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Abstract: Atmospheric water vapor is one of the important parameters for weather and climate
studies. Generally, atmospheric water vapor can be monitored by some techniques, such as the
Global Navigation Satellite System (GNSS), radiosonde (RS), remote sensing and numerical weather
forecast (NWF). However, the comprehensive retrieval and application of precipitable water vapor
(PWV) using multi techniques has been hardly performed before, which becomes the focus of this
study. A comprehensive PWV retrieval and application platform (CPRAP) is first established by
combing the ground-based (GNSS), space-based (Fengyun-3A, Sentinel-3A) and reanalysis-based (the
fifth-generation reanalysis dataset of the European Centre for Medium-Range Weather Forecasting,
ERA5) techniques. Additionally, its applications are then extended to drought and rainfall monitoring
using the CPRAP-derived PWV. The statistical result shows that PWV derived from ground-based
GNSS has high accuracy in China, with the root mean square (RMS), Bias and mean absolute error
(MAE) of 2.15, 0.05 and 1.65 mm, respectively, when the RS-derived PWV is regarded as the reference.
In addition, the accuracy of PWV derived from the space-based (FY-3A and Sentinel-3A) techniques
technique is also validated and the RMS, Bias and MAE of a Medium Resolution Spectral Imager
(MERSI) onboard Fengyun-3A (FY-3A) and an Ocean and Land Color Instrument (OLCI) onboard
Sentinel-3A are 4.46/0.56/3.61 mm and 2.95/0.01/1.37 mm, respectively. Then, the performance of
ERA5-derived PWV is evaluated based on GNSS-derived and RS-derived PWV. The result also shows
good accuracy of ERA5-provided PWV with the averaged RMS, Bias and MAE of 1.86/0.11/1.48 mm
and 0.90/−0.05/1.51 mm, respectively. Finally, the PWV data derived from the established CPRAP
are further used for drought and rainfall monitoring. The applied results reveal that the calculated
the standardized precipitation evapotranspiration index (SPEI) using the CPRAP-derived PWV can
monitor the drought and the correlation coefficient ranges from 0.83 to 0.9 when compared with
the SPEI. Furthermore, in this paper correlation analysis between PWV derived from the CPRAP
and rainfall, and its potential for rainfall monitoring was also validated. Such results verify the
significance of the established CPRAP for weather and climate studies.

Keywords: global navigation satellite system; Radiosonde; precipitable water vapor; weather and
climate studies

1. Introduction

Atmospheric water vapor is a key parameter for the Earth’s climate system, which
affects the hydrological cycle, weather forecasting and climate change [1,2]. Therefore,
understanding the spatio-temporal variations of atmospheric water vapor plays a vital role
in analyzing regional and global climate change and short-term rainfall [3]. Precipitable

Remote Sens. 2022, 14, 2507. https://doi.org/10.3390/rs14102507 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14102507
https://doi.org/10.3390/rs14102507
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6715-0877
https://doi.org/10.3390/rs14102507
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14102507?type=check_update&version=2


Remote Sens. 2022, 14, 2507 2 of 19

water vapor (PWV) is the indictor used to reflect the variation of atmospheric water vapor
content, which is defined as the water vapor content per unit cross-sectional area from the
surface to the top of the atmosphere [4].

Several conventional techniques have been used to retrieve PWV, which includes
radiosonde (RS), water vapor radiometer (WVR), and numerical weather prediction (NWP).
However, these techniques have their disadvantages and limitations, and cannot simultane-
ously obtain PWV with high precision and high spatio-temporal resolutions. For example,
RS could provide PWV products with 30 m vertical resolution, but its spatio-temporal
resolutions are low because the distance among stations is 200–300 km and the RS balloon
are launched twice or four times a day; thus, the PWV derived from RS is usually used
for data calibration [5]. WVR can provide PWV products with a high temporal resolution,
but it is too expensive to apply widely and vulnerable to cloud and rainfall [6]. Remote
sensing techniques could obtain PWV with high spatial resolution; however, temporal
resolution and accuracy are relatively poor for polar-orbiting satellites [7]. Furthermore, the
performance of satellites is also affected by bad weather in deriving PWV [8,9]. Although
PWV can also be obtained based on global model NWP with a temporal resolution of
one hour, the spatial resolution and accuracy are relatively low [10,11].

Apart from the above techniques, the emerging techniques, Global Navigation Satellite
System (GNSS), the fifth-generation reanalysis dataset of the European Centre for Medium-
Range Weather Forecasting (ECMWF-ERA5) and FY-3A and Sentinel-3A satellite have
more potential for deriving PWV products. Since the conception of GNSS meteorology
is first proposed and the PWV is calculated by Bevis et al. [12], the GNSS-derived PWV
has been widely validated and used globally. It has the advantages of high-precision,
real-time, low-cost and all-weather conditions [10]. Zhang et al. [13] generated a six-hourly
PWV dataset over the period from 1999 to 2015 at more than 260 GNSS stations in China.
Zhao et al. [14] updated this dataset and generated the hourly PWV dataset over the period
of 2011 to 2017 at 249 stations in China, which improved the temporal resolution compared
with that from Zhang et al. [13]. To obtain the PWV value, the zenith total delay (ZTD)
and the zenith hydrostatic delay (ZHD) should be calculated, and then the zenith wet
delay (ZWD). Therefore, the PWV can be calculated by multiplying the conversion factor
by the ZWD, which plays a very important role in the progress of retrieving PWV from
the ZWD of the GNSS [15]. Current researchers often use empirical models to obtain
them quickly [16]. ERA5 is the latest generation of reanalysis data released by ECMWF at
14 June 2018, which enhances the horizontal spatio-temporal resolutions when compared
with its previous version (ERA-Interim) and adopts the latest integrated forecast system
(IFS) to reprocess a large number of assimilation datasets [17]. ERA5-provided PWV values
were also validated at 268 GNSS stations worldwide over the period of 2016 to 2018 and
the statistical result shows that the PWV derived from ERA5 agrees well with that from
the GNSS, whereas the root mean square (RMS) and Bias are 1.84 and 0.67 mm, respec-
tively [17]. FengYun-3A (FY-3A) and Sentinel-3A, have high spatial-temporal resolution
in deriving PWV. The Medium Resolution Spectral Imager (MERSI) and Ocean and Land
Color Instrument (OLCI) onboard the FY-3A and Sentinel-3A, respectively, contain some
channels covering the spectral range from visible light to long-wave infrared [18]. The
near-infrared channels can be used to derive PWV [19]. Gong et al. [20] found that the RMS
and Bias of PWV derived from FY-3A/MERSI in China are 2.2–17 mm and 0.8–12.7 mm,
respectively. Xu and Liu [21] showed that the PWV derived from Sentinel-3A/OLCI has
a good agreement with that from the GNSS. In addition, the RMS of PWV difference
between Sentinel-3A and GNSS are 3.03 mm under clear weather conditions.

Based on a variety of current PWV-derived technologies, the PWV products with high
spatio-temporal resolutions cannot be obtained using a single technique while guaranteeing
high accuracy. Therefore, this study establishes a comprehensive PWV retrieval and appli-
cation platform (CPRAP) to solve the above issues by combining the ground-based (GNSS,
RS), space-based (FY-3A, Sentinel-3A) and reanalysis-based (ERA5) techniques. Accord-
ingly, the accuracy of PWV derived from some techniques is firstly validated and statistical



Remote Sens. 2022, 14, 2507 3 of 19

results show that the proposed CPRAP has good performance in deriving PWV. Then,
CPRAP-derived PWV is applied for drought and rainfall monitoring, which also indicates
the potential of the proposed CPRAP for corresponding weather and climate studies.

2. Data and Theory Description
2.1. The CPRAP Usage Data Description

In this paper, the CPRAP was established by combining the ground-based (GNSS, RS),
space-based (FY-3A, Sentinel-3A) and reanalysis-based (ERA5) techniques to guarantee high
accuracy and spatio-temporal resolution in deriving PWV simultaneously. The performance
of the established CPRAP is first validated and the applicability was then performed in
drought and rainfall monitoring. Figure 1 shows the flowchart of the established CPRAP
and its applications.
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Figure 1. Flowchart of establishing CPRAP and its applications for drought and rainfall monitoring.

In this paper, five kinds of datasets, which are GNSS, RS, ERA5, FY-3A and Sentinel-3A,
were selected to perform the experiment. Table 1 provides the specific information of the
data used for the experiment.
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Table 1. Specific information of the data used for the establishing CPRAP.

Category Resource Period Spatial-Temporal Resolution Source

Ground-Based
GNSS 1 January 2012–31 December 2020 1 h Station (260) ftp://ftp.cgps.ac.cn/products/

(accessed on 24 April 2022)

RS 1 January 2012–31 December 2020 12 h Station (87) ftp://ftp.ncdc.noaa.gov/
(accessed on 24 April 2022)

Reanalysis-
Based ERA5 1 January 2012–31 December 2020 1 h 0.25◦ × 0.25◦ https://www.ecmwf.int/

(accessed on 24 April 2022)

Space-Based
FY-3A/MERSI 1 January 2012–31 December 2013 5 min 1 km × 1 km http://satellite.nsmc.org.cn/

(accessed on 24 April 2022)
Sentinel-

3A/OLCI 1 March 2019–4 March 2020 5 min 0.3 km × 0.3 km https://scihub.copernicus.eu/
(accessed on 24 April 2022)

2.1.1. GNSS and RS PWV Data

GNSS observations are derived from the Crustal Movement Observation Network
of China (CMONOC), and the CMONOC was built starting 1997 and operated in 2001.
CMONOC consists of more than 260 continuous operated GNSS stations and 2000 discon-
tinuous regional observation stations [22]. In this paper, the corresponding observations
of 260 continuous GNSS stations were selected over the period of 2012 to 2020 in China.
GNSS observations are processed by the precise point positioning (PPP) technique and
the specific processing procedures can be referred to our previous work [23]. Finally, the
hourly ZTD was estimated at those selected stations. Due to lack of meteorological sensors
at GNSS stations, use the temperature (T) and pressure (P) data provided by ERA5 the
vertical interpolation of T and P data of ERA5 performed before bilinear interpolation [24].

Integrated Global Radiosonde Archive (IGRA) includes more than 2000 stations all
over the world [20] and the RS balloon are launched twice (UTC 00:00 and 12:00) or four
times (UTC 00:00, 06:00, 12:00 and 18:00) a day [25]. The corresponding meteorological
parameters, such as T, P and relative humidity, can be observed at different heights from the
surface to the height of approximately 30 km [26]. In this study, the data of 87 RS stations
were selected over the period of 2012 to 2020 in China. Figure 2 gives the geographical
distributions of the selected GNSS and RS stations in China.
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2.1.2. ERA5 PWV Data

ECMWF was formally established in 1975 and ERA5 is the fifth-generation reanalysis
dataset of ECMWF. Compared with the fourth-generation reanalysis dataset, ERA5 has
a higher temporal resolution with a value of 1 h. Two- and three-dimensional specific
humidity, T, P and other 16 types of hierarchical meteorological data information are
provided by ERA5. The advanced data assimilation and model systems were used to
integrate large amounts of historical observation data into global estimates [27]. In this
study, the corresponding meteorological data provided by ERA5 was selected over the
period of 2012 to 2020.

2.1.3. FY-3A/MERSI and Sentinel-3A/OLCI PWV Data

The FY series of satellites has formed an all-weather, three-dimensional and continuous
satellite observation network of the Earth’s atmosphere, ocean and surface environment in
response to climate change. Its designed purpose is used for disaster monitoring research.
The MERSI onboard FY-3A can provide 5-min, 10-day and monthly PWV products with
spatial resolutions of 1 km, 5 km and 5 km, respectively [28,29]. The statistical result shows
that the accuracy of MERSI-derived water vapor products is relatively lower than that
derived from GNSS, RS or ERA5 [30]. In this study, the PWV data derived from FY-3A was
selected over the period of 2012 to 2013 in China.

The Copernicus project was launched in 2003 to provide global satellite remote sensing
data services mainly through the coordinated management and integration of existing and
future launches of satellite data and field observation data in European and non-European
countries [31]. One of the main objectives of Sentinel-3A mission was to measure the
Earth’s weather and climate on land and sea [32]. Three levels of processed products,
including Level 0 (L0), Level 1 (L1) and Level 2 (L2), has been provided by OLCI onboard
Sentinle-3A. In addition, the L2 PWV product provided by OLCI has a spatial resolution of
300 m. However, the validation of this product was merely performed before. Therefore,
the data of Sentinel-3A L2 were selected and validated in this paper over the period from
1 March 2019 to 4 March 2020 in China.

2.2. Theory and Method of Retrieving PWV
2.2.1. PWV Derived from GNSS

GNSS signals are refracted and bent when passing through the troposphere [33]. Given
that this delay is mainly concentrated in the troposphere, this delay is called tropospheric
delay and its delay in the zenith direction is called ZTD. ZTD consists of ZHD and ZWD.
ZTD can be estimated by the PPP technique or relative positioning technique using non-
differenced or double-differenced GNSS observations, respectively [34]. The retrieval of
PWV can be divided into three main steps.

(1) ZHD is mainly affected by the surface pressure and can be precisely calculated by
the Saastamoinen model [35]:

ZHD =
0.002277× P

1− 0.00266× cos(2ϕ)− 0.00028×H
(1)

where P is the surface pressure at GNSS station (unit: hPa), ϕ is the latitude of the GNSS
station (unit: rad) and H is the ellipsoid height of GNSS stations (unit: km).

(2) After the ZHD is obtained, ZWD can be calculated by subtracting ZHD from ZTD.

ZWD = ZTD− ZHD (2)

(3) Thus, the ZWD can be further converted to the PWV by multiplying the conversion
factor [12]:

PWV = Π× ZWD =
106

(K′2 + K3/Tm
)
× Rv × ρ

× ZWD (3)

where ρ is the liquid water density (1000 kg/m3); Rv denotes the specific gas constant of
water vapor (461.51 J × K−1 × kg−1); K′2 and K3 are atmospheric refractivity constants
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with values of 16.48 K/hPa and 3.776×105 K2/hPa, respectively. The term Tm was the
atmospheric-weighted mean temperature. The Tm used in this paper was calculated based
on the improved Tm model (IGPT2w) and the PWV error caused by the error of Tm is
approximately 0.29 mm [36,37].

Given the missing meteorological sensors for some GNSS stations, the meteorological
data cannot be obtained at those stations. Thus, the corresponding data (P and T) provided
by ERA5 were used and the bilinear interpolation method was introduced to interpolate
the gridded meteorological data to the GNSS station [38]. Vertical adjustment is extremely
important in establishing tropospheric delay [39]. The empirical formulas for converting P
and T at different heights are as follows [40]:

Ph1 = Ph2 · (1− 0.0000226 · (h1 − h2))
5.225 (4)

∆T/∆h = −0.0065◦C/m (5)

where h was the ellipsoid height of the GNSS/RS stations (unit: m); h1 and h2 be unified to
the same elevation systems, Ph1 and Ph2 were the pressure values of h1 and h2, respectively
(unit: hPa), and T is the temperature (unit: ◦C).

2.2.2. PWV Derived from Radiosonde

The RS data derived from IGRA includes a variety of meteorological parameters, such
as P, T and specific humidity, which are widely used in various studies, including model
establishment [41], atmospheric process and climate research [42]. However, the PWV
value cannot be detected from the RS data directly and the corresponding calculation is
required to obtain PWV. Previous study has given a specific procedure to calculate the
PWV [43] and the main process can be divided into three steps as follows:

(1) According to the layered water vapor pressure and temperature provided by RS,
ZWD is calculated by layered superposition. In the present study, PWV was calculated
from the height layered superposition of the surface pressure to the top layer pressure of
300 hPa [43,44]:

Nw =
n
∑
1

3.73×105×pv
T2 × dh

1000

ZWD =
p∫

p0

Nwdp
(6)

where pv is the water vapor pressure (unit: hPa); Nw is the wet refraction and dh is the
layer height difference (unit: m); T is the temperature (unit: k); p0 is the surface pressure, p
is the top layer pressure.

(2) According to the water vapor pressure and temperature provided by RS, Tm was
calculated by layered superposition [19]:

Tm =
∑n

1
pv×dh

T

∑n
1

pv×dh
T2

(7)

(3) PWV was finally retrieved by multiplying the conversion factor as presented in
Equation (3).

2.2.3. PWV Derived from ERA5

ERA5 directly provides the PWV value. However, only the PWV at a fixed height
and grid points can be obtained. The following three steps were performed to obtain the
corresponding PWV at the height of the GNSS station.

(1) The geopotential height of the ERA5 grid point to the ellipsoid height was first
converted as follows [44]:

GPH = GP/g

H = R(ϕ)×Y45×GPH
YS(ϕ)×R(ϕ)−Y45×GPH

(8)
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where H is the orthometric height, GP refers to geopotential, GPH refers to geopotential
height, g refers to gravitational acceleration with a value of 9.80665 g/m2, YS(ϕ) is the
normal gravity value on the surface of rotating ellipsoids, represents the Earth’s effective
radius at latitude, Y45 refers to the normal gravity value of the ellipsoid at latitude 45◦,
R(ϕ) refers to the radius of the Earth at the latitude ϕ.

(2) PWV value at the grid point height provided by ERA5 should be first adjusted to
the corresponding height of GNSS/RS [45]. An empirical correction formula of PWV was
used to convert PWV from the height of h1 to h2 [16]:

PWVh1= PWVh2 · exp(−(h 1−h2)/2000) (9)

where PWVh1 and PWVh2 are the PWV corresponding to the heights of h1 and h2, respec-
tively (unit: m). The empirical value of 2000 was referred from Yang et al. [46].

(3) The bilinear interpolation method was used to obtain PWV values of GNSS stations
from corresponding data of grid points surrounding the GNSS stations [38].

2.2.4. PWV Derived from Remote Sensing Satellite

The MERSI water vapor 5 min product is generated with in three near-infrared chan-
nels centered at 0.905, 0.940 and 0.980 µm and the two window channels centered at
0.865 and 1.030 µm according to the differential absorption method. The three near-infrared
channels centered have different water vapor sensitivities under the same atmospheric
condition. Under a given atmospheric condition, the derived water vapor values from
the three channels can be different. Thus, a mean PWV value of three channels can be
calculated according to the following steps.

(1) The weighted mean value of the three water vapor absorption channels is combined
based on the sensitivity and the PWV is obtained according to the equation [47]:

PWV = ∑ fiωi (10)

where ωi is the PWV values derived from each water vapor absorption channel; fi
is the normalized weighting parameters correspond to each band and subscription i
refers to the channel.

(2) The weighting parameter of each band is calculated based on the sensitivity of the
transmission in each of the channels to the PWV.

fi = ηi/∑ ηi

η =
∣∣∣ ∆τ

∆w

∣∣∣ (11)

where ∆τ is the transmittance variation in one unit length; ∆w is the PWV variation
in one unit length. It is computed numerically from simulated curves of transmittance
versus precipitable water vapor; ηi is sensitivity.

In Sentinel-3A/OLCI, the retrieval algorithm mainly relies on the differential absorp-
tion algorithm to link the radiation ratio of the Sentinel-3A two NIR water vapor absorption
channels [48]. According to Fischer and Bennartz [49], neural networks trained with the
Matrix Operator Model (MOMO) can measure atmospheric water vapor on the land and
ocean. Thus, the total calculation in this study was performed as follows [50]:

PWV = k0 + k1 log(R) + k2 log2(R) (12)

where k0,k1 and k2 indicate the regression coefficients and R is the ratio of the radiation
from channel 17 of the OLCI instrument to the radiation of channel 18. In this study,
the secondary terrestrial full-resolution product derived from Sentinel-3A is selected to
perform the experiment.

3. Evaluation and Application of PWV Derived from CPRAP

In this section, the PWV with the different spatio-temporal resolutions was first derived
from the CPRAP and the accuracy of corresponding PWV values derived from GNSS,
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satellite remote sensing (FY-3A/MERSI and Sentinel-3A/OLCI) and reanalysis dataset
(ERA5) was further evaluated. Finally, the CPRAP-derived PWV was applied in drought
and rainfall monitoring in Yunnan and Zhejiang provinces, China, respectively. Given
that the high-precision PWV can be retrieved from RS data [51], the corresponding PWV
calculated by RS data was also obtained from the CPRAP and regarded as the reference to
evaluate the performance of PWV derived from other techniques.

3.1. Performance of CPRAP-Derived PWV
3.1.1. Accuracy Analysis of GNSS-Derived PWV

Fifty-six collocated stations between GNSS and RS were selected in China over the
period of 2012 to 2020 to evaluate the performance of GNSS-derived PWV based on CPRAP.
The collocated principle is that the horizontal differences between GNSS and RS is less than
0.4◦ [13] and the altitude difference is less than 500 m. Furthermore, the empirical PWV
correction model at collocated stations was used to reduce the PWV residual caused by
the height difference [16]. RS-derived PWV can only be obtained at UTC 00:00 and 12:00;
therefore, the corresponding comparison at collocated stations was only performed at those
epochs over the selected period. RMS, Bias, MAE and R2, in Equation (13) were chosen to
evaluate the accuracy of GNSS-derived PWV.

RMS =

√
1
n

n
∑

i=1
(Xi − X)2

MAE = 1
n

n
∑

i=1

∣∣(Xi − X)
∣∣

Bias = 1
n

n
∑

i=1
(Xi − X)

R2(X, Y) = cov(X,Y)
σXσY

(13)

where Xi is the PWV derived from the GNSS, whereas X is the PWV mean value derived
from the RS and used as the reference value. Y is the PWV derived from the RS. σX and σY
are the standard deviation of X and Y, respectively.

PWV was derived from four collocated stations (URU2, NMEL, LNJZ and GXNN) and
those stations are randomly selected and evenly distributed in China with different climate
conditions. Figure 3 gives the scatter density diagram of those stations over the period of
2012 to 2020. It can be observed that the RMS values of those stations generally increased
from subfigures (a) to (d) and an excess of 3 mm was observed at the GXNN station, which
are acceptable because the averaged PWV value is 42.68 mm at the GXNN station. The
corresponding values of the other three stations are 9.58, 8.49 and 17.44 mm. Furthermore,
an error in the empirical formula of PWV correction at different heights also exists between
collocated RS and GNSS stations. Figure 4 presents the RMS and Bias distributions of PWV
difference between GNSS and RS over the period of 2012 to 2020. It can be observed that
the RMS generally increased as latitude decreased. Furthermore, Bias is positive in the
north of China and negative in the south of China. The GNSS-derived PWV inversion has
poor accuracy at low latitudes in China, and the PWV values in low latitudes are larger,
resulting in larger errors. Statistical result (Table 2) reveals that the averaged RMS, Bias
and MAE are 2.15, 0.05 and 1.65 mm, respectively, which shows the good performance of
the established CPRAP for retrieving PWV data using the GNSS technique.
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Table 2. Statistical results of RMS, Bias and MAE of PWV differences between GNSS and RS (54) in
China over the period 2012 to 2020.

Value Index RMS Bias MAE

Mean 2.15 0.05 1.65
Max 3.24 0.61 3.54
Min 0.86 −0.69 0.66

3.1.2. Accuracy Analysis of ERA5-Derived PWV Product

The comparison was performed using the corresponding GNSS and RS stations in
China over the period of 2012 to 2020 to evaluate the performance of ERA5-derived PWV
based on the CPRAP. The gridded point was first interpolated into the location of GNSS or
RS stations following the steps proposed in Section 2.2. Figure 5 gives the time series of
PWV between RS and ERA5 and their differences at two stations (CH20 and CH41) over
the period of 2012 to 2020. Those two stations were selected because they were distributed
in the south and north of China, respectively. It can be observed that the PWV time
series derived from ERA5 showed good consistency with that of RS and their difference
approximately follows a normal distribution. In addition, the RMS and Bias distributions
of PWV differences between ERA5 and GNSS/RS are also presented in Figure 6. It can be
found that the RMS of ERA5-derived PWV is evidently higher in south China than that
in north China, whereas Bias does not show evident regional differences. Table 3 gives
the statistical results of RMS, Bias and MAE between ERA5 and GNSS/RS over the period
of 2012 to 2020 in China. It can be found that the averaged RMS, Bias and MAE between
ERA5 and GNSS/RS are 1.86/0.11/1.48 mm and 0.90/−0.05/1.51 mm, respectively. The
above results show the good performance of ERA5-derived PWV in China.
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Table 3. Statistical results of RMS, Bias, MAE of PWV differences between ERA5 and GNSS (260)/RS
(87) in China over the period of 2012–2020.

Value

Index Comparison with RS Comparison with GNSS

RMS Bias MAE RMS Bias MAE

Mean 1.90 −0.05 1.51 1.86 0.11 1.48
Max 3.61 0.24 2.85 4.72 0.27 4.01
Min 0.79 −0.26 0.62 0.9 −0.54 0.71
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3.1.3. Accuracy Analysis of Satellite-Derived PWV Product

To validate the performance of L2 PWV product provided by the FY-3A/MERSI, the
corresponding PWV product over the period of 2012 to 2013 in China was selected and
compared with that from the GNSS and RS, respectively. The PWV data of FY-3A/MERSI
at GNSS and RS stations were first obtained by averaging the gridded PWV data with
the range of 20 pixel nearby the GNSS/RS station [52]. In terms of time matching, the
data for FY-3A/MERSI are changed to match the mean of the hour to the GNSS hour data.
Figure 7 gives the RMS and Bias distributions of PWV difference between FY-3A/MERSI
and GNSS/RS in China over the period of 2012 to 2013. It can be observed that the
overall accuracy of FY-3A/MERSI is relatively low in China, especially in the south of
China with a large PWV value. Furthermore, the Bias between FY-3A/MERSI and GNSS
shows a positive correlation in the north of China and a negative correlation in south of
China, whereas that between FY-3A/MERSI and RS has no evident correlation. Table 4
gives the statistical result of averaged RMS, Bias and MAE at those GNSS and RS stations,
respectively over the period of 2012 to 2013. It can be found that the averaged RMS, Bias
and MAE between FY-3A/MERSI and GNSS/RS are 4.46/4.61 mm, 0.56/−0.33 mm and
3.61/3.79 mm, respectively.

Table 4. Statistical results of RMS, Bias, MAE of PWV differences between FY3-A and GNSS (260)/RS
(87), respectively, in China over the period of 2012 to 2013.

Value

Index Comparison with RS Comparison with GNSS

RMS Bias MAE RMS Bias MAE

Mean 4.46 0.56 3.61 4.61 −0.33 3.79
Max 9.26 1.56 8.03 11.38 5.91 8.71
Min 0.98 −0.42 0.78 2.00 −8.71 1.57
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In addition, the GNSS and RS-derived PWV data were used and interpolated with the
same spatial resolution of FY-3A/MERSI using the Delaunay method [51] to verify further
the spatial accuracy of FY-3A/MERSI-derived PWV in each season. Figure 8 presents
the averaged PWV distribution of FY-3A/MERSI, GNSS and RS and their residuals in
four seasons over the period of 2012 to 2013. It can be observed that the PWV product of
FY-3A/MERSI is missing in some regions, especially in the southeast of China, which is
explained by many clouds in coastal areas. The PWV product with clouds is removed be-
cause of its inaccuracy [9]. Furthermore, the accuracy of PWV derived from FY-3A/MERSI
is low in summer and autumn with a high PWV value, whereas the accuracy of that is
relatively high in spring and winter with a low PWV value. Moreover, the PWV values
derived from FY-3A/MERSI is smaller than that from GNSS/RS in summer and autumn,
but the values are similar except for the southeast of China in spring and winter.

Given the relatively high precision of PWV derived from Sentinel-3A/OLCI [21], only
station-based PWV was analyzed between Sentinel-3A/OLCI and GNSS/RS in China from
1 March 2019 to 4 March 2020. The PWV data of Sentinel-3A/OLCI at GNSS and RS stations
were first obtained by averaging the gridded PWV data, with a range of 66 pixel nearby
the GNSS/RS station [52]. In terms of time matching, the data for Sentinel-3A/OLCI are
changed to match the mean of the hour to the GNSS hour data. Figure 9 gives the RMS
and Bias distributions of PWV difference between Sentinel-3A/OLCI and GNSS/RS in
China from March 1 2019 to March 4 2020. The accuracy of Sentinel-3A/OLCI is high
over the whole of China except for several stations. Table 5 gives the statistical result of
averaged RMS, Bias and MAE of Sentinel-3A/OLCI in China and the corresponding values
are 2.47/2.95 mm, −0.63/0.01 mm and 1.58/1.37 mm, respectively, which are similar to
those from Xu and Liu [21].

Table 5. Statistical results of RMS, Bias, MAE of PWV differences between Sentinel-3A and GNSS
(260)/RS (87) over the period from 1 March 2019 to 4 March 2020.

Value

Index Comparison with RS Comparison with GNSS

RMS Bias MAE RMS Bias MAE

Mean 2.47 −0.63 1.58 2.95 0.01 1.37
Max 8.40 −6.88 6.88 10.82 0.84 7.51
Min 0.09 −0.42 0.01 0.24 −0.89 0.07
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3.2. Application of CPRAP-Derived PWV

The comparison results above have verified the good performance of the proposed
CPRAP for obtaining PWV using different water vapor detection techniques. The corre-
sponding applications, such as drought and rainfall monitoring, are further performed
using the CPRAP-derived PWV in this section.

3.2.1. Application of CPRAP for Drought Monitoring

The standardized precipitation conversion index (SPCI) was proposed by Zhao et al. [53]
for drought monitoring, which is different from the standardized precipitation evapotran-
spiration index (SPEI). In SPCI, only the parameters of PWV and precipitation were used,
and the SPCI value is easy to obtain. A corresponding study proved that the SPCI with
12-month scale is of good capacity for drought monitoring and the correlation coefficients
between SPCI and SPEI are larger than 0.96 (p < 0.05) [53]. Yunnan province is a representa-
tive arid area in China [54], making it ideal for drought monitoring. Thus, four stations
(HLFY, HNMY, JLYJ and JLCL) in this province were randomly selected to verify the per-
formance of CPRAP-derived PWV for drought monitoring and the corresponding SPCI
value was calculated using the precipitation and CPRAP-derived PWV at those stations
over the period of 2012 to 2018. Furthermore, the corresponding SPEI was also calcu-
lated using the meteorological data at those four stations following the steps proposed in
Vicente-Serrano et al. [55]. Figure 10 gives the time series of SPEI and SPCI at four selected
stations over the period of 2012 to 2018. It can be observed that the CPRAP-derived SPCI
using GNSS observations (SPCIGNSS) and ERA5 data (SPCIERA5) have good consistency
with SPEI at four selected stations. Although a small fluctuation existed between SPEI
and SPCIGNSS/SPCIERA5, the correlated coefficients at those four stations are larger than
0.8 (p < 0.05) (Table 6). Statistical results show the averaged correlation coefficients of four
stations are 0.875 and 0.865 between SPEI and SPCIGNSS/SPCIERA5, respectively, which
shows the good performance of CPRAP-derived SPCI and proves the good ability of the
established CPRAP for drought monitoring.
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stations, respectively over the period of 2012 to 2018.

Table 6. Correlation coefficients between SPEI and SPCIERA5/SPCIGNSS at HLFY, HNMY, JLYJ and
JLCL stations (p < 0.05) over the period of 2012 to 2018.

Stations SPCIERA5 SPCIGNSS

Mean. 0.875 0.865
HLFY 0.88 0.86

HNMY 0.90 0.90
JLYJ 0.88 0.87
JLCL 0.84 0.83

3.2.2. Application of CPRAP for Rainfall Monitoring

Apart from drought monitoring, the established CPRAP is also applied for rainfall
monitoring. Previous studies have proven that the atmospheric water vapor changes
sharply before precipitation [56], which provides useful indicator for rainfall monitoring
and forecasting. GNSS-PWV time series have been widely used in heavy precipitation pre-
diction [57]. Therefore, one GNSS stations (ZJXC, ZHOS) in Zhejiang province was selected
to investigate the relationship between PWV and rainfall. This station was determined
because it is near the ocean and the evident water vapor change can be observed during the
rainfall period. The hourly PWV derived from the CPRAP was first obtained at the ZJXC
and ZHOS station and the corresponding rainfall was also obtained from the collocated
meteorological station. Figures 11a and 12a gives the time series of PWV and rainfall over
the period of 19 February to 10 March 2015, Figure 11b,c provide the hourly PWV and
rainfall on 26 February and 7 March respectively. Figure 12b,c provide the hourly PWV and
rainfall on 26 February and 7 March, respectively. It can be observed that the PWV showed
an increasing trend several hours before the rainfall event and sharply decreased after it.
The statistical results also reveal that the PWV increment before the rainfall lasted a few
hours and reached more than 20 mm. Therefore, such evident PWV change before rainfall
is a very important signal for rainfall forecasting, and the potential of using PWV estimates
obtained from the established CPRAP for rainfall monitoring and forecasting.
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Figure 12. Relationship between hourly PWV and rainfall at ZHOS station over the period from
19 February to 10 March 2015, where (a) refers the time series of PWV and rainfall over the period of
19 February to 10 March 2015, (b,c) are the hourly PWV and rainfall on 26 February and 7 March,
respectively.

4. Conclusions

The first comprehensive PWV retrieval and application platform (CPRAP) was es-
tablished in this study. The CPRAP can be used to obtain PWV from GNSS, RS, ERA5,
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Sentinel-3A and FY-3A, respectively and can be applied for drought and rainfall mon-
itoring. In retrieving PWV, the RMS, Bias and MAE of GNSS-derived PWV are 2.15,
0.05 and 1.65 mm, respectively, when compared with that of RS. The satellite-based PWV
was also evaluated and the averaged RMS, Bias and MAE for FY-3A and Sentinel-3A are
4.46/0.56/3.61 mm and 2.95/0.01/1.37 mm, respectively, when compared with the values
derived from GNSS and RS. Furthermore, the ERA5-derived PWV data were also compared
with that from GNSS and RS, and the statistical result shows a good accuracy of ERA5
with the RMS of less than 2 mm in China over the period of 2012 to 2020. Experimental
results show that in the Chinese region, the overall accuracy of PWV inversion of GNSS
and ERA5 is higher. The overall accuracy of FY-3A and Sentinel-3A is lower, especially in
the southern region of China, so the accuracy of GNSS and ERA5 in China is higher. In the
aspect of PWV application, the CPRAP-derived PWV using different techniques was used
for drought monitoring in Yunnan Province. The CPRAP-derived SPCI was found to have
a good correlation with SPEI and the correlation coefficient is larger than 0.83 (p < 0.05),
which proves the ability of CPRAP-derived SPCI for drought monitoring. Furthermore,
CPRAP-derived PWV was also used for rainfall monitoring in Zhejiang province, which
shows that PWV generally increased with the different magnitudes and sharply decreased
before and after the rainfall event, respectively. Such evident PWV change before rainfall
is a very important signal for rainfall forecasting, and verifies the potential of established
CPRAP for rainfall monitoring and forecasting.
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