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Abstract: Guayule (Parthenium argentatum Gray) is a perennial desert shrub currently under investi-
gation as a viable commercial alternative to the Pará rubber tree (Hevea brasiliensis), the traditional
source of natural rubber. Previous studies on guayule have shown a close association between
morphological traits or biomass and rubber content. We collected multispectral and RGB-derived
Structure-from-motion (SfM) data using an unmanned aircraft system (UAS; drone) to determine
if incorporating both high-resolution normalized difference vegetation index (NDVI; an indicator
of plant health) and canopy height (CH) information could support model predictions of crop pro-
ductivity. Ground-truth resource allocation in guayule was measured at four elevations (i.e., tiers)
along the crop’s vertical profile using both traditional biomass measurement techniques and a novel
volumetric measurement technique. Multiple linear regression models estimating fresh weight (FW),
dry weight (DW), fresh volume (FV), fresh-weight-density (FWD), and dry-weight-density (DWD)
were developed and their performance compared. Of the crop productivity measures considered,
a model predicting FWD (i.e., the fresh weight of plant material adjusted by its freshly harvested
volume) and incorporating NDVI, CH, NDVI:CH interaction, and tier parameters reported the lowest
mean absolute percentage error (MAPE) between field measurements and predictions, ranging from
9 to 13%. A reduced FWD model incorporating only NDVI and tier parameters was developed to
explore the scalability of model predictions to medium spatial resolutions with Sentinel-2 satellite
data. Across all UAS surveys and corresponding satellite imagery compared, MAPE between FWD
model predictions for UAS and satellite data were below 3% irrespective of soil pixel influence.

Keywords: NDVI; canopy height model (CHM); UAS; Sentinel-2; guayule; rubber; digital surface
model (DSM); scaling

1. Introduction

Unmanned aircraft systems (UASs, i.e., drones) experienced considerable develop-
ments in technology and utilization in recent years driven by military, academic, and
civilian interests. Among the widespread and varied applications is precision monitoring
and management in agricultural systems [1]. UASs represent a middle-ground between
the financial and logistical demands of field data collection and the insufficient spatial
or temporal resolution of satellite data [2]. High spatial resolutions coupled with on-
demand temporal accessibility enable researchers and managers to explore unprecedented
perspectives on crop development and resource use.

Of particular agronomic significance in the last century is Guayule (Parthenium argentatum
Gray), a perennial shrub endemic to the southwestern United States and northern Mexico.
The plant is currently being evaluated as a sustainable, alternative source of natural rubber [3].
The Pará rubber tree (Hevea brasiliensis), which is both dependent on a tropical climate and
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highly susceptible to disease, currently comprises at least 80% of the world’s supply of natural
rubber [4,5]. Guayule, by comparison, has low water requirements and reaches harvest
maturity after only two years [6]. Previous research has focused on the role of genetic trait
selection and environmental conditions (e.g., soil type and irrigation) on guayule rubber
production [7,8]. Because most of the plant’s rubber content is stored in bark tissue [9,10],
current breeding and management efforts aim to maximize the bark-to-wood ratio.

Direct measurements of crop morphological characteristics can be difficult, but several
techniques exist for relating complex traits to simpler, more easily measured traits [11]. For
example, measurements of fresh weight and dry weight (biomass) have long been used as
simple measures of crop performance [12]. Allometric equations can relate traits such as
canopy height (CH) and width or stem diameter at breast height (DBH) to coarse measures
of biomass or volume [13–15]. Regardless of whether data are obtained destructively or
allometrically, in situ measurements can be costly and time consuming. As a result, the
agricultural industry has recently turned to remote sensing as a potentially more efficient
alternative for monitoring crops [16].

Surface modeling techniques and technology can be used to measure plant struc-
tural features, such as crop height, volume, biomass, and lateral density (i.e., crop spac-
ing). Structure-from-Motion (SfM) photogrammetry, one such approach, uses red-green-
blue (RGB) imagery to reconstruct three-dimensional (3D) scenes from a series of two-
dimensional (2D) photographs [17–21]. Eltner et al., (2020) outlines a variety of applications
for SfM, such as geomorphological mapping, and provides a framework for collecting
and processing SfM data which prioritizes surface model accuracy [22]. Light detection
and ranging (LiDAR) technology produces similar 3D datasets, and often with improved
outcomes; however, these sensors can be prohibitively expensive [23–26].

Multispectral imagery (i.e., monochromatic images captured at specific wavelengths
of the electromagnetic spectrum), once restricted to coarse satellite or handheld (i.e., small
footprint) applications, is witnessing renewed interest in the advent of UAS-mounted sen-
sors capable of producing high-resolution vegetation index (VI) products. The normalized
difference vegetation index (NDVI) and other multispectral indices have also been linked to
field-based measures of biomass, volume, phenology, leaf area index (LAI), and other indi-
cators of crop stress or performance [27–30]. Limited research has started to look at fusing
these disparate structural and multispectral datatypes for improved accuracy and precision
in spatiotemporal models of crop production, but additional work is needed [31–33].

Despite its potential to revolutionize remote sensing at local scales, UAS technology
currently lacks the capacity for monitoring large management areas. Recent improvements
in satellite spatial resolutions have emerged to resolve such gaps in data collection. The
Sentinel-2 mission from the European Space Agency’s (ESA) Copernicus Programme uses a
constellation of twin satellites (i.e., S-2A and S-2B) launched in 2015 and 2017, respectively,
with the primary focus of land monitoring at high spatial (10–60 m) and temporal (five-day
combined repeat) resolutions [34]. The Copernicus Programme offers Analysis Ready Data
(ARD) as georeferenced and radiometrically and geometrically corrected surface reflectance
imagery (Level-2A). Several recent studies have demonstrated the potential for Sentinel-2
data to be used in monitoring croplands [35,36]. The increasingly higher temporal and
spatial resolutions of satellite sensors affords the ability to scale crop estimates from field
and UAS surveys to satellite data at no cost to the user.

No studies have attempted to link structural and multispectral data for estimating
resource allocation in guayule. Field observations indicate the tendency for guayule to
distribute leaves, wood, and bark heterogeneously throughout its architecture (e.g., leaves
in a mature crop are localized primarily in the top half of the plant). We hypothesize that dif-
ferentiating between height (i.e., vertical distribution) of resource allocation could support
managers in characterizing bioproduct potential in individuals of differing architecture.
UASs offer many advantages over satellite platforms, but the former are not well suited
for managing large agricultural regions due to limited spatial coverage and short battery
life. The objectives of our research were to 1) determine if NVDI (i.e., a measure of plant
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greenness) can be integrated with CH information derived from SfM models to predict the
allocation of resources along the vertical profile in guayule and 2) evaluate the scalability
of a UAS resource allocation model to medium-resolution, landscape-scale satellite data.

2. Materials and Methods
2.1. Field Site

The research site was located at a Guayule Research Farm, operated by Bridgestone
Americas, Inc. (Bridgestone) in Eloy, Arizona. The region of interest (ROI) consisted
of a 3.5-acre area of mature guayule. Guayule is harvested every two years for rubber
production. At the time of this research, plants were approximately 1.5 years old with full
canopy closure. The ROI was the site of an ongoing experiment investigating the effects of
water delivery methods and application rates on productivity [37]. The irrigation study
examined six unique treatments, with three replicates for each treatment (n = 18; Figure 1).
Treatments were characterized by differences in irrigation delivery (i.e., flood versus drip
irrigation) and water application schemes ranging from 50% to 150% of field capacity per
irrigation event.
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Figure 1. An RGB orthomosaic (19 December 2019) of the ROI depicting variable irrigation modalities
and application rates. Treatments A–I (Drip 50%, Drip 75%, and Drip 100%) were examined in the
research presented here. All above-ground plant material occurring within one-square-meter samples
was removed for analysis.

2.2. Equipment

RGB data were collected as JPEG images using a DJI Phantom 4 quadcopter. The UAS
is equipped with a 1/2.3” CMOS 12.4-megapixel sensor, which is manipulated via a three-
axis gimbal [38]. We used Pix4DCapture to pre-program the flight path, speed, and altitude,
overlap between RGB images, and sensor view angle (Figure 2a) [39]. Single-band data
were collected as TIF images using a Parrot Sequoia multispectral sensor. The sensor was
attached to the UAS using a 3D-printed immobile mount and directed nadir. The Sequoia
incorporates four global shutter 1.2-megapixel sensors which capture monochrome data in
the green (530–570 nm), red (640–680 nm), red edge (730–740 nm), and NIR (770–810 nm)
regions of the electromagnetic spectrum [40]. RGB and multispectral data were collected at
25 m and 100 m above ground level (AGL), respectively; the latter data were collected via
manual piloting (Figure 2b; i.e., without a flight planner). Dates of aerial and harvest data
collection are presented in Table 1.
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Figure 2. SfM mission settings selected in a flight planning application (a). Flight parameters and
path were maintained across all RGB data collection campaigns (Table 1). The application does not
provide a quantitative specification for flight speed as this setting is largely dependent on image
overlap. Unlike the low-altitude, automated missions executed for collecting SfM data, the use of a
third-party multispectral camera prevented mission automation. Multispectral images were collected
at much higher altitudes (e.g., 100 m AGL) with manual operation of the UAS (b). For this reason,
no two multispectral imaging missions conducted across time were identical. However, full-field
coverage, reduced image blur, and nadir camera pitch were prioritized.

Table 1. Date and type of data collection.

30 August
2019

23 September
2019

25 October
2019

22 November
2019

19 December
2019

23 December
2019

28 January
2020

25 February
2020

RGB X X X X 1 X X

Multispectral X X X X X X

Harvest X

1 A second, independent RGB mission was flown on this date to serve as a reference dataset.

2.3. Georeferencing

Preliminary analysis suggested poor geolocation when relying on Phantom 4 EXIF
metadata alone (Figure 3). Georeferencing markers were deployed immediately prior to
the 19 December 2019 sampling and aerial survey event; thus, no prior surveys included
markers for radial error estimation. Nine high-contrast ground control targets were placed
at ground level within and surrounding the ROI for estimating radial geolocation error. A
total of nine one-square-meter samples of total above-ground plant material were removed
from Drip-50 (n = 3), Drip-75 (n = 3), and Drip-100 (n = 3) treatments (Figure 1) on 23
December 2019. Each roughly one-cubic-meter (i.e., accounting for a one-square-meter
sampling footprint and approximate crop height) sample was marked centrally with a flag
and four high-contrast targets were placed on the top of the canopy directly above each
corner of the square footprint boundary to allow for vertical error estimation. Heights AGL
were measured in situ to the nearest cm at each canopy-surface target (n = 4 per sample)
as well as the approximated center of the sample for a total of five height measurements
per sample. Since the guayule were grown in a ridge-and-furrow layout with the ground
level directly below each canopy-surface target falling within the furrows, the difference
between each canopy-surface target elevation both including and excluding furrow height
was recorded to account for true canopy elevation AGL.
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Figure 3. Radial error observed between a corrected, georeferenced orthomosaic (a) and an uncor-
rected orthomosaic using UAS-derived referencing (b) from imagery dated 19 December 2019. Yellow
dots represent the measured geographic locations of the measured markers.

2.4. Harvest and Fresh Weight Measurements

Plants were harvested at the soil level and promptly bound to preserve the relative
height of each plant within the sample according to the alignment of the cuts (Figure 4a).
Each bound sample was quartered vertically along the main stem based on the arithmetic
average of the five CH measurements specific to each sample (Figure 4b), and fresh weights
were recorded for each subsample (n = 36) in grams. To prevent water loss and its effect
on fresh volume, each subsample was sealed in an airtight plastic bag and stored in a
humidity-controlled refrigeration unit until volumetric measurement was performed.
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Figure 4. Harvesting one square meter of guayule (a); quartering the sample along its vertical axis
(b); water is strategically removed and set aside to allow for the addition of plant material (c). Once
added, the removed water is replaced and the displacement recorded (d); equation used to convert
linear displacement to volumetric units (e).
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2.5. Volumetric Measurements

Subsamples were individually immersed in a water displacement measurement cham-
ber designed to estimate the volumetric contribution of all fresh plant material. Following
immersion, the device was sealed and agitated for approximately two minutes to eliminate
any air pockets that would otherwise falsely contribute to the volumetric measurements.
Volume was recorded as the displacement of water in mm within a vertically-oriented,
transparent PVC reducer following the addition of plant material (Figure 4c,d). Displace-
ment was converted to volumetric terms using a simple calibration equation determined
empirically and based on chamber design specifications (Figure 4e).

To estimate volumetric measurement chamber precision, an independent sample
was collected from treatment A-50 for evaluation (Figure 1). The sample was segmented
according to the process described above. The top section (i.e., Tier 1) was immersed
in the chamber and its volume recorded. Without removing the subsample, but instead
removing and preserving the original volume of water used to measure displacement, the
process was repeated eight times to determine if air pockets or water losses greatly affected
measurement variability. The test was repeated for the bottom section (Tier 4). These
subsamples reflect the extremes of resource allocation wherein most flexible stems and
green leaf material occur in Tier 1, while thick, woody stem material predominates Tier 4.
Tiers 2 and 3 share qualities of both regions. We assumed issues with measurement precision
(e.g., water losses or air pockets resulting in volume underestimation or overestimation,
respectively) would most likely be present at the extremes of resource allocation (i.e., Tier 1
or Tier 4). Each iterative measurement was compared against the arithmetic mean of all
nine measurements to compute root mean square error (RMSE) for both tiers, separately.
Evaluation of the volumetric measurement chamber’s precision reported low variation
between repeated measurements of the same subsample. Tier 1 reported an RMSE of
2243.853 cm3 (7.44% of the average measurement for Tier 1) and Tier 4 reported an RMSE of
309.751 cm3 (2.43% of the average measurement for Tier 4). Figure 10 in Section 3.2 depicts
these error terms graphically.

2.6. Dry Weight Measurements

Following data collection for volumetric measurements, subsamples were placed in
an outdoor covered tent to air dry for approximately two weeks. The subsamples were
milled and a small portion of the homogenous material was oven dried at 110 ◦C for 24 h
to derive the percentage of residual moisture. Total dry weight was extrapolated using air
dried weight and residual moisture by the following equation:

Total Dry Weight = Air Dried Weight − (Air Dried Weight × Residual Moisture %)

2.7. RGB Image Processing

RGB imagery was collected using the optical sensor which is standard to the Phantom
4 UAS. Datasets ranged from 500 to 600 photos per mission using the flight parameters
described in Figure 2a. RGB images were processed in Agisoft Metashape version 1.6.
Images were assigned relative locations in 3D space by EXIF metadata attached to each
image. To derive the digital surface model (DSM) and RGB orthomosaic used in resource
allocation model development, images were subjected to a series of processing stages
(Figure 5). Only those processing parameters which preserved original image quality were
selected for this research (i.e., images were not resampled to coarser resolutions to expedite
processing). The added processing time enables the finest spatial resolution of resultant
products. High-accuracy image alignment and Agisoft’s recommended key and tie point
limits provided in the User Manual were utilized [41]. Common points identified across
proximally-related images were assigned Cartesian coordinates in 3D space, referred to
as a sparse point cloud. A dense point cloud was generated using the sparse point cloud
framework to identify a high volume of points related to the sparsely distributed points
previously identified. The dense point cloud was inspected visually to ensure the surface
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model would not be affected by an abundance of misplaced points. Dense point clouds
were used to generate both DSMs and RGB orthomosaics. Interpolation was selected as
the method for achieving a closed, continuous model (i.e., converting points to a gapless
surface). RGB orthomosaics and DSMs across all survey dates were resampled to a common
resolution of 2 cm/pixel.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 19 
 

 

distributed points previously identified. The dense point cloud was inspected visually to 

ensure the surface model would not be affected by an abundance of misplaced points. 

Dense point clouds were used to generate both DSMs and RGB orthomosaics. Interpola-

tion was selected as the method for achieving a closed, continuous model (i.e., converting 

points to a gapless surface). RGB orthomosaics and DSMs across all survey dates were 

resampled to a common resolution of 2 cm/pixel. 

 

Figure 5. Image processing workflow in Agisoft Metashape. 

2.8. Multispectral Image Processing 

Multispectral flight campaigns yielded datasets of lower spatial resolution due to 

flight altitude and fixed-mount limitations. Multispectral images were visually inspected 

to remove blurred or superfluous coverage, resulting in a dataset of 15 images per survey 

for use in orthomosaic rendering (Figure 2b). Multispectral data were processed using the 

same procedures for processing RGB data, except for those steps needed to produce ele-

vation models. Although the images were collected at 100 m AGL, the datasets were of 

sufficient spatial resolution to identify the same permanent, fixed features used to manu-

ally georeference the RGB data. Images were aligned, converted to point clouds, and or-

thorectified into a georeferenced mosaic. The orthomosaics were each radiometrically cor-

rected using two calibration images from each campaign collected at the beginning and 

end of each flight to account for changes in ambient lighting (Figure 6). Images of an Airi-

nov calibration target were manually cropped to identify only those pixels of known re-

flectance. The resultant radiometrically corrected orthomosaics were resampled to a com-

mon resolution of 10 cm/pixel and clipped to the same spatial extent as the RGB orthomo-

saics and elevation models. 

Figure 5. Image processing workflow in Agisoft Metashape.

2.8. Multispectral Image Processing

Multispectral flight campaigns yielded datasets of lower spatial resolution due to
flight altitude and fixed-mount limitations. Multispectral images were visually inspected
to remove blurred or superfluous coverage, resulting in a dataset of 15 images per survey
for use in orthomosaic rendering (Figure 2b). Multispectral data were processed using
the same procedures for processing RGB data, except for those steps needed to produce
elevation models. Although the images were collected at 100 m AGL, the datasets were
of sufficient spatial resolution to identify the same permanent, fixed features used to
manually georeference the RGB data. Images were aligned, converted to point clouds, and
orthorectified into a georeferenced mosaic. The orthomosaics were each radiometrically
corrected using two calibration images from each campaign collected at the beginning
and end of each flight to account for changes in ambient lighting (Figure 6). Images of an
Airinov calibration target were manually cropped to identify only those pixels of known
reflectance. The resultant radiometrically corrected orthomosaics were resampled to a
common resolution of 10 cm/pixel and clipped to the same spatial extent as the RGB
orthomosaics and elevation models.
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Figure 6. Radiometric calibration plate used to convert raw digital numbers (a) to reflectance values (b).

2.9. Canopy Height Model

DSMs offer Z-axis information on surface height for each pixel in a raster dataset.
However, a digital terrain model (DTM) describing the base elevation of the ground
irrespective of any above-ground land features present (e.g., bare ground after vegetation
removal) is required to produce a CH model (CHM). A DTM was not available for the
ROI. Additionally, elevation information contained in the EXIF metadata was inadequate
for placing the resultant orthomosaics at a consistent ground elevation across all field
campaigns, with two scenes differing by as much as 100 m. To correct this, we manually
tied images to eight permanent, fixed features identified within the ROI on Google Earth
(Figure 1). Elevation at these eight positions was assigned from a UAS-derived DSM
generated from a second, independent flight campaign conducted on 19 December 2019
(Table 1). While the global accuracy of this independent elevation data was not field-
validated, its difference relative to the post-harvest (i.e., 23 December 2020) DSM with
images tied to the same eight, fixed-elevation positions formed the basis for calculating
changes in CH. Following the harvest, geolocation markers once resting on the top of the
closed canopy at the four sample boundary corners fell to the ground level, directly below.
The difference between pre-harvest (19 December 2019) and post-harvest (23 December
2019) DSMs was used to calculate localized CH information for the nine sampling locations
subjected to total above-ground harvest between the two aerial surveys. The independent
dataset from 19 December 2019 was not included in subsequent statistical analyses or
resource allocation model development. All analysis-destined datasets were re-processed
according to this georeferencing correction procedure.

2.10. Statistical Analyses

Multiple linear regression was performed on the field data for December 19, the
only day for which harvest data were available. Predictors evaluated for the models
under consideration included mean pixel NDVI, mean pixel CH, and a term representing
the interaction of NDVI and CH. Mean NDVI and mean CH were calculated from only
those raster pixels occurring within the defined sample boundaries. Categorical variables
representing each of the four sample tiers were also included to allow for subsample-specific
model predictions. Six samples, inclusive of all four tiers, were used to calibrate the models
(n = 24). The remaining three samples (each consisting of four subsamples; n = 12) were
used to evaluate model performance. Response variables considered under this framework
included fresh weight (FW), dry weight (DW), fresh volume (FV), fresh-weight-density
(FWD), and dry-weight-density (DWD). Models which omitted terms (i.e., nested models)
for mean CH, mean NDVI, or their interaction were evaluated against each other and the
full model for each response variable. The corrected Akaike Information Criterion (AICc)
was used to rank and select models, as described in Huang et al., (2014) [42].
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Assumptions of homoscedasticity for ordinary least squares (OLS) regression were
violated in full (i.e., non-nested) models across all response variables, verified by visual
inspection of the standardized residual plots. The violation was addressed according to
the model selection protocol for heteroscedastic data outlined in Zuur et al., (2009) [43].
Generalized least squares (GLS) regression models weighted by the different variance-
covariance structures were ranked for models based on each response variable, separately.
Model performance for FW, DW, FV, and DWD did not improve after incorporating various
variance-covariance structures. Incorporating variance structures in these models did not
resolve residual heterogeneity, so we applied transformations to the response variables. A
natural-log transformation on the response variables for FW, DW, and FV models improved
heteroscedasticity in standardized residual plots; however, a reciprocal transformation of
the response variable was required to improve heteroscedasticity for the DWD model. The
resulting GLS models were subjected to backwards stepwise elimination to test all model
terms for statistical significance (α = 0.05).

Sentinel-2 NDVI images were selected as the data source for scaling from UAS to
satellite-borne data. Data for the ROI were available beginning in December 2018 and
were analyzed through May 2020, at which point all guayule in the ROI were harvested.
Pixels classified in the Scene Classification Quality Indicator band as types other than
vegetated, bare ground, or soil were removed (filtered) from analysis (Figure 7b). Images
were excluded if ≤25% of pixels remained over the ROI following the filtering process
(Figure 7c,d).
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Figure 7. An NDVI grayscale Sentinel-2 image dated 26 December 2018, with the east and west
fields shown for illustration (a). Satellite data were filtered to remove cloud-impacted imagery
using the Sentinel-2 scene classification layer (SC), which categorizes pixels into 12 distinct classes
(b). Unfiltered (c) and filtered (d) time series data depicting mean pixel NDVI were extracted from
Sentinel-2 ARD.

The rectangular vector polygon overlaying the east field of the ROI (hereafter: ROIE),
approximately 50 m × 40 m, was used to delineate pixels spanning several irrigation treat-
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ments for comparison between the 19 December 2019, UAS NDVI raster and corresponding
Sentinel-2 data (Figure 8). The Sentinel-2 image both nearest in time to each UAS survey
and free from cloud and aerosol effects was selected for use in this analysis. Differences
in collection date between UAS imagery and the corresponding Sentinel-2 overpass were
never greater than the Sentinel-2 twin-sensor revisit time of 5 days.
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Figure 8. UAS NDVI rasters clipped to a 50 m × 40 m region within the eastern field of the irrigation
study for the following dates: 30 August 2019 (a), 5 October 2019 (b), 22 November 2019 (c), 19
December 2019 (d), 28 January 2020 (e), and 25 February 2020 (f). As the canopy recedes during the
winter months, a greater percentage of soil directly below the treatments is distinguishable in high-
resolution imagery (demonstrated here using a 0.15 NDVI threshold). The clipping region (ROIE) was
applied to Sentinel-2 imagery for corresponding survey dates; however, its 10 m spatial resolution
does not support equivalent soil pixel identification and removal. This limitation is demonstrated for
a Sentinel-2 NDVI raster dated 24 February 2020 (g), the cloud- and aerosol-free satellite overpass
date nearest to the corresponding UAS survey date.

For the December UAS and Sentinel-2 imagery, the Sentinel-2 grid was used to con-
struct 20 contiguous 10 m polygons (50 × 40 m total; Figure 9a; hereafter ROIE-20). These
20 polygons allowed for inspection of model performance at medium spatial resolutions
(i.e., 10 m/pixel) for the month harvest data were used to build the model (i.e., December).
For Sentinel-2 data from 16 December 2019—the overpass date closest to the 19 December
2019, UAS survey—individual pixel values (i.e., 1 pixel/polygon) were substituted into
the FWDNDVI model to generate FWD estimates. ROIE-20 was applied a second time to
the 19 December 2019, UAS raster data to yield approximately 10,000 pixels at a spatial
resolution of 10 cm/pixel for each of the 20 polygons (Figure 9b). All pixels within each
polygon were averaged and substituted into the FWDNDVI model for comparison against
Sentinel-2 data. ROIE-20 was applied a third time to the 19 December 2019, UAS raster
with the added constraint of masking out any pixels identified as soil (Figure 9c). NDVI
pixel values approaching 0 typically correspond to soils; however, various environmental
factors (e.g., soil moisture content) can influence scene-to-scene differences in soil NDVI.
Iterative attempts to converge on a soil masking threshold sensitive to soil conditions
across all UAS survey dates resulted in NDVIsoil of 0.15. Pixels at or below this threshold
were excluded from analysis to produce a third round of FWD predictions more closely
aligned with the soil-exclusive data used to build the FWDNDVI model. MAPE, RMSE, and
Pearson’s correlation coefficient were used to evaluate performance across Sentinel-2 data,
soil-inclusive UAS data, and soil-exclusive UAS data.
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Figure 9. ROIE-20 polygons used to sample regions throughout the east field for December across
Sentinel-2 data (a), UAS soil-inclusive data (b), and UAS soil-exclusive data (c).

For all other UAS surveys and corresponding Sentinel-2 data collected between August
2019 and February 2020, a single FWDNDVI model prediction was made for the entire ROIE
(i.e., the original 50 m × 40 m region; Figure 8) to illustrate the influence of soil pixels on
model predictions across time as soil visibility changes with phenology. FWD predictions
made with Sentinel-2 data, soil-inclusive UAS data, and soil-exclusive UAS data were
compared by MAPE and RMSE.

3. Results
3.1. Geospatial Error

Radial RMSE of RGB imagery collected using the Phantom 4 optical sensor ranged
from 1.4–2.9 cm for dates with available data when compared against the 19 December
2019, reference dataset (Tables 1 and 2). Because of the coarser spatial resolution, the radial
error of multispectral imagery was higher, with a range of 10.1–21.4 cm.

Table 2. Radial and vertical error estimation.

19 December 2019 23 December 2019 28 January 2020 25 February 2020

Radial RGB
RMSE (m) 0.029 0.022 0.014 *

Radial Multispectral
RMSE (m) 0.214 * 0.101 0.174

Vertical RGB
(Incl Furrow)
RMSE (m)

0.059 * * *

Vertical RGB
(Excl Furrow)
RMSE (m)

0.158 * * *

* Dates for which data to perform radial or vertical error estimation were unavailable.

Vertical error assessment in the DSM was limited due to the availability of ground-
truth data on 19 December 2019, the only date for which elevation AGL was measured
at each of the 36 harvest boundary markers (Figure 1). Since guayule crops are grown on
the ridges of a ridge-and-furrow system and boundary markers were placed on the closed
canopy (pre-harvest) directly above furrow regions, it was important to account for the
influence of ridge height in defining canopy elevation AGL. To explore these effects, AGL
was recorded to reflect CH both including and excluding the height contributed by the
ridge. Contrary to our predictions, adjusting CH to remove ridge height contributions
resulted in a more than two-fold increase in RMSEz (15.8 cm) when compared to unadjusted
CH (RMSEz = 5.9 cm).
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3.2. Crop Productivity Measurements

Data were first visualized in a stacked bar plot to screen for outliers or trends in crop
performance under varying irrigation treatments. Figure 10 graphically depicts a strong
correlation between volume and either fresh weight (r = 0.99, t = 33.43, df = 34, p-value
< 0.001) or dry weight (r = 0.98, t = 31.42, df = 34, p-value < 0.0001) for each tier. This
relationship holds true for each subsample except for Tier 1 from treatment E-75 (Figure 1),
where volume appears overestimated, indicative of a possible outlier. For the FWD full
model (inclusive of a variance structure), Tier 1 of E-75 reported a percentage error of
57.49% between the in situ measurement and model output. Data collection field notes
for the E-75 Tier 1 subsample indicate the volumetric measurement had to be repeated,
either due to equipment failure and/or user error. Due to the challenges associated with
re-measuring samples following an initial volumetric chamber immersion and its impact
on fresh harvest volume, inflated measurement error for Tier 1 of E-75 is highly likely.
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Figure 10. Individual value-stacked bar plots depicting the distribution of fresh weight (a), dry
weight (a), and volume (b) along the quartered vertical profile of guayule. FW and DW arithmetic
average of three samples and their standard deviation are illustrated for D-100. RMSE of volumetric
measurements for tiers 1 and 4 are shown as error bars for A-50.

3.3. UAS Model Selection and Performance

Following the selection of an appropriate variance structure (described in Section 2.10),
a backwards stepwise elimination approach for identifying statistically significant terms in
each of the FW, DW, FV, FWD, and DWD models was performed (Table 3).

The FWD model incorporating the power variance-covariance structure was the only
model to report all terms as statistically significant. The full model predicting FWD and
incorporating a power variance-covariance structure based on the interaction between
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NDVI and CH terms reported a lower AICc and satisfactory standardized residuals when
compared to its full model counterpart lacking a variance structure.

Table 3. Final UAS-based productivity models: coefficients and term significance.

Model Intercept HGT NDVI Tier2 Tier3 Tier4 NDVI:HGT

DW
Coefficient 4.6150 2.9980 Excl 1 −0.9253 −1.2389 −1.2887 Excl
(p-value 2) (<0.0001) (0.2721) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

FW
Coefficient 5.3380 2.7890 Excl −1.0457 −1.3208 −1.3639 Excl
(p-value) (<0.0001) (0.2385) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

VOL
Coefficient 8.2041 2.9867 Excl −1.1474 −1.5345 −1.6563 Excl
(p-value) (<0.0001) (0.3020) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

FWD
Coefficient 0.2131 −0.1769 −0.3905 0.0066 0.0116 0.0158 0.4134
(p-value) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

DWD
Coefficient 35.8821 Excl Excl −7.0990 −9.1552 −10.9751 Excl
(p-value) (0.8793) (0.4962) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

1 Models parameters reporting as statistically insignificant were excluded (Excl) from further consideration and
omitted here. 2 Calculated stepwise by dropping statistically insignificant terms, as determined through ANOVA
testing (Type I).

For natural-log-transformed FW, DW, and FV models, only CH and tier terms were
significant. Only the tier term was significant in the reciprocal-transformed DWD model;
thus, further consideration of its prediction performance was not pursued.

The FWD model inclusive of a statistically significant NDVI term was selected for
evaluating model scaling to spaceborne data due to the relative abundance of satellite
multispectral data and lack of available satellite surface model data at similar spatial
resolutions. CH and interaction terms were first removed and the Zuur et al., (2009) protocol
was reapplied to examine a model based on only NDVI and tier terms [43]. Assumptions
of homoscedasticity were satisfied under the OLS model (i.e., hereafter: FWDNDVI) by
visual inspection of the standardized residuals. Pearson’s correlation coefficient between
the predictions made by full the FWD and the reduced FWDNDVI models was reported at
0.91 (t = 6.56, df = 9, p-value < 0.001).

Performance of best-fit FW, DW, FV, and FWD models were evaluated against each
other by comparing the mean absolute percentage error (MAPE) between field measure-
ments and model predictions. RMSE was also calculated, but these error terms only permit
direct comparison between models which share the same response units. FW, DW, and FV
models (i.e., inclusive of mean CH and tier terms only) reported MAPEs of 21.66% (RMSE
= 458.94 g), 23.32% (RMSE = 305.40 g), and 28.03% (RMSE = 15,128.42 cc), respectively. By
comparison, the full FWD model (i.e., inclusive of power variance-covariance structure
as well as mean NDVI, mean CH, interaction, and tier terms) reported a MAPE of 13.25%
(RMSE = 8.26 × 10−3 g/cc). MAPE for the full FWD model was further reduced to 9.23%
(RMSE = 6.23 × 10−3 g/cc) by excluding the questionable Tier 1 E-75 data point. Based
on these results, the best-performing model (i.e., the model reporting the lowest MAPE)
of those considered was the full FWD model, defined by the following equation (also
provided in Table 3):

FWD = 0.2131 − 0.1769 × HeightAVG − 0.3905 × NDVIAVG + 0.0066 × Tier2 + 0.0116 × Tier3 +
0.0158 × Tier4 + 0.4134 × NDVI:Height

3.4. Scaled Model Performance

The reduced FWDNDVI model used in assessing model scaling potential was defined
by the following equation:

FWDNDVI = 0.0531 − 0.0107 × NDVIAVG + 0.0052 × Tier2 + 0.0116 × Tier3 + 0.0166 × Tier4
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Using UAS-derived soil-exclusive (i.e., vegetation only) data as a reference, Sentinel-2
and UAS-derived soil-inclusive data were compared to illustrate FWDNDVI model per-
formance for a medium resolution data source and across a range of environmental con-
ditions (i.e., crop phenology as it relates to nadir soil visibility). Between soil-inclusive
and soil-exclusive UAS data for 19 December 2019, MAPE was reported at 0.02% with
an RMSE of 1.7 × 10−5 g/cc and R = 0.99. Due to high similarity between soil-inclusive
and soil-exclusive model predictions for December 19, soil-inclusive model predictions
were compared against Sentinel-2 model predictions. MAPE for the comparison between
soil-inclusive and Sentinel-2 FWDNDVI model outputs was reported at 2.31% with a RMSE
of 1.3 × 10−3 g/cc and a R = 0.70. The combined error (across all dates of comparison)
between Sentinel-based FWDNDVI predictions and soil-inclusive FWDNDVI predictions was
also low (MAPE = 2.15%; RMSE = 1.5 × 10−3 g/cc). A modest reduction in MAPE to 1.84%
and RMSE to 1.2 × 10−3 g/cc was noted between predictions made with Sentinel-2 data
versus soil-exclusive UAS data. Once again, combined error across all dates of comparison
between soil-inclusive and soil-exclusive FWDNDVI(UAS) model predictions was low (MAPE
= 0.32%; RMSE = 3.5 × 10−4 g/cc).

4. Discussion

Our study used UAS multispectral and SfM data to develop models capable of es-
timating resource allocation in guayule crops across variable growing conditions. We
iteratively evaluated multiple explanatory variables to optimize model selection for various
indicators of crop productivity, which we successfully scaled up to coarser, freely available
satellite imagery. We revealed two particularly important crop modeling considerations: (1)
the potential for integrating UAS-derived spectral and structural data to improve models
and support monitoring of crop production and (2) the value and efficacy of scaling from
UAS to satellite data for monitoring larger management areas, a current limitation with
UAS technology.

Spatial accuracy is critical to minimizing error in inter-scene comparisons. While
absolute (i.e., global) accuracy was not important in the current study, high scene-to-scene
(relative) accuracy was needed to ensure misalignments did not contribute substantially to
our error analysis. As expected, lower radial error was observed across all RGB orthomo-
saics when compared to multispectral orthomosaics, which is attributable in part to the
differing spatial resolutions between these data types (i.e., 2 cm vs. 10 cm, respectively).
Although higher error was observed for the UAS multispectral data collected on 19 De-
cember 2019 (RMSE = 21.4 cm), this error did not directly affect the quality of the derived
models because pixels corresponding to the harvest boundary markers were manually
isolated and extracted for each treatment. Additionally, the influence of spatial error on the
DSMs and multispectral orthomosaics was effectively reduced during aggregation to the
coarser resolution used in the scaled-up models. While radial accuracy plays important
roles in time series analyses and other research which prioritizes spatial accuracy, local
radial accuracy at the observed magnitude is of lesser importance to this research.

High vertical accuracy, however, is critical to identifying subtle height differences
between treatments or samples. An RMSEz of 15.8 cm (Table 2) for the “ridge-less” CH
estimation aggregated across an entire square meter of plant material could, for example,
misrepresent plant volume by thousands of cubic centimeters. Despite our efforts to
minimize the contribution of ridge height to canopy elevation AGL, by including the ridge,
we reduced vertical error (RMSE = 5.9 cm) when compared to the adjusted, ridge-less
height. We attribute this observation in part to harvest boundary markers falling (post-
harvest) to ridge slope locations rather than the lowest point of furrow depressions where
measurements occurred. Variable marker placement could inflate RMSE if some markers
rest flatly in the furrow depression, while others rest at locations along the ridge slope which
are inconsistent within and across samples. Furthermore, it is possible plant debris (e.g.,
stems and leaves) prevented markers from establishing direct contact with the lowest point
between ridges where measurements were taken. The added “correction” measurements
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also serve as opportunities for propagating additional error due to the nature of correcting
one visual observation with another of the same accuracy and precision.

We recommend exploring current advances in GPS and optical sensor resolution,
coupled with best practices in mission design, for minimizing geospatial errors and time
spent pre-processing poorly georeferenced data. Our geolocation errors were consistent
with those observed in Padró et al., (2019) for GCP-corrected data. We recommend using a
UAS equipped with a real time kinematic (RTK) or post processed kinematic (PPK) GPS to
minimize spatial error [44], the use of which is described and substantiated by Losè et al.,
(2020) [45]. Properly characterizing the geospatial accuracy of these aircraft systems and
the level of allowable uncertainty from the outset enables optimized survey design and
execution while also streamlining data processing workflows [46].

Drip treatments were evaluated by sampling a square meter of plant material from
nine locations. Using the common sampling practice of placing a quadrat within a treatment
and removing all plants occurring within its perimeter fails to address the variation in crop
spacing which manifests as inconsistent numbers of individual plants between samples.
Still further, the issue of external, adjacent plants influencing within-quadrat crops under
closed canopy conditions warrants some consideration under the sampling protocols
employed here.

These challenges form the basis for supporting a productivity metric, and ultimately
a model, based on density, which renders the sampling footprint irrelevant. When the
productivity metric no longer depends on sampling consistency, we begin to see the
advantage in using density to draw conclusions about crop performance. Plant material
density is expected to vary according to phenology, maturity, resource stress, and location
within the vertical profile of the plant, all of which have the potential to influence the ratio
of bark-to-wood and other resource allocation metrics, as well as permitting comparisons
across time for supporting management decisions [9,47]. The implications of a productivity
metric based on density are further supported by the findings of Veatch-Blohmet et al.,
(2006). The authors demonstrate the importance of inducing crop water stress to reduce
leaf biomass and stem diameter for the purposes of increasing bark surface area, where
rubber resides [8]. A density metric, which incorporates both crop biomass and volume
information, is likely to capture crop responses to water stress in at least one of the two
measurement domains. However, future research should further explore the value of a
density metric with an approach which examines the distinct contributions made by the
various structural constituents of a guayule plant.

AICc rewards model parsimony and adds a penalty for increasing the number of
model parameters [48]. Additional research is needed to better understand the inferior
performance of a DWD model incorporating both NDVI and CH parameters, as indicated
by AICc for full and reduced models. Similarly, FW, DW, and FV model selection favored
models without NDVI or interaction terms, suggesting CH may more strongly influence
these productivity metrics. However, alternative selections for the VI used, approaches
to minimizing vertical error in SfM surface models, and their combined effects on model
performance should be evaluated in future work.

In the context of existing research, the performance of the FWD model (MAPE = 9.23%)
rivals the deep learning approach taken by Nevavuori et al., (2019) to predict crop yield
from remotely sensed RGB and NDVI. The authors reported MAPEs between 8.8% and
12.6% for hectare-scale measurements of biomass, depending on the growth stage of the
crop [49]. However, several other studies report MAPEs for image-derived yield estimation
(i.e., hectare-scale biomass) below 7%, suggesting room for improvement in our modeling
approach [50,51].

UAS-derived soil-inclusive and soil-exclusive predictions made by the FWDNDVI
model reported little disagreement for the December survey. The findings were confirmed
by a low MAPE and strong Pearson’s correlation coefficient between these predictions.
This occurs because fewer pixels are excluded from zonal statistics under closed canopy
conditions. Reduced model prediction agreement between UAS and Sentinel-2 data for the
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same time period likely results from differences in sensor performance, as indicated by an
increased MAPE and reduced Pearson’s correlation coefficient.

The strong agreement between UAS-derived soil-inclusive and soil-exclusive model
predictions degraded only slightly across the full range of UAS surveys. When compar-
ing Sentinel-2 data against UAS soil-inclusive and soil-exclusive predictions, separately,
removing soil pixels resulted in a modest improvement in agreement between satellite and
UAS estimates. This observation was unexpected considering our inability to remove soil
pixels from Sentinel-2 data. These findings further suggest differences between UAS and
Sentinel-2 sensor specifications and performance impact model predictions more strongly
than soil visibility under the conditions examined.

While mean Sentinel-2 NDVI (derived from the Level-2A analysis-ready product)
was higher than mean UAS NDVI (soil-inclusive or soil-exclusive) for all surveys, further
research is needed to characterize the performance of UAS and satellite sensors for the
purposes of data harmonization. Huang et al., (2021) pointed out that bandwidth, spatial
resolution, and data processing procedures can each impact the reported NDVI, especially
atmospheric correction, which generally has the effect of increasing the value of NDVI [52].
The systematic overestimation of NDVI with Sentinel-2 when compared to either UAS
datasets suggests broader differences in design and performance between the sensors
compared; Franzini et al., (2019) observed the opposite phenomenon, where UAS NDVI
derived from a Parrot Sequoia multispectral sensor was consistently higher than Sentinel-2
NDVI for the same region [53]. These disparate outcomes warrant further investigation.

Masking the UAS data to remove pixels below a threshold of 0.15 NDVI raised NDVI
in winter months when compared to unmasked (i.e., soil-inclusive) data. This is expected
due to the increasing influence of soil pixels on mean NDVI as the canopies recede during
periods of dormancy. Setting a higher or lower threshold would affect the performance of
the model, but we used a threshold of 0.15 to illustrate the potential challenges for develop-
ing models desensitized to variable soil visibility. Higher thresholds could be selected to
better separate treatments from adjacent ridges (i.e., soil between treatments) in productive
months at the expense of potentially removing dormant guayule pixels exhibiting lower
NDVI in winter months. Future work should include the establishment of a dynamic
masking threshold, which reflects changes in canopy cover across the growing season.

5. Conclusions

UAS-derived NDVI and SfM products can be integrated to model resource allocation in
guayule, particularly FWD distribution along the crop’s vertical profile. Given the derived
relationship between biomass or volume and density, and prior research demonstrating the
relationships between rubber content and biomass or morphological traits, future work
should investigate the relationship between plant material density versus morphology (i.e.,
material type as leaves, stems, etc.) and density as it directly relates to rubber content.
Efforts to scale UAS-derived estimates of FWD to medium resolution satellite imagery
suggested strong potential for successful outcomes, but increased sensor harmonization
would likely improve these estimates.

6. Patents

T.P.C. and K.D. are currently pursuing patent rights for the volumetric measurement
device described in Section 2, of which they are the sole contributors to its development.
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