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Abstract: Satellite remote sensing sea surface temperature (SST) data are lost due to cloud cover.
Missing data often cause inconvenience in subsequent applications and thus need to be reconstructed.
In this study, the Data Interpolating Empirical Orthogonal Function (DINEOF) method was used to
reconstruct the hourly SST data missing from the Himawari-8 satellite in the waters near Taiwan. The
SST characteristics in the waters around Taiwan are quite complex, with high SST at Kuroshio in the
east of Taiwan and great variation in the SST west of Taiwan due to the influence of tides. Therefore,
the analysis with DINEOF was conducted using 25-h data to match the tidal cycle. The influence
of SST characteristics on the accuracy of SST reconstruction is also discussed. The results show that
in the western sea area where the variation of SST is large, the average root-mean-square error of
SST between the original SST and the reconstructed SST is the lowest and the average coefficient of
determination is the highest. The accuracy of the reconstructed SST is positively correlated with the
SST variation. Furthermore, the statistical results also show that the DINEOF method can effectively
reconstruct the SST regardless of the missing data rate.

Keywords: Himawari-8; sea surface temperature; missing data; DINEOF; Taiwan

1. Introduction

Sea surface temperature (SST) is the basis for understanding, monitoring, and forecast-
ing heat, momentum, and gas fluxes and it also provides basic information about the global
climate system. According to the sixth Assessment Report (AR6) of the Intergovernmental
Panel on Climate Change (IPCC), the ocean temperature has increased by about 0.88 ◦C
from the beginning of the 21st century to the present compared with the 19th century. The
rate of increase in sea level from 2006 to 2018 increased to 3.7 mm per year, representing a
rise in the global mean sea level with increasing ocean temperatures [1]. SST can clearly
show the characteristics of water mass front, upwelling, and ocean eddies in biology-related
studies [2] and also provide the initial boundary conditions for the ocean dynamic model.
SST data can be obtained from on-site anchor observations, ship surveys, drifting buoys, or
satellites. However, the data obtained by various methods have limitations. For example,
satellite SST data can provide information for long-term and large-scale observation [3]
but are limited by orbital scanning or the acquisition rate of SST data may be poor due
to weather effects. Therefore, to explore the SST data situation in the adjacent waters of
Taiwan and for subsequent application, in this study, we used the SST data of Himawari-8,
a geosynchronous satellite that is not restricted by orbital movement, and the Data Interpo-
lating Empirical Orthogonal Function (DINEOF) method was applied to reconstruct the
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values missing due to cloud cover. The influence of the characteristics of the original data
on the accuracy of the filling values was then compared.

Since the thermal infrared band from satellites, used for detecting SST, is often affected
by clouds or water vapor, data gaps occur frequently. To fill in the gaps in the images, the
empirical orthogonal function (EOF) method has been used as a basis [4] for analyzing
the characteristics of incomplete data to reconstruct the missing data, and this method is
called DINEOF [5]. DINEOF was systematically developed to understand the accuracy
of the reconstructed data, and it was applied to the SST data of the Advanced Very High
Resolution Radiometer (AVHRR) onboard National Oceanographic and Atmospheric Ad-
ministration (NOAA) satellites, with artificial addition of 40%, 60%, and 80% missing data
to simulate the phenomenon of cloud cover [6]. The root-mean-square errors (RMSEs)
compared with the original data were 0.89 K, 0.78 K, and 1.25 K, respectively. The results of
the DINEOF method were also compared with optimal interpolation [7] and were found to
be quite close, showing that DINEOF can be effectively applied to fill data gaps [8,9]. In
addition to simply using AVHRR SST data, there are also multivariate DINEOF calculations
that combine different satellite SST data, chlorophyll data, and wind field data [10]. The
DINEOF method to fill in missing SST data has progressively been improved after several
attempts. Therefore, to explore the variations in SST of adjacent waters in Taiwan, this
study applied the DINEOF method to the high temporal resolution Hemawari-8 SST data
to reconstruct the missing values in the data. The accuracy of the reconstructed data was
then compared in different sea areas to understand how different characteristics of the SST
influence the accuracy of the reconstructed data.

2. Materials and Methods
2.1. SST Data

For this study, we used the SST data of Himawari-8 in 2018 for analysis. The data
range is from 117◦E to 125◦E longitude and 20◦N to 27◦N latitude, as shown in the red box
in Figure 1. The spatial resolution of the SST dataset is 2 km, and the temporal resolution is
one hour.
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The characteristics of SST in the waters around Taiwan are varied. The northern waters
of Taiwan are affected by east–west tidal currents, showing a complex background current
and temperature frontal changes [11]. Due to topographic factors, the western waters of
Taiwan have become the area with the largest tidal range change along the coast of central
Taiwan [12]. The waters of Penghu are affected by the high-temperature seawater from
south to north in the strait [13] and, thus, have obvious SST characteristics. The eastern
sea area of Taiwan is the Kuroshio region with long-term high temperature, so the SST
does not change significantly [14]. Due to the island effect, the Kuroshio is divided into a
dual-axis phenomenon in the waters of Lanyu and Green Island in the southeastern part of
Taiwan [15]. The southern waters of Taiwan are located on the north side of the South China
Sea, where cold water occasionally intrudes [16]. Therefore, based on six water areas with
different SST around Taiwan with a size of 0.4 × 0.4 degrees (the blue boxes in Figure 1)
were selected for discussion of how different SST characteristics affect the performance of
the DINEOF method. The location information of the six water areas is listed in Table 1.

Table 1. The selected sea area for the DINEOF performance.

Sea Area Latitude (◦N) Longitude (◦E) Number of Data

East (E) 121.84–122.24 23.6–24.0 738
South (S) 120.6–121.0 21.32–21.72 1141
West (W) 120.0–120.4 24.2–24.6 1359
North (N) 121.34–121.74 25.34–25.74 1116

Southeast (SE) 121.30–121.70 22.16–22.56 1065
Southwest (SW) 119.6–120.0 22.68–23.08 1480

2.2. DINEOF Method

DINEOF is a statistical method based on empirical orthogonal function (EOF) [17],
which complements incomplete data and analyzes its characteristics. It is often used to
fill in missing data in the field of geophysics. For example, the satellite infrared SST
image is obscured by clouds, resulting in missing values. DINEOF obtains the eigenvalues
and eigenvectors through EOF analysis, determines the optimal reconstruction order of
EOFs for the complete dataset or incomplete dataset through a cross-validation procedure,
and infers the data of the missing value points to be reconstructed [5]. After a series of
modifications and improvements [6,8], the GeoHydrodynamics and Environment Research
(GHER) team was established to provide the DINEOF algorithm and codes. This study
performed DINEOF based on the codes provided by GHER on its website. The principle of
DINEOF is described as follows.

Before performing the DINEOF operation, the data are first arranged into a two-
dimensional matrix to form a two-dimensional array X with the number of columns M (the
number of spatial grid points) and the number of rows N (the number of time data) as

X =


Data11 Data12 · · · Data1n

Data21 Data22 · · · Data2n

...
...

. . .
...

Datam1 Datam2 · · · Datamn

 (1)

where M = 1, 2, . . . , m and N = 1, 2, . . . , n. To complement the value, first, the set of missing
points in the data is identified as a marker. The form of the set is represented by I. It is
assumed that (i, j) corresponds to the missing point of X. For elements (i, j) in the original
data X, if (i, j) ∈ I, it means that this element is missing. The number of missing data points
is represented by n0 and the values of missing data points of the original data are then
set to 0. The points without missing values maintain their original values to form a new
matrix X0, and the singular value decomposition (SVD) method is then used to obtain the
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eigenvalue of the matrix X0 [18] and the EOFs of space (U) and time (V) and the diagonal
elements of matrix S are initially estimated as

X0 = USVT (2)

where S is a diagonal matrix composed of singular values, and the matrix size is r × r; U
is the spatial decomposition of the original data matrix, and the matrix size is m × r; V is
the time principal component (PC) of the original data matrix, the matrix size is n × r. m
represents the size of the data point; n represents the number of data points; r is the rank of
the matrix X, which represents the number of linearly independent columns of the matrix
X0; and the value of r must not exceed the values of m and n.

In the process of reconstructing the data, only the most significant spatial and temporal
modes are left and the optimal reconstruction result Xrec can be obtained as

(Xrec)ij = (UkSkVT
k)ij = (Xe

0)ij =
k

∑
p=1

ρp
(
up
)

i(v
T
p)j

(3)

where k is the optimal number of the remaining k-order modes, and Xe
0 represents the recon-

struction matrix corresponding to the first k-order EOFs. After obtaining the reconstructed
data of the missing data point, (Xrec)ij, it is added to the original data matrix X0 as

Xrec = X0 + (Xrec)ij (4)

(Xrec)ij means that all data points are 0 except for the reconstructed data at the missing point
(i, j). Since the space–time EOFs and singular values are adjusted after each reconstruction,
after the first reconstruction is completed, the same procedure as in the following two
equations is repeated until convergence is reached:

Xrec = USVT (5)

(Xrec)ij = (UkSkVT
k)ij = (Xe

rec)ij =
k

∑
p=1

ρp
(
up
)

i(v
T
p)j

(6)

where Uk is an m × k matrix covering the first k spatial EOFs, Vk is a k × n matrix covering
the first k temporal EOFs, and Sk is a k × k diagonal matrix covering the first k singular
values. During each iteration, when a new reconstruction matrix is generated, the optimal
number of modes is also replaced [19]; that is, the size of k changes with the singular value
diagonal matrix and ρp is the p-th singular value of X (p = 1, 2, . . . , k); up represents the
spatial EOFs of the p-th mode; vp represents the temporal EOFs of the p-th mode. The
criterion for convergence is that the ratio between the RMSE of missing data and the
standard deviation (σ) of existing data without missing data reaches 10−3 [20], which is
called the accuracy of reconstruction data.

DINEOF is a theory derived based on EOF theory, and the EOF analysis method is
based on finding the eigenvectors of continuous data and further represents the principal
component content of the data period. Therefore, if the selected data period spans different
time scales, the physical phenomenon affects the analyzed principal component results. In
terms of SST near Taiwan, the western and northern waters of Taiwan are mainly affected
by tides. Therefore, 25-h continuous data was selected to match the tidal cycle as the base
data for the DINEOF method to obtain the complete SST.

To verify the performance of the DINEOF method in reconstructing data from different
sea areas, this study removed 21 × 21 grid points at specific locations from the 25th original
SST (SSTO) data to simulate missing values caused by cloud cover. The selection of
images must satisfy the following criteria: (1) the 21 × 21 grid points simulating missing
values for cloud cover must have no missing values at hour 25, and (2) hourly data of the
previous 24 h cannot be completely missing, that is, they must not have a 100% missing



Remote Sens. 2022, 14, 2818 5 of 12

rate. The above criteria were applied to all Himawari images in the study areas in 2018,
and images satisfying these two criteria were selected and then reconstructed by DINEOF.
All comparisons were for the 25th hour original and reconstructed data of each. The areas
selected by the simulated cloud cover were the blue squares shown in Figure 1, on which
the DINEOF method was carried out to reconstruct the missing data.

3. Results
3.1. Preliminary Analysis of SST Data

Figure 2 is the time series of the missing data rate of Himawari-8 SST data. The blue
line is the original data, and the red line is the 30-day moving average. It can be seen that
the missing data rate is higher in winter, which is the northeast monsoon period. The
missing data rate is also higher in June and August. According to the 2018 annual report of
climate monitoring [21], the rainfall during the 2018 Meiyu (plum rain) season was mainly
concentrated in June, while from mid-August 2018, Taiwan was located in a low-pressure
belt and rain over an extended period. Both rainy periods were responsible for the high
SST missing data rate in June and August.
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Figure 2. The daily missing data rate in 2018. The red line is the 30-day moving average.

Figure 3a shows the statistics of the spatial distribution of the missing data rate. It
can be seen that the northeast and eastern sea areas of Taiwan have a higher missing data
rate. This is probably due to the influence of the northeast monsoon and the Kuroshio.
In winter, the northeast monsoon brings cold air masses to northern Taiwan, passing the
region of the warm Kuroshio. The increased air–sea temperature, moisture differences, and
intensified wind speed result in increased evaporation, which eventually condensed into
clouds and resulted in precipitation in the area near the Kuroshio [22,23]. The missing data
rate is distributed in the interval 45–75% (Figure 3b).
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According to the SST characteristics of different sea areas around Taiwan, six areas
were selected as artificially excluded values, and the DINEOF method was then used to fill
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in the missing values. Figure 4 shows the mean and standard deviation of SST throughout
the year in 2018. The variability of SST in the eastern and southern waters of Taiwan where
the Kuroshio passes is relatively small, while it is more obvious in the northern and western
waters of Taiwan. Figure 5 shows the boxplot of the standard deviation of SSTO data in the
six areas. It shows relative stability in the eastern, southern, and southeastern sea areas,
with larger SST variations in the northern, western, and southwestern sea areas.
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3.2. DINEOF Results

Figure 6 shows the most accurate result for DINEOF in reconstructing SST in the six
areas. It can be seen that the SST characteristics were well reproduced. The overall SST
differences between the SSTO and the reconstructed SST (SSTR) of the six areas were less
than ±1.0 ◦C—less than ±0.5 ◦C in most cases—and the RMSEs were between 0.13 and
0.29 ◦C, and the coefficients of determination (r2) were all above 0.84. The western sea
area has the lowest RMSE and the highest r2, the southern sea area has the highest RMSE,
and the southeastern sea area has the lowest r2. It can also be seen that the areas with less
accurate SSTR are mainly in the eastern and southern sea areas, while those with SSTR
closer to the actual values are in the western and northern sea areas. The SSTR results were
affected by the intensity of the SST gradient. A more accurate SSTR can be obtained with
the SSTO if the SST characteristic variations are significant. This may be due to the large
variation of SST characteristics in the northern and western waters around Taiwan, which
is caused by the influence of tides and results in larger eigenvalues.
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the DINEOF method. (m–r) Histograms of the difference between the SSTO data and the SSTR data.
(s–x) Scatter plots of the SSTO data and the SSTR data.
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4. Discussion
4.1. Comparison of SSTR with Other SST Data

The accuracy of SSTR has been assessed with SSTO. However, when using DINEOF to
reconstruct missing values in geophysical data, missing values should be compared with
other data, such as higher resolution data, to check if they are correct. Thus, SSTR data
were further assessed with in situ SST Quality Monitor (iQuam) SST measurements and
the moderate resolution imaging spectroradiometer (MODIS) SST data onboard the Terra
and Aqua satellites.

4.1.1. iQuam SST

The iQuam SST dataset is an in situ calibrated monitoring system for SST developed by
NOAA. The main purpose is to ensure the quality of the in situ SST provided by different
countries, agencies, and platforms [24]. The iQuam SST dataset has a quality level indicator.
The suggested use quality level for high-accuracy applications is level 5 and for general
applications is level 4. This study used only quality level 5 data to compare with SSTO
and SSTR.

Figure 7 shows the time series comparison of iQuam SST (SSTQ) with SSTO and SSTR
in the six areas. The selection of the SSTQ is based on the data of level 5 in the study area
and then compared with SSTO and SSTR of the closest time and the nearest pixel of the
SSTQ. The most available iQuam data for comparison is in the south area with 14 points,
while the least is in the west area with four points. The statistical result of the comparison
between SSTQ and SSTO/SSTR is listed in Table 2. The RMSE between SSTQ and SSTR
was from 0.44 to 1.29 ◦C. It seems that the RMSE is large, but the r2 values were all above
0.77, showing a good correlation. Overall, the statistical results of SSTR and SSTO with
SSTQ were similar, although some regional SSTR results had lower RMSE and higher r2

compared to SSTO. However, the statistical confidence may not be sufficient due to fewer
matching points in some areas. Comparing the data of the six areas, the results are shown
in Figure 8. The r2 was both 0.86 and the RMSE was between 0.83 and 0.85 ◦C, indicating
that the error in the results of SSTR was acceptable.
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Table 2. Statistic results of the comparison between SSTQ and SSTR/SSTO in the six areas.

Sea Area
Number of

Matching Points
SSTQ with SSTR SSTQ with SSTO

RMSE (◦C) r2 p-Value RMSE (◦C) r2 p-Value

East (E) 10 0.44 0.95 <0.001 0.58 0.91 <0.001
South (S) 14 0.58 0.77 <0.001 0.60 0.80 <0.001
West (W) 4 1.29 0.83 0.0895 1.01 0.89 0.0546
North (N) 4 1.02 0.96 0.0187 1.05 0.94 0.0279

Southeast (SE) 7 0.91 0.86 0.0029 0.83 0.87 0.0022
Southwest (SW) 7 1.19 0.85 0.0029 1.20 0.85 0.0030

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 12 
 

 

Table 2. Statistic results of the comparison between SSTQ and SSTR/SSTO in the six areas. 

Sea Area 
Number of Matching 

Points 
SSTQ with SSTR SSTQ with SSTO 

RMSE (°C) r2 p-Value RMSE (°C) r2 p-Value 
East (E) 10 0.44 0.95 <0.001 0.58 0.91 <0.001 

South (S) 14 0.58 0.77 <0.001 0.60 0.80 <0.001 
West (W) 4 1.29 0.83 0.0895 1.01 0.89 0.0546 
North (N) 4 1.02 0.96 0.0187 1.05 0.94 0.0279 

Southeast (SE) 7 0.91 0.86 0.0029 0.83 0.87 0.0022 
Southwest (SW) 7 1.19 0.85 0.0029 1.20 0.85 0.0030 

 
Figure 8. Scatter plot of SSTO and SSTR with SSTQ for all matching points in six areas. 

4.1.2. MODIS SST 
The DINEOF reconstruction results were compared with MODIS SST (SSTM) data in 

addition to iQuam SST. Because MODIS is onboard both Terra and Aqua satellites, the 
SSTR was compared with Terra MODIS SST and Aqua MODIS SST. The MODIS SST used 
in this study was L3 daytime and nighttime data. They are available from the MODIS 
website. Since the grid size of MODIS data is 4 km × 4 km, the Himawari data were also 
processed to 4 km × 4 km for comparison. The comparison results between SSTR and SSTM 
and between SSTO and SSTM are listed in Table 3. The RMSE and r2 of the reconstructed 
data were between 0.58 and 0.84 °C and 0.67 and 0.97, respectively. However, in terms of 
RMSE, the nighttime data are better than the daytime data, but in terms of r2, the opposite 
is true. Overall, the comparisons were about the same whether Aqua or Terra or daytime 
or nighttime data. It is simply that the reconstructed data were slightly worse than the 
original data. 

Table 3. Statistical results between SSTM and SSTR/SSTO. 

Sea 
Area 

Terra Daytime SSTM Terra Nighttime SSTM Aqua Daytime SSTM Aqua Nighttime SSTM 
SSTR SSTO SSTR SSTO SSTR SSTO SSTR SSTO 

RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 
E 0.79 0.88 0.73 0.91 0.63 0.92 0.69 0.91 0.78 0.85 0.78 0.86 0.59 0.91 0.55 0.92 
S 0.67 0.83 0.63 0.86 0.65 0.74 0.63 0.76 0.68 0.82 0.68 0.82 0.84 0.67 0.85 0.69 
W 0.69 0.95 0.68 0.95 0.58 0.94 0.55 0.95 0.67 0.93 0.67 0.93 0.67 0.94 0.64 0.95 
N 0.59 0.97 0.60 0.97 0.67 0.93 0.67 0.93 0.78 0.95 0.75 0.96 0.65 0.94 0.62 0.94 
SE 0.76 0.86 0.74 0.86 0.72 0.81 0.73 0.81 0.67 0.86 0.66 0.86 0.69 0.80 0.69 0.80 
SW 0.79 0.87 0.71 0.90 0.76 0.82 0.73 0.84 0.67 0.92 0.65 0.92 0.74 0.85 0.73 0.86 

Figure 8. Scatter plot of SSTO and SSTR with SSTQ for all matching points in six areas.

4.1.2. MODIS SST

The DINEOF reconstruction results were compared with MODIS SST (SSTM) data in
addition to iQuam SST. Because MODIS is onboard both Terra and Aqua satellites, the
SSTR was compared with Terra MODIS SST and Aqua MODIS SST. The MODIS SST used
in this study was L3 daytime and nighttime data. They are available from the MODIS
website. Since the grid size of MODIS data is 4 km × 4 km, the Himawari data were also
processed to 4 km × 4 km for comparison. The comparison results between SSTR and SSTM
and between SSTO and SSTM are listed in Table 3. The RMSE and r2 of the reconstructed
data were between 0.58 and 0.84 ◦C and 0.67 and 0.97, respectively. However, in terms of
RMSE, the nighttime data are better than the daytime data, but in terms of r2, the opposite
is true. Overall, the comparisons were about the same whether Aqua or Terra or daytime
or nighttime data. It is simply that the reconstructed data were slightly worse than the
original data.

4.2. Influence of SST Variations on SSTR

As mentioned in the previous section, the DINEOF method is based on EOF theory. If
the SST has obvious characteristics in the time or space domain, that is, if the SST varies
greatly, then the DINEOF method can be used to reconstruct missing data to obtain more
accurate results. To further examine this conclusion, the correlation between the r2 of SSTO
and SSTR and the SST deviation of SSTO was plotted in Figure 9. Figure 9a shows the
relationship between r2 and the SSTO deviation for the data of the six areas. The r2 appears
to increase with SST deviation. To present it more clearly, we averaged the SST deviation
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per 0.1 interval of r2 (Figure 9b). The result clearly shows that r2 increases with increasing
SST deviation, that is, the larger the SSTO variation, the more accurate the SSTR. The quality
of the reconstructed data caused by the differences in the SST characteristics of the six areas
can also be given in a scatter plot (Figure 9c). It shows the relationship between the r2

of SSTO and SSTR and SSTO deviation in the 0.4 × 0.4 degree box of the six areas. The
highest SSTO deviation with the highest r2 is found in the western sea area. The eastern,
southeastern, and southern sea areas have lower SSTO deviation and thus lower r2 of SSTO
and SSTR. These results confirm that the higher variation in SSTO results in a more accurate
SSTR using the DINEOF method.

Table 3. Statistical results between SSTM and SSTR/SSTO.

Sea Area

Terra Daytime SSTM Terra Nighttime SSTM Aqua Daytime SSTM Aqua Nighttime SSTM

SSTR SSTO SSTR SSTO SSTR SSTO SSTR SSTO

RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2

E 0.79 0.88 0.73 0.91 0.63 0.92 0.69 0.91 0.78 0.85 0.78 0.86 0.59 0.91 0.55 0.92
S 0.67 0.83 0.63 0.86 0.65 0.74 0.63 0.76 0.68 0.82 0.68 0.82 0.84 0.67 0.85 0.69
W 0.69 0.95 0.68 0.95 0.58 0.94 0.55 0.95 0.67 0.93 0.67 0.93 0.67 0.94 0.64 0.95
N 0.59 0.97 0.60 0.97 0.67 0.93 0.67 0.93 0.78 0.95 0.75 0.96 0.65 0.94 0.62 0.94
SE 0.76 0.86 0.74 0.86 0.72 0.81 0.73 0.81 0.67 0.86 0.66 0.86 0.69 0.80 0.69 0.80
SW 0.79 0.87 0.71 0.90 0.76 0.82 0.73 0.84 0.67 0.92 0.65 0.92 0.74 0.85 0.73 0.86
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4.3. Influence of Missing Data Rate on SSTR

To examine whether the missing data rate of SSTO affects the accuracy of SSTR, the
same procedure was performed for processing SSTO variation. Figure 10a shows the
relationship between r2 and the missing data rate of SSTO for the data of the six areas. It
seems that there is no relationship between the two. This is consistent with the results
of a previous study [6], where the authors concluded that the reconstructed result was
robust even when there was a very high amount of missing data. However, it can be
seen from Figure 10 of that study [6] that there is a higher root mean square (RMS) for
around 80% missing data. It seems that the higher the missing data rate, the higher the
RMS. To further understand whether a similar phenomenon occurs in our research data,
we averaged the missing data rate per 0.1 interval of r2, as shown in Figure 10b. The r2

decreases with increasing missing data rate; that is, the larger the missing data in SSTO, the
more inaccurate the SSTR result. This result also seems to reflect the results of the previous
study [6]. However, it should be noted that although the change trend of the mean value is
significant (p < 0.01), the standard deviation is quite large. To better understand the spatial
difference between r2 and the missing data rate, a scatter plot was plotted, as shown in
Figure 10c. The missing data rates in the six areas were almost the same, except for the
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eastern sea area, which has a higher missing data rate. The r2 varies from 0.2 to 0.6 in the
five areas with nearly the same missing data rate. Therefore, the change in r2 is unrelated to
the missing data rate. A closer look reveals that the change in r2 is related to the variation
in SSTO.
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5. Conclusions

The main purpose of this study was to use the high temporal resolution Himawari-8
SST data to explore the phenomenon of missing data in the adjacent waters of Taiwan and
its reconstruction using the DINEOF method. Then, the influence of the SST characteristics
of different sea areas on the reconstruction of the SST using the DINEOF method was
analyzed through comparisons. The conclusions of the analysis are as follows:

1. The DINEOF method is affected by the magnitude of SST variation in the study region.
If there are more obvious SST characteristics, that is, higher variation in the region,
the results of the reconstruction are better and the RMSE is smaller.

2. The missing rate of the original data does not substantially affect the accuracy of the
reconstructed data. However, from a statistical point of view, the higher the missing
data rate of the original data, the less accurate the reconstructed data may be.
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