioning of GCPs alongside the perimeter of the inaccessible area.
• Drone multitemporal surveys using physical shutter cameras and lenses with a field

of view of less than 80◦ to minimize rolling shutter and lens distortions; on-board
submetric GNSS or in any case capable of Horizontal Dilution of Point (HDOP) < 1 m.

• Anchoring of point clouds to virtual GCPs exported from a previous LiDAR survey
carried out in 2012 located along the unreachable portions of the Sciara del Fuoco.

• Georeferencing using GCPs obtained from GNSS measurements of the June 2019
survey positioned along the trails or in any case in areas that have not undergone
changes and are easily recognizable from the frames acquired over the years.

• Georeferencing refinement by realigning the point clouds with respect to a reference
point cloud (Stromboli 6).

The results, with particular reference to the multitemporal analysis and therefore to the
differences calculated between pairs of DSMs, highlighted the potential of the technique,
which was tested for the georeferencing of a further UAV-based photogrammetric survey
carried out in July 2021. The elevation difference map between Stromboli 7 and Stromboli 6
pointed out several structures related to the volcanic activity in the time lap.

The method can be extended to all cases in which operating on the ground is not
possible. In the case of the SDF, the georeferencing by means of the exported points from
the LiDAR survey of 2012 and the GCPs of the aerial photogrammetric survey of June 2019
allows for carrying out surveys with a reduced campaign of positioning of markers on the
ground. This would significantly reduce the time and therefore the risk exposure of the
operators during the activities. Keep in mind that, in ideal weather conditions and in the
absence of unforeseen events related to the instrumentation, the photogrammetric surveys
have required up to now 1 day for the GPS campaign and 1 day for drone flights (3 h of
flight operations).

The technique used allows for the alignment of small portions of the slope with
further precision. This, in addition to a more accurate estimate of the surfaces involved in
accumulation and/or erosion phenomena, allows for the investigation of potential trigger
areas of gravitational phenomena or newly formed fractures.
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