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Abstract: The rapid and accurate acquisition of nitrogen, phosphorus and potassium nutrient contents
in grape leaves is critical for improving grape yields and quality and for industrial development.
In this study, crop growth was non-destructively monitored based on unmanned aerial vehicle
(UAV) remote sensing technology. Three irrigation levels (W1, W2 and W3) and four fertilization
levels (F3, F2, F1 and F0) were set in this study, and drip irrigation fertilization treatments adopted
a complete block design. A correlation analysis was conducted using UAV multispectral image
data obtained from 2019 to 2021 and the field-measured leaf nitrogen content (LNC), leaf potassium
content (LKC) and leaf phosphorus content (LPC) values; from the results, the vegetation indices
(VIs) that were sensitive to LNC, LKC and LPC were determined. By combining spectral indices
with partial least squares (PLS), random forest (RF), support vector machine (SVM) and extreme
learning machine (ELM) machine-learning algorithms, prediction models were established. Finally,
the optimal combinations of spectral variables and machine learning models for predicting LNC, LPC
and LKC in each grape growth period were determined. The results showed that: (1) there were high
demands for nitrogen during the new shoot growth and flowering periods, potassium was the main
nutrient absorbed in the fruit expansion period, and phosphorus was the main nutrient absorbed
in the veraison and maturity periods; (2) combining multiple spectral variables with the RF, SVM
and ELM models could result in improved LNC, LPC and LKC predictions. The optimal prediction
model determination coefficient (R2) derived during the new shoot growth period was above 0.65,
and that obtained during the other growth periods was above 0.75. The relative root mean square
error (RRMSE) of the above models was below 0.20, and the Willmott consistency index (WIA) was
above 0.88. In conclusion, UAV multispectral images have good application effects when predicting
nutrient contents in grape leaves. This study can provide technical support for accurate vineyard
nutrient management using UAV platforms.

Keywords: unmanned aerial vehicle; multispectral imagery; leaf nutrient contents; machine learning;
grape

1. Introduction

Grapes are one of the economically important crops in China [1]. The yield and quality
of grape crops, which are closely related to the nitrogen (N), potassium (K) and phosphorus
(P) nutrient absorption during grape growth [2,3], play a critical role in the grape industry
in China. Grapes have varying demands for N, K and P among different growth stages.
Moreover, the availabilities of the N, K and P nutrient elements in soils are limited, and
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this makes it difficult to meet the growth requirements of grapes. Therefore, ensuring the
rapid and accurate monitoring of the nutrient statuses of N, K and P in grape crops at
different growth stages is critical for formulating a fertilization management system based
on scientific and reasonable considerations to ensure the yield and quality of grapes.

Traditional crop nutrition diagnoses mainly rely on destructive field sampling and
slow laboratory analyses, and the nutrient concentrations determined at individual points
can be quite different from the actual nutrients present in croplands [4]. Past studies
have shown that crop nutrient content differences cause changes in the morphological
structure and leaf color of crops; accordingly, the spectral information of these crops is also
variable [5], thus laying the theoretical foundation for crop growth monitoring with remote
sensing technology. Among current remote sensing technologies, the image quality of
satellites remote sensing during key growth stages is sometimes unusable due to uncertain
factors such as cloudy weather and rainy days. The time of passing territory is always fixed;
thus, the uncertain poor image quality limits its field-scale application [6]. In recent years,
unmanned aerial vehicle (UAV) remote sensing technology has been shown to be a rapid,
real-time, high-resolution and nondestructive means of field monitoring. Multispectral
UAV cameras have five bands—blue, green, red, red-edge and near-infrared bands—that
contain abundant ground spectral information; in addition, these UAVs are easily operated.
UAV remote sensing technologies have a unique advantage in the development of precision
agriculture at the farmland scale. Scholars in China and across the globe have carried
out extensive research on UAV precision agriculture remote sensing platforms and have
achieved remarkable results [7–9]. Past studies have shown that spectral variables have
potential for nitrogen diagnosis applications in crops such as wheat [10], maize [11] and
rice [12]; however, such studies have typically focused on determining the optimal spectral
variables for estimating the crop nitrogen content and status. However, the process by
which the crop nitrogen content is estimated indirectly with remote sensing data can be
affected by various factors (e.g., variable light conditions, soil backgrounds and crop types),
and large amounts of spectral information are ignored if only a single optimal spectral
variable is used to make predictions. Moreover, these methods are sensitive to the analyzed
crop types and growth stages and lack universality [13]. On this basis, Liakos et al. [14]
and Ali et al. [15] proposed that agricultural remote sensing inversions are a kind of typical
nonlinear problem, so related research should be based on multiple sensitive vegetation
indices (VIs) and the use of nonlinear methods to improve UAV remote sensing diagnoses
of the nutritional status of crops.

In recent decades, artificially intelligent models such as artificial neural networks
(ANNs), extreme learning machines (ELMs), support vector machines (SVMs) and ran-
dom forests (RFs) have been established as effective tools for addressing the nonlinear
relationships between independent and dependent variables. These algorithms have good
predictive abilities for crop conditions such as the nutritional status [16], water content [17],
biomass [18] and chlorophyll content [19]. Liu et al. [20] collected canopy spectral infor-
mation of citrus crops using a UAV equipped with a multispectral camera and established
prediction models of the nitrogen and chlorophyll contents in citrus leaves based on SVM
and PLS models. Liu et al. [21] estimated the nitrogen content in wheat leaves using a
multilayered neural network model and hyperspectral images; the model prediction results
were good. Li et al. [22] used an SVM to construct an inversion model for predicting the
nitrogen content in apple tree canopies, and the resulting model accuracy (R2) was above
0.72. Although the effects of using machine learning algorithms to estimate crop nitrogen
are good, most machine learning models cannot obtain consistent results even under the
same conditions. Therefore, during the model evaluation process, it is necessary to analyze
the model uncertainty to obtain reliable results [23]. At present, UAV remote sensing appli-
cations in crop nutrition diagnosis research has mainly focused on estimating N. Grape
crops are a typical fruit crop that prefer phosphorus and potassium. Relatively few studies
have estimated the N, K or P contents in grape crops based on UAV multispectral remote
sensing. The leaf nitrogen content prediction model was established at the veraison and
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maturity stage [24] and flowering stage [25] of grapes based on the leaf’s reflectance of
the UAV multispectral remote sensing. These researches focus on nutrient prediction at
a single growth stage and lack comparison of leaf nutrient prediction models at different
growth periods.

In this paper, grape crops were taken as the research object, typical VIs were obtained
from UAV multispectral imagery, and multiple sensitive spectral variables were selected
as the model input variables through a correlation analysis. PLS, RF, SVM and ELM
models were used to establish leaf nitrogen content (LNC), leaf potassium content (LKC)
and leaf phosphorus content (LPC) prediction models at different grape growth stages.
Through a model error analysis and uncertainty analysis, the optimal model was selected,
thus providing a rapid and effective field-monitoring technology for obtaining grape
growth and nutrition diagnoses in each growth period and for providing support for the
formulation of a fertilization management system that is based on scientific and reasonable
considerations.

2. Materials and Methods
2.1. Overview of the Test Area

The experiment was conducted from 2019 to 2021 at Weier Vineyard (108◦40′E,
38◦18′N, 521 m above sea level), Yangling city, Shaanxi Province. This region is located in
the middle of the Guanzhong Plain, has a semi-humid and semi-arid climate. The average
annual sunshine duration is 1900 h, the average annual temperature is 12.9 ◦C, the annual
effective accumulated temperature is 3800 ◦C, the average annual precipitation is 635.1 mm,
and the annual evaporation is 1500 mm. The soil type in the vineyard was cohesive loess;
the soil field capacity (mass) was 0.30; and the soil bulk density was 1.43 g/cm3.

The experimental materials were grapes of the “Hutai No. 8” variety, with a row
spacing of 3.0 m and a plant spacing of 0.8 m. Plants with small stem thickness differences
were selected for the test. Approximately 16–30 grape plants were planted in each row, and
21 rows were planted in total. The total experimental area was approximately 1370 m2. Drip
irrigation system was utilized in the experiment to irrigation and fertilization, and the drip
irrigation pipes were produced by Yangling Qinchuan Water Saving Company, Shaanxi,
China. The inner diameter of the drip irrigation pipe was 0.016 m, and the distance between
adjacent drippers was 0.2 m. The drip irrigation pipe was arranged unilaterally along the
grape planting row. The grape trellis was Y-shaped. Cement pillars with heights of 2.2 m
were set every 6 m along each grape row, and four layers of iron wires were mounted.
Other agricultural management measures, such as pest control and branch pruning, were
conducted according to the local production management modes. The division time of
each growth period and the date of image acquisition are shown in Table 1.

Table 1. Date of grape growth stage partition and image acquisition during 2019–2021.

Growth Stage
Date of Grape Growth Stage Partition Date of Image Acquisition

2019 2020 2021 2019 2020 2021

New shoot growth stage 4/13–5/14 4/10–5/18 4/15–5/21 4/24; 5/9 5/5; 5/14 5/8; 5/20
Flowering stage 5/15–5/25 5/19–5/29 5/22–6/1 5/22 5/26 5/31

Fruit expansion stage 5/26–7/11 5/30–7/12 6/2–7/10 7/6 6/7; 6/14 6/10; 6/22
Veraison and maturity stage 7/12–8/19 7/13–8/21 7/11–8/15 7/23 7/28 7/23

2.2. Experimental Design

Three irrigation treatments and four fertilization treatments were set up in the experi-
ment. A randomized complete block design was adopted in all drip irrigation fertilization
experiments. In addition, traditional fertilization (GC) and rainfed (CK) treatments were
used as control treatments, for a total of 14 treatments. Each treatment was performed in
triplicate, for a total of 42 plots.
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Three levels, i.e., W1 (100% M, and M as the irrigation quota), W2 (75% M) and W3
(50% M), were set up for drip irrigation. Irrigation was applied when the soil moisture
content of the W1 treatment reached the lower limit, and all treatments were irrigated
simultaneously. M was controlled by establishing upper and lower limits for the soil
moisture. The upper limit was the soil field capacity, and the lower limit was 70% of the
upper limit. The calculation formula for M [26] is expressed as follows:

M = 1000γsHP(β 1 − β2) , (1)

where M is the irrigation quota (mm); γs is the apparent density, which is numerically equal
to the soil bulk density, dimensionless, 1.43; H is the depth of the wet layer (m), 0.5 m; P
is the wetness ratio of the drip irrigation, dimensionless, 0.3; β1 is the upper limit of the
soil moisture content (mass) (g/g), which is the soil field capacity, 0.30; and β2 is the lower
limit of the soil moisture content (mass) (g/g), 70% of β1.

Fertilizer was set at four levels: F3 (648 kg/hm2), F2 (486 kg/hm2), F1 (324 kg/hm2)
and F0 (0 kg/hm2). Irrigation and fertilization were conducted at the new shoot growth
stage, fruit expansion stage and veraison and maturity stage, and the N–P2O5–K2O ratio
was 1:0.6:1.2. The irrigation amount and fertilizer amount of each treatment are shown in
Table 2.

Table 2. Irrigation and fertilization of grapevine at different growth stage in 2019–2021.

Treatment
Irrigation Quantity

(m3/hm2)

Fertilizer Amount (kg/hm2)

New Shoot Growth Stage
N + P2O5 + K2O

Fruit Expanding Stage
N+ P2O5 + K2O

Veraison and Maturity Stage
N + P2O5 + K2O

W1F0 97.0 0 + 0 + 0 0 + 0 + 0 0 + 0 + 0
W1F1 97.0 46.4 + 14.0 + 27.6 34.8 + 28.0 + 55.2 34.8 + 28.0 + 55.2
W1F2 97.0 69.6 + 20.8 + 41.6 52.2 + 41.6 + 83.2 52.2 + 41.6 + 83.2
W1F3 97.0 92.8 + 27.6 + 55.6 69.6 + 111.2 + 52.2 69.6 + 111.2 + 52.2
W2F0 145.0 0 + 0 + 0 0 + 0 + 0 0 + 0 + 0
W2F1 145.0 46.4 + 14.0 + 27.6 34.8 + 28.0 + 55.2 34.8 + 28.0 + 55.2
W2F2 145.0 69.6 + 20.8 + 41.6 52.2 + 41.6 + 83.2 52.2 + 41.6 + 83.2
W2F3 145.0 92.8 + 27.6 + 55.6 69.6 + 111.2 + 52.2 69.6 + 111.2 + 52.2
W3F0 193.0 0 + 0 + 0 0 + 0 + 0 0 + 0 + 0
W3F1 193.0 46.4 + 14.0 + 27.6 34.8 + 28.0 + 55.2 34.8 + 28.0 + 55.2
W3F2 193.0 69.6 + 20.8 + 41.6 52.2 + 41.6 + 83.2 52.2 + 41.6 + 83.2
W3F3 193.0 92.8 + 27.6 + 55.6 69.6 + 111.2 + 52.2 69.6 + 111.2 + 52.2

GC 193.0 92.8 + 27.6 + 55.6 69.6 + 111.2 + 52.2 69.6 + 111.2 + 52.2
CK 0 0 + 0 + 0 0 + 0 + 0 0 + 0 + 0

2.3. Observation Indicators and Methods
2.3.1. UAV Multispectral Image Acquisition and Preprocessing

A six-rotor M600 UAV (Dajiang Innovation Technology Co., Ltd., Shenzhen, China) was
used to carry a six-channel multispectral Micro-MCA camera (Tetracam Inc., Chatsworth, CA,
USA) to collect images in this study (Figure 1). This multispectral camera included six chan-
nels: B (490 nm), G (550 nm), R (680 nm), RE (720 nm), NIR800 (800 nm) and NIR900 (900 nm).
Each channel was equipped with a 1.3-megapixel complementary metal oxide semicon-
ductor (CMOS) sensor, and the resolution of each image was 1280 pixels × 1024 pixels. All
UAV campaigns were undertaken in windless and clear-sky conditions (between 11:30 and
13:30) at four critical growth stages. The flight altitude was 30 m, and images were collected
at a spatial resolution of 1.6 cm. A white calibration plate (100% reflection reference target)
was placed in the experimental field during each flight for image radiation correction. Fol-
lowing data acquisition, the six bands of scattered original remote sensing images (.RAW)
were synthesized in Pixel Wrench 2 software (Tetracam Inc., Chatsworth, CA, USA) to ob-
tain multipage images (.TIF). The multipage images (.TIF) were later mosaicked, registered
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and orthorectified in Agisoft Photoscan software (v1.4.0, Agisoft LLC, Saint Petersburg,
Russia), and a single-page image (.TIF) was obtained through splicing.
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2.3.2. Extracting Band Reflectance

The single-page images (.TIF) were radiometrically corrected in MATLAB 2016a. Then,
the normalized difference vegetation index (NDVI) was utilized to distinguish grape plants
from other ground objects and eliminate the soil background (Figure 2). The average
reflectance of the grape canopy in each plot was extracted as the spectral reflectance of the
grape canopy in that plot.
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Figure 2. (a) Effects of eliminating soil background at new shoot growth stage (8 May 2021); (b) effects
of eliminating soil background at flowering stage (31 May 2021); (c) effects of eliminating soil
background at fruit expansion stage (22 June 2021); (d) effects of eliminating soil background at
veraison and maturity stage (23 July 2021).

2.3.3. Vegetation Indices (VIs)

In this study, based on the band range of the UAV-derived multispectral images, we
selected the VIs that have been proven to be highly correlated with plant nutrient contents
in the literature; in total, 11 VIs were selected, as shown in Table 3.

Table 3. The formulas for VIs were used in this study.

Vegetation Indices Formula References

Normalized difference VI (NDVI) NDVI = ρNIR − ρR
ρNIR+ρR

[27]

Optimized soil adjusted VI (OSAVI) OSAVI = ρNIR − ρR
ρNIR+ρR+0.16 [28]

Transformed VI (TVI) TVI =ρG − ρR
ρG+ρR

[29]

False color VI (FCVI) FCVI = 1.5 × (2ρ NIR+ρB − 2ρG)
2RG+2ρB − 2ρNIR+127.5

[30]
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Table 3. Cont.

Vegetation Indices Formula References

Modified soil adjusted VI (MSAVI) MSAVI = 0.5 × (2ρNIR+1 −
√

(2ρNIR +1)2 − 8(ρNIR − ρR

)
[31]

Enhanced VI (EVI) EVI = 2.5 × ρNIR − ρR
ρNIR+6ρR − 7.5ρB+1 [32]

Modified chlorophyll absorption in
reflectance index (MCARI) MCARI = ρRE − ρR − 0.2(ρRE− ρG) ×

ρRE
ρR

[33]

Ratio VI (RVI) RVI =ρNIR
ρR

[34]

Modified simple ratio (MSR) MSR =

√
ρ NIR

ρR
− 1

ρ NIR
ρR

+1

[35]

Structure-intensive pigment index (SIPI) SIPI =ρNIR− ρB
ρNIR+ρB

[36]

Difference VI (DVI) DVI = ρNIR − ρR [34]

ρB, ρG, ρR, ρRE and ρNIR represent reflectance at 480 nm, 550 nm, 680 nm, 720 nm and 900 nm, respectively.

2.3.4. Determination of Leaf Nutrient Contents

The nutrients measured in this study included the LNC, LKC and LPC. The grape
leaves samples were collected simultaneously with the UAV remote sensing. Seven to ten
mature leaves were randomly picked from 3 trees in each plot and brought back to the
laboratory. The leaves were washed with distilled water, placed into an oven at 105 ◦C for
30 min to deactivate the enzymes, and then dried to a constant weight at approximately
80 ◦C. The LNC and LPC were determined by the Kjeldahl method and Mo-Sb colorimetric
method, respectively, with an AutoAnalyzer-III (SEAL, Norderstedt, Germany) instrument.
The LKC was determined by the flame photometric method with Z-2000 flame atomic
spectrophotometer (Hitachi, Tokyo, Japan).

2.4. Model Building and Data Analysis

The LNC, LPC and LKC measurements obtained in each growth stage were selected as
dependent variables. The grape canopy reflectance and VIs were selected as independent
variables. The number of samples obtained in the new shoot growth stage, flowering
stage, fruit expansion stage and veraison and maturity stage were 252, 126, 126 and 210,
respectively. Two-thirds of the obtained data in each growth stage were used as the
modeling set, while 1/3 of the data were used as the verification set. The PLS, RF, SVM
and ELM algorithms were applied in MATLAB R2016a to predict the LNC, LPC and LKC
in the different growth stages.

2.4.1. PLS Model

The PLS method is mainly selected for modeling linear regression between multi-
predictive variables and multi-response variables. PLS is a bilinear regression model, which
integrates the characteristics of principal component analysis, canonical correlation analysis
and linear regression analysis. The advantage of PLS is that it can handle data sets with
high correlations among predictive variables.

2.4.2. RF Model

The RF is a nonlinear, multivariable statistical method. Multiple random samples are
obtained through multiple bootstrap sampling, and then corresponding decision-making
trees are established based on these samples, thus forming an RF algorithm for classification
and regression analysis. For regression problems, the predicted value of the dependent
variable is obtained from the average of the results of these decision-making trees [37].
During the regression simulation of the RF algorithm, two parameters need to be optimized:
mtry (number of random variables per decision tree node) and ntree (number of decision
trees generated). In this study, for each iteration, the ntree value increased from 5 to 500 at
intervals of 5 for a total of 100 iterations, and the mtry value increased from 1 to m (m is
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the number of variables) at intervals of 1 each time for a total of m iterations. The other
parameters were set to the default values.

2.4.3. SVM Model

The principle of the SVM model is to find an optimal classification surface to minimize
the errors among all training samples and the classification surface. In this method, the error
is calculated by the loss function. The SVM model maps data from a low-dimensional space
to a high-dimensional space through a kernel function and then utilizes a representative set
of support vectors to construct the prediction model. In this study, the radial basis function
(RBF) was selected as the SVM kernel function, and the grid-search method of fivefold
cross-validation was used to optimize the penalty factor radial basis function parameter
g to [2−10, 210]. The step length was 20.5, and the optimal values of c and g values were
determined by obtaining the minimum RMSE of the validation set [38].

2.4.4. ELM Model

The ELM is a new algorithm based on a single-hidden-layer feedback neural network.
This model solves the problem of traditional neural networks becoming easily stuck in a
local minimum error value. The ELM model can randomly generate connection weights
between the input layer and hidden layers and can obtain the thresholds of the hidden
layer neurons [39]. In this study, the hidden layer neurons represented the default ‘sigmoid’
activation function. The number of hidden layers was increased from 15 to 100 at intervals
of 5.

2.4.5. Uncertainty Analysis

In this study, the d-factor coefficient was used to evaluate the uncertainty of the models.
This evaluation was performed done by increasing and decreasing the range of 10% for
each input item in MATLAB, using the Unifrnd function to generate continuous and evenly
distributed random numbers, bringing the newly generated input items into the established
model [40], and determining the indicative upper limit (XU) and lower limit (XL) with a
95% confidence interval. In addition, the d-factor coefficient was utilized to calculate the
average width of the confidence interval, as shown in Equations (2) and (3):

d − factor =
dX

σX
, (2)

dX =
1
n ∑n

i=1 (XUi − XLi) , (3)

where dX is the average distance between the indicative upper limit (XUi) and the indicative
lower limit (XLi), that is, the average width of the 95% confidence interval; n is the number
of samples; and σX is the standard deviation of the measured sap flow rate. The larger the
uncertainty value is, the larger the range of the simulated values near the measured value
is, the lower the accuracy of the model is, and the more unstable the model is.

2.5. Model Verification

To evaluate the accuracy of the PLS, RF, SVM and ELM model predictions, the determi-
nation coefficient (R2), relative root mean square error (RRMSE) and Willmott consistency
index (WIA) were selected as evaluation indexes. The calculation formulas are presented
as follows:

R2 =
∑N

i=1 (Pi −O)
2

∑N
i=1 (Oi −O)

2 , (4)

RRMSE =

√
∑N

i=1 (Oi − Pi)
2

N
/P, (5)
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WLA = 1− ∑N
i=1 (Pi −Oi)

2

∑N
i=1(|Pi −Oi|+

∣∣∣Oi −O
∣∣∣) 2 (6)

where Oi and Pi are the measured values and predicted values, respectively, of the leaf
nutrient contents (g/kg); O and P is the mean measured value and mean predicted value,
respectively, of the leaf nutrient contents (g/kg); and N is the number of samples in the
prediction set.

3. Results
3.1. Variations in the LNC, LPC and LKC Values and Canopy Reflectance at Different Grape
Growth Stages

The variations in the LNC, LKC and LPC values and the canopy reflectance at different
grape growth stages from 2019 to 2021 are shown in Figures 3 and 4, respectively. From
2019 to 2021, the dynamic LNC, LKC and LPC change trends observed in the grape plants
throughout the whole growth period of each year were consistent. From the new shoot
growth stage to fruit expansion stage, rapid decreases in the LNC were observed as soon
as the grape growth period advanced. However, the LNC decreased slightly following
the fruit expansion stage to veraison and maturity stage. The LKC presented a decreasing
trend from the new shoot growth period to flowering period, with a sharp increase in
the fruit expansion stage and a sharp decrease in the veraison and maturity stage. The
LPC variation presented a decreasing trend from the new shoot growth stage to the fruit
expansion stage and increased sharply in the veraison and maturity stage. These results
indicated that the analyzed grape trees had high N requirements at the early growth stage,
while the demands for K and P occurred mainly during the fruit expansion stage and the
veraison and maturity stage, respectively. In addition, significant LNC differences were
observed among each growth period (p < 0.05). There was no significant difference in the
LKC between the new shoot growth period and fruit expansion period in 2020 (p > 0.05),
and there was no significant difference in the LPC between the new shoot growth stage
and veraison and maturity stage in 2021 (p > 0.05); however, significant differences were
observed among the other growth periods (p < 0.05).
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Figure 3. Variations in the LNC, LKC and LPC values (different small letters indicate significant
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growth stage, flowering stage, fruit expansion stage and veraison and maturity stage, respectively).

The canopy spectral reflectance variation trend observed throughout the whole grape
growth period from 2019 to 2021 was nearly consistent, but obvious differences were
observed between different bands in each growth stage (Figure 4). With the advancement
of the grape growth period, the reflectivity of the B, G and R bands presented overall
upward trends, and the reflectances of the NIR800 and NIR900 bands showed overall
downward trends. However, during the fruit expansion stage, there was a slight decrease
in the reflectivities of the B, G and R bands, while the reflectivities of the NIR800 and NIR900
bands increased slightly.
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3.2. Correlation Analyses between Spectral Variables and the LNC, LKC and LPC

The correlation coefficients between spectral variables and the LNC, LKC and LPC
are as shown in Figure 5. The NDVI, OSAVI, FCVI, MSAVI, MSR, SIPI and DVI had high
correlations with the LNC, LKC and LPC at the new shoot growth stage; all correlation
coefficients were greater than 0.60. During the flowering stage, the SIPI had the highest
correlation with the LNC, while B had the highest correlation coefficients with the LKC
and LPC. At the fruit expansion stage, the correlation coefficients of the MCARI and TVI
with the LNC, the correlation coefficients of the MSAVI, DVI and OSAVI with the LKC, and
the correlation coefficients of the SIPI and MCARI with the LPC were all above 0.60. At the
veraison and maturity stage, the B, RE and FCVI had the highest correlation coefficients
with the LNC, LKC and LPC, respectively. In addition, the correlation coefficients between
the spectral variables and the LNC, LKC and LPC derived during the fruit expansion
period were lower than those obtained in the other three growth periods.

3.3. LNC, LKC, and LPC Prediction Models Constructed Based on Different Spectral Variables

On the basis of the analysis performed in Section 3.2, according to the correlation
coefficients of the analyzed spectral variables with the LNC, LKC and LPC, the 17 spectral
variables were sorted to reduce the number of spectral variables input to the RF, PLS, SVR
and ELM models. Then, LNC, LKC and LPC estimation models were established. The
model accuracy evaluation indices and the number of input variables were comprehensively
analyzed, as shown in Tables 4–6. The results showed that the numbers of spectral variables
used in the optimal LNC, LKC and LPC prediction models constructed using different
algorithms at different growth stages were also different. For the RF model, the numbers
of spectral variables input to the optimal LNC prediction model at the new shoot growth
stage, flowering stage, fruit expansion stage and veraison and maturity stage were 4, 1, 4
and 3, respectively; the numbers of spectral variables input to the optimal LKC prediction
model at these stages were 4, 3, 4 and 6, respectively; and the numbers of spectral variables
input to the optimal LPC prediction model were 6, 4, 4 and 2, respectively. Similarly, for
the PLS model, 1, 2, 4 and 3 spectral variables (for the LNC prediction model), 3, 3, 3 and
3 spectral variables (for the LKC prediction model), and 3, 3, 3 and 3 spectral variables
(for the LPC prediction model) were selected due to their optimal modeling effects; for the
SVR model, 6, 5, 5 and 3 spectral variables (for the LNC prediction model), 5, 1, 4 and 3
spectral variables (for the LKC prediction model), and 3, 4, 7 and 3 spectral variables (for
the LPC prediction model) were selected for modeling. For the ELM model, 7, 6, 3 and 6
spectral variables (for the LNC prediction model), 5, 4, 7 and 7 spectral variables (for the
LKC prediction model), and 7, 4, 4 and 6 spectral variables (for the LPC prediction model)
were selected to obtain the optimal modeling effect.
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Figure 5. (A) Correlation coefficients between spectral variables and the LNC, LKC, LPC in the 
new shoot growth stage. (B) Correlation coefficients between spectral variables and the LNC, 
LKC, LPC in the flowering stage. (C) Correlation coefficients between spectral variables and the 
LNC, LKC, LPC in the fruit expansion stage. (D) Correlation coefficients between spectral varia-
bles and the LNC, LKC, LPC in the veraison and maturity stage. 

3.3. LNC, LKC, and LPC Prediction Models Constructed Based on Different Spectral Variables 
On the basis of the analysis performed in Section 3.2, according to the correlation 

coefficients of the analyzed spectral variables with the LNC, LKC and LPC, the 17 spectral 
variables were sorted to reduce the number of spectral variables input to the RF, PLS, SVR 

Figure 5. (A) Correlation coefficients between spectral variables and the LNC, LKC, LPC in the new
shoot growth stage. (B) Correlation coefficients between spectral variables and the LNC, LKC, LPC
in the flowering stage. (C) Correlation coefficients between spectral variables and the LNC, LKC,
LPC in the fruit expansion stage. (D) Correlation coefficients between spectral variables and the LNC,
LKC, LPC in the veraison and maturity stage.
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Table 4. Results analysis of LNC prediction model constructed based on different spectral variables.

Model The Number
of Variables

New Shoot Growth Stage Flowering Stage Fruit Expansion Stage Veraison and Maturity Stage

R2 RRMSE WIA R2 RRMSE WIA R2 RRMSE WIA R2 RRMSE WIA

PLS

17 0.190 0.000 0.002 0.218 0.000 0.000 0.485 0.000 0.000 0.141 0.000 0.001
7 0.570 0.097 0.829 0.345 0.139 0.756 0.594 0.230 0.871 0.499 0.244 0.848
6 0.568 0.097 0.829 0.321 0.144 0.745 0.572 0.250 0.862 0.498 0.245 0.847
5 0.563 0.097 0.827 0.427 0.120 0.772 0.602 0.203 0.871 0.494 0.249 0.845
4 0.532 0.092 0.826 0.431 0.120 0.774 0.615 0.227 0.871 0.496 0.245 0.847
3 0.560 0.090 0.844 0.452 0.117 0.777 0.598 0.233 0.865 0.524 0.244 0.850
2 0.563 0.089 0.829 0.466 0.116 0.785 0.550 0.247 0.848 0.441 0.246 0.791
1 0.576 0.088 0.830 0.462 0.116 0.785 0.546 0.248 0.845 0.436 0.248 0.788

RF

17 0.626 0.088 0.892 0.516 0.126 0.862 0.654 0.216 0.896 0.704 0.189 0.916
7 0.616 0.085 0.894 0.490 0.113 0.803 0.682 0.211 0.905 0.713 0.186 0.915
6 0.655 0.068 0.914 0.451 0.117 0.787 0.688 0.209 0.907 0.707 0.188 0.911
5 0.665 0.067 0.910 0.485 0.113 0.799 0.684 0.210 0.906 0.701 0.190 0.912
4 0.671 0.068 0.916 0.508 0.111 0.809 0.710 0.198 0.908 0.694 0.194 0.910
3 0.630 0.074 0.898 0.418 0.121 0.771 0.691 0.204 0.901 0.725 0.172 0.917
2 0.625 0.074 0.896 0.477 0.115 0.801 0.494 0.263 0.823 0.631 0.200 0.879
1 0.410 0.098 0.820 0.525 0.111 0.838 0.514 0.257 0.831 0.633 0.200 0.884

SVM

17 0.589 0.079 0.879 0.608 0.101 0.878 0.706 0.180 0.903 0.707 0.188 0.919
7 0.357 0.174 0.700 0.589 0.108 0.864 0.702 0.210 0.900 0.712 0.187 0.902
6 0.703 0.062 0.919 0.603 0.105 0.869 0.682 0.203 0.903 0.710 0.187 0.904
5 0.583 0.078 0.884 0.658 0.095 0.891 0.726 0.179 0.911 0.744 0.178 0.916
4 0.562 0.080 0.878 0.584 0.109 0.856 0.658 0.203 0.895 0.719 0.195 0.912
3 0.528 0.084 0.872 0.375 0.134 0.775 0.705 0.187 0.913 0.742 0.180 0.918
2 0.551 0.086 0.886 0.356 0.136 0.767 0.544 0.230 0.849 0.592 0.214 0.839
1 0.485 0.093 0.839 0.538 0.114 0.853 0.544 0.229 0.846 0.367 0.262 0.740

ELM

17 0.700 0.076 0.914 0.803 0.075 0.923 0.780 0.167 0.943 0.725 0.122 0.905
7 0.721 0.060 0.938 0.800 0.073 0.933 0.792 0.164 0.938 0.806 0.118 0.945
6 0.499 0.089 0.866 0.812 0.071 0.937 0.800 0.160 0.943 0.853 0.113 0.955
5 0.510 0.090 0.872 0.809 0.072 0.934 0.791 0.164 0.940 0.171 0.365 0.650
4 0.533 0.084 0.878 0.803 0.072 0.936 0.791 0.165 0.938 0.006 0.760 0.248
3 0.595 0.077 0.900 0.050 7.838 0.001 0.806 0.165 0.936 0.216 0.302 0.687
2 0.559 0.089 0.884 0.002 0.831 0.155 0.316 0.623 0.623 0.579 0.215 0.852
1 0.458 0.092 0.836 0.577 0.103 0.857 0.564 0.243 0.854 0.101 4.237 0.008

Table 5. Results analysis of LKC prediction model constructed based on different spectral variables.

Model The Number
of Variables

New Shoot Growth Stage Flowering Stage Fruit Expansion Stage Veraison and Maturity Stage

R2 RRMSE WIA R2 RRMSE WIA R2 RRMSE WIA R2 RRMSE WIA

PLS

17 0.162 0.000 0.000 0.368 0.000 0.011 0.179 0.000 0.002 0.318 0.000 0.000
7 0.489 0.133 0.823 0.734 0.153 0.923 0.496 0.186 0.891 0.625 0.169 0.877
6 0.477 0.135 0.817 0.720 0.160 0.917 0.502 0.188 0.890 0.620 0.170 0.877
5 0.482 0.135 0.820 0.728 0.157 0.917 0.509 0.187 0.891 0.661 0.156 0.879
4 0.482 0.135 0.820 0.737 0.155 0.919 0.516 0.198 0.889 0.660 0.156 0.879
3 0.499 0.132 0.826 0.743 0.153 0.921 0.553 0.180 0.836 0.671 0.153 0.887
2 0.487 0.132 0.826 0.727 0.157 0.916 0.501 0.204 0.864 0.612 0.164 0.866
1 0.453 0.139 0.807 0.697 0.167 0.909 0.494 0.206 0.859 0.622 0.163 0.865

RF

17 0.564 0.121 0.882 0.757 0.150 0.926 0.553 0.167 0.891 0.734 0.131 0.917
7 0.586 0.118 0.890 0.777 0.144 0.932 0.545 0.203 0.890 0.722 0.134 0.916
6 0.578 0.120 0.886 0.775 0.144 0.931 0.661 0.165 0.889 0.753 0.132 0.920
5 0.575 0.120 0.885 0.779 0.143 0.933 0.601 0.176 0.897 0.701 0.145 0.902
4 0.662 0.108 0.892 0.787 0.140 0.936 0.695 0.159 0.899 0.640 0.159 0.880
3 0.594 0.118 0.864 0.790 0.135 0.939 0.683 0.182 0.897 0.633 0.161 0.875
2 0.519 0.129 0.836 0.789 0.141 0.935 0.654 0.189 0.887 0.659 0.155 0.884
1 0.481 0.138 0.822 0.696 0.173 0.907 0.578 0.211 0.856 0.618 0.165 0.868

SVM

17 0.624 0.115 0.879 0.774 0.154 0.926 0.530 0.219 0.879 0.755 0.151 0.910
7 0.549 0.138 0.855 0.744 0.161 0.913 0.546 0.218 0.870 0.806 0.131 0.925
6 0.639 0.113 0.888 0.723 0.166 0.906 0.545 0.217 0.869 0.816 0.116 0.945
5 0.640 0.113 0.889 0.720 0.166 0.906 0.573 0.200 0.860 0.805 0.135 0.928
4 0.581 0.126 0.859 0.654 0.185 0.880 0.591 0.181 0.835 0.680 0.173 0.866
3 0.611 0.115 0.861 0.594 0.200 0.858 0.519 0.199 0.867 0.692 0.170 0.871
2 0.488 0.139 0.825 0.660 0.202 0.867 0.550 0.192 0.877 0.697 0.168 0.874
1 0.481 0.139 0.828 0.720 0.160 0.916 0.525 0.202 0.870 0.647 0.176 0.852

ELM

17 0.584 0.111 0.869 0.806 0.135 0.946 0.701 0.176 0.915 0.782 0.154 0.943
7 0.549 0.117 0.857 0.803 0.136 0.944 0.759 0.162 0.932 0.801 0.147 0.942
6 0.548 0.115 0.856 0.801 0.137 0.944 0.713 0.174 0.914 0.449 0.405 0.746
5 0.613 0.102 0.879 0.800 0.136 0.943 0.546 0.279 0.838 0.562 0.244 0.862
4 0.582 0.117 0.871 0.810 0.135 0.940 0.598 0.212 0.867 0.310 0.983 0.465
3 0.504 0.125 0.826 0.578 0.243 0.856 0.522 0.237 0.850 0.276 0.618 0.583
2 0.369 0.204 0.747 0.501 0.215 0.825 0.102 0.420 0.611 0.108 2.415 0.000
1 0.485 0.135 0.823 0.345 0.264 0.777 0.376 0.363 0.732 0.084 4.147 0.015
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Table 6. Results analysis of LPC prediction model constructed based on different spectral variables.

Model The Number
of Variables

New Shoot Growth Stage Flowering Stage Fruit Expansion Stage Veraison and Maturity Stage

R2 RRMSE WIA R2 RRMSE WIA R2 RRMSE WIA R2 RRMSE WIA

PLS

17 0.130 0.000 0.002 0.026 0.000 0.000 0.205 0.000 0.001 0.490 0.000 0.002
7 0.496 0.141 0.842 0.538 0.168 0.829 0.459 0.198 0.777 0.471 0.225 0.780
6 0.496 0.143 0.840 0.538 0.168 0.825 0.477 0.194 0.796 0.453 0.229 0.782
5 0.571 0.129 0.846 0.553 0.165 0.835 0.480 0.194 0.799 0.497 0.202 0.788
4 0.571 0.129 0.846 0.559 0.164 0.840 0.542 0.180 0.835 0.554 0.192 0.805
3 0.596 0.125 0.849 0.570 0.162 0.844 0.619 0.188 0.897 0.569 0.191 0.803
2 0.501 0.139 0.849 0.560 0.164 0.844 0.466 0.197 0.776 0.585 0.189 0.809
1 0.491 0.143 0.837 0.493 0.176 0.813 0.476 0.195 0.777 0.568 0.191 0.803

RF

17 0.595 0.122 0.879 0.673 0.157 0.899 0.612 0.156 0.893 0.560 0.186 0.822
7 0.540 0.132 0.889 0.653 0.179 0.908 0.640 0.166 0.894 0.538 0.191 0.817
6 0.642 0.118 0.880 0.649 0.181 0.905 0.677 0.151 0.891 0.513 0.195 0.805
5 0.563 0.130 0.852 0.701 0.133 0.902 0.683 0.150 0.895 0.509 0.196 0.801
4 0.558 0.131 0.850 0.711 0.134 0.901 0.705 0.175 0.906 0.525 0.193 0.807
3 0.550 0.132 0.844 0.578 0.161 0.849 0.683 0.152 0.889 0.562 0.187 0.815
2 0.527 0.135 0.831 0.558 0.165 0.843 0.666 0.155 0.887 0.606 0.169 0.823
1 0.497 0.140 0.819 0.527 0.170 0.822 0.433 0.219 0.802 0.407 0.214 0.765

SVM

17 0.575 0.141 0.829 0.709 0.121 0.890 0.578 0.187 0.827 0.199 0.290 0.695
7 0.602 0.128 0.872 0.758 0.117 0.928 0.659 0.178 0.884 0.514 0.203 0.846
6 0.610 0.128 0.874 0.789 0.120 0.922 0.569 0.182 0.837 0.490 0.217 0.834
5 0.610 0.142 0.826 0.781 0.114 0.931 0.576 0.178 0.833 0.326 0.251 0.757
4 0.610 0.142 0.826 0.800 0.110 0.941 0.527 0.188 0.814 0.526 0.208 0.847
3 0.619 0.142 0.823 0.652 0.159 0.896 0.525 0.187 0.813 0.537 0.199 0.852
2 0.580 0.144 0.827 0.649 0.176 0.886 0.173 0.257 0.597 0.039 0.383 0.529
1 0.570 0.153 0.810 0.511 0.175 0.828 0.225 0.243 0.671 0.111 1.944 0.166

ELM

17 0.581 0.121 0.879 0.778 0.130 0.916 0.778 0.122 0.904 0.551 0.198 0.773
7 0.664 0.117 0.900 0.795 0.115 0.909 0.780 0.130 0.919 0.615 0.185 0.807
6 0.634 0.125 0.888 0.784 0.121 0.908 0.787 0.128 0.924 0.775 0.166 0.884
5 0.161 0.214 0.659 0.781 0.121 0.902 0.782 0.130 0.921 0.601 0.179 0.837
4 0.274 0.183 0.735 0.824 0.106 0.942 0.800 0.120 0.939 0.633 0.176 0.836
3 0.508 0.157 0.834 0.197 0.370 0.582 0.482 0.278 0.791 0.629 0.172 0.854
2 0.582 0.127 0.860 0.034 0.555 0.360 0.403 0.218 0.802 0.596 0.177 0.865
1 0.536 0.134 0.834 0.514 0.173 0.821 0.462 0.201 0.809 0.549 0.200 0.837

The results obtained using the models constructed based on the optimal numbers of
predictive variables derived in the four growth stages are shown in Table 7. Compared to
the RF, PLS and SVM models, the simulation results of the ELM model were more accurate
when predicting the LNC, and the R2 values of the ELM model at the new shoot growth,
flowering, fruit expansion and veraison and maturity periods were 2.256–25.174% higher,
23.404–74.249% higher, 11.019–31.057% higher and 14.960–62.786% higher, respectively,
than those of these other models; In addition, the RRMSE values were 3.226–31.818% lower,
25.263–38.793% lower, 7.821–27.313% lower and 37.222–53.688% lower, respectively, than
those of the other models, and the WIA values were all greater than 0.85. When predicting
the LKC, compared to the other three models, the RF model had the best modeling effect
during the new shoot growth period, the ELM model had the best modeling effect during
flowering and fruit expansion periods, and the SVM model had the best prediction effect
during the veraison and maturity period. For predicting the LPC, compared to the RF, PLS
and SVM models, the ELM model had a better prediction effect at different growth stages;
the R2 values at the new shoot growth, flowering, fruit expansion and veraison and maturity
stages were 3.427–11.409%, 3.000–44.561%, 13.475–29.241% and 27.888–44.320% higher,
respectively, than those of the other models, while the RRMSE values were 6.400–17.606%,
3.636–34.568%, 31.429–36.170% and 1.775–16.583% lower, respectively. From the above
analysis, it can be seen that the simulation results obtained for different growth stages
were also different. The LNC model established based on the ELM algorithm exhibited the
best prediction effect the veraison and maturity stage, followed by the flowering period,
fruit expansion period and new shoot growth period. When predicting the LPC, the
flowering-period model had the best prediction effect, while the new-shoot-growth-period
model was the worst. In addition, Table 7 shows that among the different prediction
models obtained, the LNC model constructed with the B, SIPI, G, FCVI, OSAVI and NDVI
as prediction variables by the ELM algorithm had the best prediction effect during the
veraison and maturity stage, exhibiting optimal correlations between the real and predicted
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values. The R2 value was greater than 0.85 and the RRMSE value was 0.95; thus, the model
was considered reliable.

Table 7. Statistical analysis of prediction models constructed based on the number of the best
predictors.

Growth Stage Model Response Variables Predictive Variables R2 RRMSE WIA

New shoot
growth stage

PLS
LNC FCVI 0.576 0.088 0.830
LKC SIPI, FCVI, DVI 0.499 0.132 0.826
LPC DVI, MSAVI, OSAVI 0.596 0.125 0.849

RF
LNC FCVI, DVI, NIR900, MSAVI 0.671 0.068 0.916
LKC SIPI, FCVI, DVI, NIR900 0.662 0.108 0.892
LPC DVI, MSAVI, OSAVI, NDVI, MSR, SIPI 0.642 0.118 0.880

SVM
LNC FCVI, DVI, NIR900, MSAVI, OSAVI, NDVI 0.703 0.062 0.919
LKC SIPI, FCVI, DVI, NIR900, MSAVI 0.640 0.113 0.889
LPC DVI, MSAVI, OSAVI 0.619 0.142 0.823

ELM
LNC FCVI, DVI, NIR900, MSAVI, OSAVI, NDVI, G 0.721 0.060 0.938
LKC SIPI, FCVI, DVI, NIR900, MSAVI 0.613 0.102 0.879
LPC DVI, MSAVI, OSAVI, NDVI, MSR, SIPI, R 0.664 0.117 0.900

Flowering stage

PLS
LNC SIPI, RVI 0.466 0.116 0.785
LKC B, G, SIPI 0.743 0.153 0.921
LPC B, G, DVI 0.570 0.162 0.844

RF
LNC SIPI 0.525 0.111 0.838
LKC B, G, SIPI 0.790 0.135 0.939
LPC B, G, DVI, SIPI 0.711 0.134 0.901

SVM
LNC SIPI, RVI, OSAVI, MCARI, MSAVI 0.658 0.095 0.891
LKC B 0.720 0.160 0.916
LPC B, G, DVI, SIPI 0.800 0.110 0.941

ELM
LNC SIPI, RVI, OSAVI, MCARI, MSAVI, NDVI 0.812 0.071 0.937
LKC B, G, SIPI, DVI 0.810 0.135 0.940
LPC B, G, DVI, SIPI 0.824 0.106 0.942

Fruit
expansion stage

PLS
LNC MCARI, TVI, RE, MSAVI 0.615 0.227 0.871
LKC MSAVI, DVI, OSAVI 0.553 0.18 0.836
LPC SIPI, MCARI, R 0.619 0.188 0.897

RF
LNC MCARI, TVI, RE, MSAVI 0.710 0.198 0.908
LKC MSAVI, DVI, OSAVI, NDVI 0.695 0.159 0.899
LPC SIPI, MCARI, R, B 0.705 0.175 0.906

SVM
LNC MCARI, TVI, RE, MSAVI, OSAVI 0.726 0.179 0.911
LKC MSAVI, DVI, OSAVI, NDVI 0.591 0.181 0.835
LPC SIPI, MCARI, R, B, NDVI, MSR, OSAVI 0.659 0.178 0.884

ELM
LNC MCARI, TVI, RE 0.806 0.165 0.936
LKC MSAVI, DVI, OSAVI, NDVI, SIPI, MSR, FCVI 0.759 0.162 0.932
LPC SIPI, MCARI, R, B 0.800 0.120 0.939

Veraison and
maturity stage

PLS
LNC B, SIPI, G 0.524 0.244 0.850
LKC RE, MCARI, TVI 0.671 0.153 0.887
LPC FCVI, RVI, MSR 0.585 0.189 0.809

RF
LNC B, SIPI, G 0.725 0.172 0.917
LKC RE, MCARI(6) 0.753 0.132 0.92
LPC FCVI, RVI 0.606 0.169 0.823

SVM
LNC B, SIPI, G 0.742 0.180 0.918
LKC RE, MCARI, TVI, RVI, MSR, R 0.816 0.116 0.945
LPC FCVI, RVI, MSR 0.537 0.199 0.852

ELM
LNC B, SIPI, G, FCVI, OSAVI, NDVI 0.853 0.113 0.955
LKC RE, MCARI, TVI, RVI, MSR, R, MSAVI 0.801 0.147 0.942
LPC FCVI, RVI, MSR, NDVI, EVI, R 0.775 0.166 0.884

3.4. Distributions of LNC, LKC and LPC in Different Growth Stages

The optimal prediction models of LNC, LKC and LPC in each growth period were
selected by R2, RRMSE and WIA shown in Table 7, and the spatial distribution of predicted
results of LNC, LKC and LPC were shown in Figures 6–8, respectively. It can be seen that
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there were differences in grape growth under different fertilization treatments. With the
increase of fertilization, the nutrient content of grape leaves also showed a rising trend.
The plot under different fertilization treatments could be clearly distinguished in the figure.
LNC, LKC and LPC of grape were lower under F0 and CK treatments, while F3 and F2
treatments had higher nutrient content in grape leaves. It is feasible to estimate grape LNC,
LKC and LPC at field scale by UAV multispectral remote sensing.
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2021). (B) LKC distribution map of grape in the new shoot growth stage based on UAV image (8 May
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2021). (E) LKC distribution map of grape in the veraison and maturity stage based on UAV image
(23 July 2021).
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Figure 8. (A) Distribution map of grape with different treatments based on UAV image (22 June 2021).
(B) LPC distribution map of grape in the new shoot growth stage based on UAV image (8 May 2021).
(C) LPC distribution map of grape in the flowering stage based on UAV image (31 May 2021). (D) LPC
distribution map of grape in the fruit expansion stage based on UAV image (22 June 2021). (E) LPC
distribution map of grape in the veraison and maturity stage based on UAV image (23 July 2021).

3.5. Model Uncertainty Analysis

Uncertainty analysis is performed primarily to test whether the simulation effect of a
model remains stable after changing an input term and whether the model can still achieve
an accurate prediction effect with the new input term. In this study, the model stability
was evaluated on the basis of uncertainty analysis and the d-factor value. The d-factor
values of the constructed models were obtained based on the numbers of the best predictors
in the different grape growth stages, as shown in Table 8. The results suggest that the
average d-factor values of the ELM and RF models were relatively small, and these models
remained stable. In contrast, the d-factor value of the PLS model was large; to improve
the accuracy of this model, we would need to reanalyze the data and adjust the model
parameters. The uncertainty of the model also varied among different growth stages, and
the uncertainty of the LNC model gradually decreased as the growth period advanced. The
uncertainty of the LKC model increased among stages in the following order: flowering
stage < veraison and maturity stage < fruit expansion stage < new shoot growth stage. The
largest uncertainty of the LPC model was found in the new shoot growth stage, followed
by the veraison and maturity stage, the flowering stage and the fruit expansion stage.
The uncertainties of the LNC prediction model during the new shoot growth period and
flowering period were higher than those of the LKC model and LPC model; the largest
uncertainties of the LKC model and LPC model were observed in the fruit expansion stage
and veraison and maturity stage, respectively.

Table 8. Uncertainty measurement parameter (d-factor) for different models.

Model Response
Variables

d-Factor

New Shoot
Growth Stage Flowering Stage Fruit Expansion

Stage
Veraison and

Maturity Stage
Average Value

of Xi Average Value

PLS
LNC 0.663 0.292 0.274 0.186 0.354

0.319LKC 0.515 0.168 0.288 0.195 0.292
LPC 0.482 0.212 0.195 0.356 0.311
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Table 8. Cont.

Model Response
Variables

d-Factor

New Shoot
Growth Stage Flowering Stage Fruit Expansion

Stage
Veraison and

Maturity Stage
Average Value

of Xi Average Value

RF
LNC 0.634 0.291 0.249 0.163 0.334

0.302LKC 0.489 0.160 0.280 0.194 0.281
LPC 0.468 0.197 0.187 0.310 0.291

SVM
LNC 0.646 0.285 0.270 0.160 0.340

0.307LKC 0.502 0.171 0.288 0.189 0.288
LPC 0.476 0.188 0.182 0.323 0.292

ELM
LNC 0.621 0.271 0.267 0.157 0.329

0.301LKC 0.512 0.164 0.274 0.203 0.288
LPC 0.487 0.186 0.180 0.290 0.286

4. Discussion
4.1. Comparison of Sensitive Spectral Variables at Different Growth Stages

In this study, we analyzed the correlations between 17 spectral variables and the
nitrogen, phosphorus and potassium contents in grape leaves at different growth stages.
We found that the correlation coefficients between the VIs and the nitrogen, phosphorus and
potassium contents in grape leaves was the lowest at the fruit expansion stage throughout
the whole grape growth period; this might have been related to the size of the grape canopy.
During the new shoot growth stage, new branches grow, new leaves proliferate, and the
leaf area gradually increases. After the fruit expansion stage, the leaf area of the plants
is maximized and tends to stabilize. In the subsequent veraison and maturity stage, the
leaves gradually turn yellow and fall off, and the effective leaf area begins to decrease.
However, VIs are usually saturated in high-density vegetation canopies [41]; thus, the VIs
extracted during the grape fruit expansion period were saturated in this work, resulting in
the correlations between the VIs and the LNC, LKC and LPC being lower in this period
than in other periods.

In addition, we found that the top 5 spectral variables related to leaf nutrient contents
during the new shoot growth stage were almost for VIs (such as, DVI, MSAVI, OSAVI, FCVI,
etc.) based on soil line; these soil line-based VIs were developed to minimize the influence
of the soil background on the results [42]. With the advancement of the growth period, most
spectral variables changed into the VIs (such as MCARI, SIPI, MSAVI, TVI, etc.) sensitive
to plant nitrogen, and a small portion of these variables are VIs related to the regulation
of the soil background. This shows that VIs based on the soil line can compensate for the
errors caused by the soil background when the vegetation coverage is low during the new
shoot growth period [43]; thus, these are the best spectral variables for predicting the leaf
nutrient contents by remote sensing in the early stage of grape growth. The VIs that are
sensitive to plant pigments are the key indices used to predict the nutrient contents in
grape leaves from the flowering to coloring maturity stages. However, because grapes are
sparsely planted fruit trees, it is necessary to partially optimize the soil background-related
VIs to reduce the impact of the soil background.

4.2. Performances of Different Machine Learning Models

In this study, based on spectral indices and machine learning algorithms, we estab-
lished models to estimate the LNC, LKC and LPC at different grape growth stages. We
found that the prediction effects of the different analyzed machine learning algorithms
were not the same, and the numbers of optimal spectral variables selected for the models
were also different (as shown in Table 7). Previous studies have shown that it is difficult to
estimate multitemporal changes in crop leaf nutrients with traditional VIs because these
VIs appear saturated and have low sensitivities during the reproductive crop stage [44,45].
However, in this study, we found that it was feasible to predict the LNC, LKC and LPC
at different growth stages by using multiple VIs combined with machine learning mod-
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els. This may have been because the analyzed VIs were calculated using different band
reflectances, and the sensitivity differences among the LNC, LKC and LPC may be obvious
at different growth stages. Moreover, compared to PLS, a linear machine learning algo-
rithm, the nonlinear RF, SVM and ELM machine learning algorithms had better prediction
accuracies, while the ELM model had the best overall prediction effect, which may have
been related to the number of spectral variables used in the modeling process. The analysis
results listed in Table 7 show that the number of spectral variables used to establish the
ELM model was generally greater than those of the other three models, indicating that
under the same conditions, the ELM model can use more spectral information than the
other three models, making this model the most accurate. In addition, the prediction effect
of the ELM model at the fruit expansion stage was better than that of this model at the new
shoot growth stage. Therefore, combining VIs with machine learning algorithms such as
ELM is helpful for overcoming the saturation problem associated with using single VIs to
obtain estimations during the grape fruit expansion stage.

By comparing the models constructed to predict the LNC, LKC and LPC at different
grape growth stages, we found that the prediction accuracies at the new shoot growth
period were generally low; this may have been because grapes are perennial crops, and
branches are artificially pruned after each harvest period, so large growth differences occur
during the early growth period associated with highly variable nutrient absorption among
trees. In this study, the determination of the LNC, LPC and LKC values was based on
the leaf scale, while the spectral indices were calculated based on the canopy scale, thus
affecting the accuracy of the models. Similarly, the prediction accuracy of the LKC model
at the fruit expansion stage and that of the LPC model at the veraison and maturity stages
were low, which may have been because grape trees absorb a large amount of K at the
fruit expansion stage and absorb a large amount of P at the veraison and maturity stage
(Figure 3). This may have caused the potassium and phosphorus contents of grape leaves
to fluctuate greatly and increased the errors caused by mismatches between the leaf and
canopy scales, resulting in the low model accuracies. In a follow-up study, the leaf area or
its related indicators should be considered in the model construction process to improve
the resulting prediction accuracy.

4.3. Research Limitations and Future Prospects

UAV multispectral technology represents a new remote sensing method that is critical
in large-scale precision agriculture research. This study was carried out under field exper-
imental conditions. Statistically, obtaining more samples based on larger regions would
improve the generalization ability of the constructed models. In this study, we found that
VIs with high correlations with the LNC, LKC and LPC differed among different growth
stages, indicating that it is challenging to select suitable VIs for estimating physiological
growth parameters of the same crop at different growth stages [46]. In addition, the amount
of nitrogen, potassium and phosphorus fertilizer applied to the field increased and de-
creased simultaneously in this research. It is difficult to distinguish the reflectance effect
and find the sensitive spectral characteristics of a certain element, considering the influence
of other nutrients on the spectrum. Therefore, it is necessary to set nitrogen, phosphorus or
potassium fertilizer gradient while keeping others consistent to further explore the sensitive
spectral characteristics of N, K and P in future research.

In this study, multiple VIs were combined with RF, SVM and ELM models to better
predict the LNC, LPC and LKC values of grapes at different growth stages; we determined
the optimal VIs for predicting the nutrient contents of grape leaves at different growth
stages. The nutrient content of grape leaves at different stages obtained by UAV multispec-
tral remote sensing was used to determine the nutrient deficiency status of grape plants at
different growth stages. This provides support for field fertilization decision-making in
vineyards at key growth stages. In future work, spectral variable combinations should be
further studied, and the scale problem should be fully considered to obtain an improved
universal estimation model.
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5. Conclusions

In this study, based on UAV-derived multispectral images, we performed correlation
analyses between spectral variables and leaf nitrogen, phosphorus and potassium contents
at different grape growth stages, and the optimal spectral variable combinations for estimat-
ing the various leaf nutrient contents were selected. The PLS, RF, SVM and ELM models
were used for modeling, and the model uncertainties were evaluated. The grape LNC,
LPC and LKC values were effectively estimated using these models. The results showed
that combining spectral variables with the ELM model resulted in a model that could best
predict the LNC, LKC and LPC values at different growth stages. The best prediction result
was obtained using the LPC model with the B, SIPI, G, FCVI, OSAVI and NDVI input as
prediction variables at the veraison and maturity stages. The R2, RRMSE and WIA values
obtained for this model were 0.853, 0.113 and 0.955, respectively. The d-factor value of
the model was 0.157; the model was stable and reliable. This study proved the feasibility
of using combinations of spectral indices and machine learning algorithms to establish
grape LNC, LPC and LKC prediction models, thus providing data support for scientific
fertilization and the decision-making management of field-grown grapes.
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