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Abstract: Mid- and long-term predictions of Arctic sea ice concentration (SIC) are important for
the safety and security of the Arctic waterways. To date, SIC predictions mainly rely on numerical
models, which have the disadvantages of a short prediction time and high computational complexity.
Another common forecasting approach is based on a data-driven model, which is generally based
on traditional statistical analysis or simple machine learning models, and achieves prediction by
learning the relationships between data. Although the prediction performance of such methods has
been improved in recent years, it is still difficult to find a balance between unstable model structures
and complex spatio-temporal data. In this study, a classical statistical method and a deep learning
model are combined to construct a data-driven rolling forecast model of SIC in the Arctic, named the
EOF–LSTM–DNN (abbreviated as ELD) model. This model uses the empirical orthogonal function
(EOF) method to extract the temporal and spatial features of the Arctic SIC, then the long short-term
memory (LSTM) network is served as a feature extraction tool to effectively encode the time series,
and, finally, the feature decoding is realized by the deep neural network (DNN). Comparisons of the
model with climatology results, persistence predictions, other data-driven model results, and the
hybrid coordinate ocean model (HYCOM) forecasts show that the ELD model has good prediction
performance for the Arctic SIC on mid- and long-term time scales. When the forecast time is 100 days,
the forecast root-mean-square error (RMSE), Pearson correlation coefficient (PCC), and anomaly
correlation coefficient (ACC) of the ELD model are 0.2, 0.77, and 0.74, respectively.

Keywords: Arctic sea ice concentration; mid- and long-term predictions; spatio-temporal prediction;
long short-term memory (LSTM)

1. Introduction

In recent decades, global warming has become a common topic of concern for many
countries around the world and the entire scientific community. Increasing atmospheric
temperature has accelerated the melting trend of Arctic sea ice. At the same time, Arctic
sea ice plays an important role in the energy and water balance of the global climate
system, which is reflected in the positive feedback effect of Arctic sea ice melting that
exacerbates global warming [1,2]. The Arctic region includes the entire Arctic Ocean and
parts of Greenland (Danish territory), Canada, Alaska, Russia, Norway, Sweden, Finland,
and Iceland. The Arctic region is surrounded by transportation routes and industrial
bases of many countries, and high pollution and human-induced damage have caused
uncontrollable factors in the evolution of Arctic sea ice [3]. Currently, the severe melting of
Arctic sea ice directly affects human production and life, but it also results in unprecedented
opportunities for human beings to develop Arctic resources [4]. In the Arctic region with
a low sea ice concentration, the navigation time of the waterway is effectively extended,
which is undoubtedly beneficial to scientific exploration and commercial development.
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To date, humans still do not have a complete understanding of the dynamic evolution of
Arctic sea ice (especially around 30 days), which causes polar researchers and ships to be at
great risk under the influence of extreme Arctic weather and sea ice (or ice floes). Therefore,
further research and development of sea ice forecasting (especially mid- and long-term
forecasting) is required in the Arctic Region, which can not only provide navigation security
for human development of Arctic resources, but also provide more valuable assistance for
Arctic climate change research [5,6].

Sea ice concentration (SIC) is the proportion of sea ice over a given area of the ocean,
which reflects the spatial density of sea ice and is one of the important parameters to
characterize sea ice [7]. Recently, many countries have developed operational applications
of the Arctic sea ice forecasting system based on numerical models. For example, the US
Navy’s short-term sea ice forecast system (Arctic Cap Now-cast/Forecast System, ACNFS)
and Canada’s Global Ice Ocean Prediction System (GIOPS) combine sea ice models with
operational oceanographic and meteorological models, and assimilate certain information,
such as temperature, salinity, and ocean currents, into the background field [8,9]. ACNFS
can achieve a forecast validity of seven days [10,11]. GIOPS can provide daily sea ice
condition analysis products and 10-day sea ice numerical forecast products. Additionally,
Towards an Operational Prediction System for the North Atlantic European Coastal Zones
(TOPAZ) of the Nansen Environmental and Remote Sensing Center of Norway is an
ocean/sea ice real-time prediction system covering the North Atlantic and Arctic Oceans
and can provide nearly 10 days’ worth of sea ice and ocean forecast results [12]. The Arctic
Sea Ice Numerical Forecast System established by the National Marine Environmental
Forecasting Center of China is capable of forecasting sea ice for the entire Arctic region
for the next five days [13]. From the above, it can be observed that the general numerical
model has a prediction duration within two weeks for SIC in the Arctic. Meanwhile, these
numerical models involve a large number of ideal assumptions and also require complex
computational platforms, which cannot meet the demand for longer forecast duration and
faster forecast speed in operational applications.

Unlike the numerical model prediction, artificial intelligence methods are miniaturized
and simple. With the rapid development of artificial intelligence algorithms, more and more
advanced model architectures have been built to adapt to different data structures. Many
machine learning models, such as support vector machines (SVMs) [14], wavelet neural
networks (WNNs) [15,16], and the long short-term memory network (LSTM) [17], have
been successfully applied to the field of oceanic intelligence prediction. A spatio-temporal
deep learning scheme based on convolutional neural networks (CNNs) has performed
well in studying the sea surface temperature (SST) associated with tropical instability
waves, and realizing artificial intelligence prediction driven by satellite remote sensing big
data [18]. In addition to single prediction models, hybrid models have also good prediction
performance. For example, an LSTM-AdaBoost ensemble learning model to predict sea
surface temperature [19] and a hybrid prediction model based on the combination of
multivariate statistical analysis and a deep learning model provided new ideas for the
mid- and long-term forecasting of ocean variables [20–22]. The development of oceanic
intelligence forecasting has driven the rapid development of deep learning application in
the field of sea ice forecasting [23,24]. The average error of the single-month SIC prediction
based on the LSTM model was less than 0.09, but its error was greater in the melting season
(July–September) with an RMSE of 0.1109; nevertheless, the above results were significantly
better than the traditional statistical forecasts [25]. Wang, Scott, and Clausi [26] used CNNs
to forecast the SIC, and the results show that their model outperforms the multilayer
perceptron (MLP) model with an RMSE of 0.22. Choi et al. [27] used a gated recursive
unit (GRU) to provide 15-day SIC predictions, which outperformed the LSTM model.
Kim et al. [28] built a monthly SIC forecast model by the CNN model and showed that the
CNN model outperformed the persistence model with an RMSE of 0.0576. Liu et al. [29]
used a convolutional LSTM (ConvLSTM) to predict the daily Arctic SIC, and the RMSE of
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the ConvLSTM remained around 0.15 when the forecast horizon was 10 days, while the
RMSE of the conventional CNN reached around 0.18.

However, we learn from the above studies that the current intelligent forecasts of
SIC mostly use a single scale and have a short forecast window. None of the aforemen-
tioned prediction models have achieved satisfactory results in SIC prediction experiments
over 30 days. Taking the ConvLSTM model as an example, it has both an image feature
extraction capability (CNN-based model) and time-series feature extraction capability
(RNN-based model). The ConvLSTM model greatly simplifies data preprocessing and
solves the problem of spatio-temporal deep learning from specific requirements, but there
are still limitations in the study of spatio-temporal long-term prediction. When the pre-
diction horizon increases, the ConvLSTM model takes a longer time to train the model; at
the same time, its prediction results may be worse. This is because the I/O (input/output)
data structure of the ConvLSTM model is three-dimensional spatio-temporal data, which
increases the uncertainty of long-term prediction. It is worth mentioning that complex deep
learning models (e.g., ConvLSTM) are extremely time-consuming without the support of
a high-performance computing platform for operational forecasting. Even the training
process (including data processing, hyper-parameter tuning, and model correction) of
the model takes much longer than some traditional numerical model predictions. We
learned from the above that simple models are exceptionally limited in mid- and long-term
prediction research, but a complex model structure may not necessarily produce excellent
prediction results either. Therefore, it is necessary for us to find a more accurate and simpler
SIC prediction model, especially for SIC prediction with lead times of more than 30 days.

Considering the above, we develop a hybrid deep learning prediction model for the
Arctic SIC based on the empirical orthogonal function (EOF) analysis, LSTM, and DNN,
which is called the EOF–LSTM–DNN (ELD) prediction model in this study. By using EOF
analysis, the spatio-temporal prediction problem of the SIC field can be transformed into a
time-series prediction problem; then, we use the classical encoder–decoder architecture to
process these time series. In this model, the LSTM neural network is used to encode the
time series, and a fully connected DNN is used to decode the time series. Based on the
above model, we can achieve an SIC prediction with a forecast window of 100 days in a
rolling forecast method.

The rest of the paper is organized as follows: Section 2 describes the dataset used
in this study. Section 3 introduces the theoretical frameworks of EOF, LSTM, and DNN,
respectively. In Section 4, the sea ice concentration forecast experiments using the EOF–
LSTM–DNN (ELD) model in the Arctic are presented in detail. Then, some discussions
and future research suggestions are given in Section 5. Finally, in Section 6, we draw
conclusions.

2. Study Area and Data

To date, the main institutions that release daily real-time sea ice concentration data
products are the National Snow and Ice Data Center (NSIDC) and the University of Bremen
in Germany. In this study, we used the daily Arctic sea ice concentration remote sensing
data from the NSIDC for model construction and validation, which can be obtained from
the following website: https://nsidc.org/data/seaice_index/ (accessed on 27 August 2021).
This dataset is based on the passive microwave remote sensing inversions of three sensors
(SMMR, SSM/I, and SSMI/S).

The spatial resolution of these gridded daily SIC products was 12.5 km. As shown
in Figure 1, to fully reflect the strong sensitivity of the prediction model in capturing the
fine spatial evolution in this study, we selected the region with more active spatial feature
variations in the Arctic region as the study area. The latitude and longitude of the study
area ranged from 70◦N to 86◦N and 20◦E to 80◦E, respectively.

https://nsidc.org/data/seaice_index/
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Given the availability of the SIC dataset described above, we selected the daily SIC
data from 1 January 1989 to 31 December 2019 for the construction and validation of the
prediction model. One part of the SIC dataset from 1 January 1989 to 31 December 2016
was served as the training dataset, and the other part of the SIC dataset from 1 January
2017 to 31 December 2019 was served as the validation.

3. Methodology

The mid- and long-term evolutions of SIC is a spatio-temporal variation process. If
we treat the evolutionary process of SIC as a time-series evolutionary problem, the spatial
evolution characteristics are often lost because the spatial correlation is not considered.
Similarly, if we only focus on the changes in spatial structure without considering the effects
of temporal changes, this will make predictions impossible to achieve over a longer time
scale. Therefore, it is necessary for us to consider both the spatial and temporal evolution
of SIC to achieve better predictions.

As a classic “weapon” for spatio-temporal data mining and dimensional compression
in the field of geosciences, EOF analysis can effectively extract the spatial features and
temporal variations of research objects. As an enhanced version of the traditional regression
neural network (RNN) model, LSTM can extract features from time series. In addition, DNN
with a multilayer structure can decode the features extracted by LSTM well to obtain the
final result of the SIC prediction. The combination of the above three techniques provides a
reasonable method for the analysis and prediction of spatio-temporal fields. Therefore, we
proposed an EOF–LSTM–DNN model for predicting the SIC, which is referred to as the
ELD model in this study.

3.1. The Architecture of the ELD Model

The ELD model is composed of three parts, namely, the EOF module, the LSTM–DNN
(LD) rolling prediction module, and the reconstruction module, as shown in Figure 2. The
functions of each module are described as follows:

First, in the EOF module, the original SIC satellite remote sensing dataset was divided
into training and validation datasets. The training dataset can be decomposed into orthog-
onal spatial modes (EOFs) and corresponding principle components (PCs) by EOF analysis;
then, the PCs of the validation dataset were obtained by projecting the testing set onto the
EOFs obtained above. The details and related algorithm of the EOF decomposition are
described in Section 3.2.
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Next, in the LD rolling prediction module, a LSTM neural network was used to encode
the input PCs, and then a multilayer deep neural network (DNN) was used to decode
the encoded PCs to derive the future single-step prediction results. After the single-step
prediction was completed, the model integrated the single-step prediction results with the
original input to obtain a new input, and used the new input for the next prediction. The
above steps were cycled several times to produce the final mid- and long-term prediction
results for the PCs. Detailed information about the LSTM–DNN network is explained in
Section 3.3.

Finally, the reconstruction module the SIC prediction field can be reconstructed by com-
bining the output PCs in the LD rolling module with the EOFs obtained in the EOF module.
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3.2. Empirical Orthogonal Function (EOF) Analysis

EOF decomposition was proposed by Pearson and introduced into the analysis of
meteorological problems by Lorenz, which is commonly used to analyze variables [30,31].
It is often used to analyze the characteristics of the temporal and spatial distributions of the
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field and to separate the temporal and spatial characteristics of the variable field. Thus, the
main information of the variable field can be represented by a few typical eigenvectors.

Before conducting EOF analysis, we need to remove the climatology to obtain the
anomaly matrix Xm×n:

Xm×n =



x11 x12 . . . x1j . . . x1n
x21 x22 . . . x2j . . . x2n
. . . . . . . . . . . .
xi1 xi2 . . . xij . . . xin
. . . . . . . . . . . .
xm1 xm2 . . . xmj . . . xmn

 (1)

In the above matrix, m is the number of space observation points, n is the length of the
time series, and xij represents the observation value of the ith spatial point on the jth day.
Then, the covariance matrix Cm×m of matrix Xm×n can be calculated as:

Cm×m =
1
n

Xm×n × XT
m×n (2)

The eigenvalues (λ1, . . . , λm) and eigenvectors Vm×m of Cm×m can be expressed as
follows:

Cm×m ×Vm×m = Vm×m ×Λm×m (3)

Λm×m = diag(λ1, . . . , λm) (4)

where λi(i = 1, 2, . . . , m) are arranged in descending order. Each non-zero eigenvalue
corresponds to a column of eigenvectors, also referred to as the spatial pattern. For example,
the eigenvector corresponding to λ1 is called the first spatial pattern (i.e., the first column
of Vm×m) and so on. The spatial patterns are projected onto the matrix Xm×n to obtain the
PCs corresponding to the eigenvector:

PCm×n = VT
m×m × Xm×n (5)

The data of each row in the PCm×n corresponds to the PCs of each column of eigen-
vectors. The PC of the first spatial pattern corresponds to the first row of PCm×n, and
so on.

By the EOF analysis, the training datasets of the Arctic SIC are decomposed into EOFs
and corresponding PCs. Here, we retain 15 EOFs with a total variance of 92%. Then, the
validation dataset is project onto these 15 EOFs to obtain the PCs of the validation dataset.
To date, what we need to consider further is how to better analyze and predict these time
series (PCs).

3.3. Long Short-Term Memory Network (LSTM) and Deep Neural Network (DNN)

The LSTM network, a variant of RNN, was originally proposed by Hochreiter and
Schmidhuber [32], and it is a solution to the vanishing and exploding gradient problem
of RNNs. The core of RNN lies in its feature extraction and memorability (sharing of
parameters within neurons). The neurons of the traditional RNN contain self-feedback
connections, and the output is jointly determined by the input and the previous output,
making it capable of remembering information. However, as the time interval increases,
information is lost during the flow of neurons by multiplying the decimal points multiple
times, resulting in the disappearance of the gradient. The influence of the current output on
the subsequent output weakens until it disappears. Therefore, useful information cannot
be continuously remembered. LSTM can continuously cycle the information to ensure
the storage of information and remember the long-term information of the time series for
future predictions. As the data flow though the network, the information can be stored,
deleted, and added according to whether it is needed or not, effectively coping with the
problem of vanishing gradients [33]. Therefore, LSTM can predict longer sequences and



Remote Sens. 2022, 14, 2889 7 of 18

sequences with longer intervals. LSTM has advantages in time-series modeling with strong
learning and generalization abilities, and has a good predictive effect on nonstationary data.
When it learns the nonlinear features of a sequence, the high-dimensional mapping and
evolution of the features does not only depend on the current independent information,
but is also determined by the long-term influence mechanism that occurred historically
and the current state. It is important to note here that the long-term historical information
is actually the default behavior of the LSTM network structure rather than the result of
human intervention or deliberate learning, which provides a good objective condition for
future integrations with EOF analysis.

The LSTM is able to combine information learned in the long- and short-terms because
its internal feature-processing mechanism is well able to control the unit states, processing,
and mining mapping relationships through the information contained in the data itself.
This capability is given by a structure called ‘gates’, as shown in Figure 3. These gate units
that process and mine the input information realize the long-term learning capability of
LSTM. The structure and the process of LSTM is as follows:

Ft= σ(W f ·
[

ht−1, Xt]+b f

)
(6)

It= σ(Wi · [ht−1, Xt]+bi) (7)

C′t = tan h(WC · [ht−1, Xt]+bC) (8)

Ct = Ff · Ct−1 + It · C′t (9)

Ot= σ(WO · [ht−1, Xt]+bO) (10)

ht = Ot · tan h(Ct) (11)

where σ is the sigmoid function; W f , Wi, WC, and WO are the weights applied to the
concentration of the new input Xt and the output ht−1 from the previous cell; and b f , bi, bC,
and bO are the corresponding biases.
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DNN is a multilayer feedforward network trained by error back-propagation. It takes
the square of the network error as the cost function and uses the gradient descent method
to calculate the minimum value of the cost function. The DNN model used in this study,
which is presented in Figure 4, consists of five layers: an input layer, three hidden layers,
and an output layer. Since there was no accurate rule to determine the number of neurons
in the hidden layer, it was generally determined by repeated trial and error. After constantly
trying different numbers of neurons during the operation of the model, the number was
finally determined to be 41. The input layer consisted of 15 neurons, the number of neurons
in the three hidden layers were 10, 10, and 5, and the output layer was 1.
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4. Experiment Setup and Results
4.1. Experiment Setup

During the model training process, to make the training results converge more rapidly,
we needed to initialize several hyper-parameters of the model. The learning rate (lr) was
initialized to 0.0001, epoch was initialized to 200, batch size was initialized to 50, and
dropout was initialized to 0.3. In our experiments, we performed the global optimization
of the model using the Adam [34] algorithm, and used the mean squared error (MSE) as
the evaluation metric for each training round to minimize the loss on the training dataset.
To facilitate the experiments, the training dataset was constructed as a tensor of several
small samples, where each individual sample contained a string of features for the input
(15 steps) and a string of labels corresponding to the model output (100 steps). The output
process of the model was divided into two steps: The first step was to directly output the
prediction results for 1 time step; the second step was to input the results of 1 time step from
the first step into the model as new features for rolling predictions until a total of 100 time
steps were completed. Both of these steps were performed within the model. The MSE
calculation of the output results and the inverse optimization of the model parameters were
also performed in the above two steps. In this process, the MSE is calculated as follows:

MSE =
1
M

M

∑
i=1

(Truei − Predicti)
2 (12)

where M is the number of the training samples; Truei and Predicti represent the observation
value and the predicted value for the ith sample, respectively.

4.2. Model Evaluation

To further evaluate the prediction performance of the ELD model, we compared it to a
variety of machine learning models and existing numerical models. Here, root-mean-square
error (RMSE), Pearson correlation coefficient (PCC), anomaly correlation coefficient (ACC),
and mean absolute error (MAE) were used to verify the forecasting ability of different
models. The equations used to calculate these performance metrics are as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(Truei − Predicti)
2 (13)

PCC =

N
∑

i=1

(
Truei − True

)(
Predicti − Predict

)
√

N
∑

i=1

(
Truei − True

)2 N
∑

i=1

(
Predicti − Predict

)2
,

(
True =

1
N

N

∑
i=1

Truei, Predict =
1
N

N

∑
i=1

Predicti

)
(14)
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1
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∑
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(ATij − AT j

)(
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)
√

N
∑

i=1

(
ATij − AT j

)2 N
∑

i=1

(
APij − APj

)2


,

(
AT j =

1
N

N

∑
i=1

ATij, APj =
1
N

N

∑
i=1

APij

)
(15)

MAE =
1
N

N

∑
i=1
|Truei − Predicti| (16)

SS = 1− MSE(Predict, True)
MSE(Re f erence, True)

(17)

where N is the number of testing samples, MM is the number of spatial grid points,
Truei and Predicti represent the observation and predicted values for the ith sample, AT
(anomaly true) and AP (anomaly prediction) represent the actual and predicted values
after deducting climatic states, and Re f erence is the comparison reference field. In addition,
when SS > 0, it means the prediction result is better than the reference field; when SS = 1,
it means error-free prediction; and SS < 0 means the prediction result is worse than the
reference field.

4.3. Prediction Performance of the Principle Components

In this section, we take the satellite remote sensing of SIC as the observational value
and perform the forecast experiment. The purpose of this section is to analyze the error
source of the ELD model in the long-term SIC prediction process, as well as to analyze the
ability of the ELD model to capture the different temporal evolution scales of Arctic sea
ice concentration from the perspective of time series (PCs). In particular, the changes in
monthly and seasonal scales are noteworthy.

At the beginning, we validated the proposed prediction model by evaluating the
predictive performance of the time series. In evaluating the prediction trends over 100 days,
we compared only the variation trend between the start and end moments of the forecast
results of time series (PCs). Although such a comparison cannot capture the details of
the forecast trends for all individual time steps within 100 days, it is still a valid way to
measure the effectiveness of long-term time-series forecasts. Here, we used the validation
dataset from 2017 to 2019 to conduct the prediction experiment on PCs, and then the
prediction trend could be obtained by subtracting the first results from the 100th. As shown
in Figure 5, the ordinate represents the change trend of the 100th day relative to the first day,
with positive values representing the increase trend and negative value representing the
decrease trend. The results of PC1 to PC3 in this figure show that the prediction trend of the
ELD model matches the observational data very well. The RMSEs of the predicted trends
for PC1, PC2, and PC3 were 0.018, 0.015, and 0.011, respectively.

The low RMSE of the forecast trend directly demonstrated the excellent long-term
forecasting ability of the ELD model for each individual time series (PCs). However, it
could effectively reflect the prediction performance of the ELD model on a smaller time
scale. Therefore, we intercepted a set of prediction results to analyze the performance from
the monthly scale to the seasonal scale. Figure 6 shows a comparison of the predicted PC1
to PC3 with the observational value for a total of 100 days from 1 March to 9 May 2019. As
shown in Figure 6a, in the observational series, PC1 shows a decreasing trend from the 40th
to 50th days, which contrasts with the trend from the 30th to 40th days. Fortunately, the
predicted trend of the ELD model largely matches the trend of the observational series. It is
easy to observe from Figure 6 that the ELD model performs well in capturing the overall
trend at seasonal and monthly scales. Additionally, from Figure 6, we can observe that the
small-scale signal fluctuations of about 10 days can be captured by this ELD model, which
indicates its ability to predict multi-scale signals.
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the ELD model (red line) and the truth principal component (PC1(a)–PC3(c)) (blue line).

To investigate the advantages of the ELD model over the other artificial intelligence
models in more depth, we designed a comparison experiment in the same experimental
setting. Here, we chose a variety of classical machine learning models widely used in the
field of time-series forecasting to compare to the ELD model, including logistic regression
(LgR), back-propagation neural network (BPNN), RNN, and LSTM. At the same time, we
selected the months with significant seasonal variations in Arctic sea ice concentration for
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the comparison. This experimental setup of forecasting effects in different months can not
only directly reflect the long-term forecasting ability of the ELD model compared with other
models, but also effectively compares the forecasting performance of multiple models on
different time scales (especially in the month scale). Table 1 shows the comparison results
of PC1–PC3 for April, August, and October 2019.

Table 1. Comparison of forecasting capabilities of multiple models in test datasets (2019).

Methods

Comparison of Three Months for Three Principal Components

April 2019 August 2019 October 2019

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

RMSE

LgR 1.364 0.370 0.638 0.186 0.171 0.454 0.148 0.397 0.477
BPNN 0.734 0.319 0.581 0.115 0.160 0.382 0.130 0.320 0.437
RNN 0.685 0.209 0.551 0.130 0.218 0.339 0.264 0.357 0.300
LSTM 0.710 0.201 0.437 0.146 0.194 0.233 0.258 0.293 0.223
ELD 0.043 0.129 0.233 0.018 0.192 0.123 0.096 0.262 0.222

MAE

LgR 1.206 0.382 0.596 0.168 0.135 0.409 0.137 0.323 0.387
BPNN 0.629 0.303 0.545 0.093 0.145 0.342 0.114 0.238 0.355
RNN 0.568 0.177 0.526 0.128 0.202 0.315 0.229 0.329 0.266
LSTM 0.577 0.166 0.419 0.141 0.122 0.218 0.127 0.244 0.177
ELD 0.033 0.099 0.189 0.013 0.125 0.095 0.063 0.218 0.176

The results presented in Table 1 show that the ELD model has a good prediction
performance compared to other machine learning and deep learning models. For example,
for the PC1 forecasts in April, August, and October 2019, the RMSE and MAE of the ELD
model are 0.043 and 0.033, respectively. Meanwhile, the RMSE of the original LSTM, RNN,
BPNN, and LgR models are 0.710, 0.685, 0.734, and 1.364, respectively; the MAE of original
LSTM, RNN, BPNN, and LgR models are 0.577, 0.568, 0.629, and 1.206, respectively. As
observed in Table 1, the superiority of the ELD model also holds for PC2 and PC3. The
experimental results show that both MAE and RMSE can directly reflect the prediction
errors of different models on the same validation dataset. However, the square term in
RMSE can amplify abnormal results, so the results of RMSE are generally greater than those
of MAE. From the above, we can observe that ELD has the lowest prediction error in most
cases. The ELD model also performs better and more consistently with the observational
values than the other models in the very few forecast cases with high errors. Such results
show that the ELD model has the greatest advantage and robustness compared to other
models in forecasting tasks at different monthly scales. It is worth noting that the model
with higher robustness has a higher practical value and better prediction effect in the
operational forecasting application of SIC.

4.4. Predictions and Comparisons of Daily Sea Ice Concentration

The prediction effectiveness of the independent PC is directly related to the prediction
accuracy of the sea ice concentration space field, so it is extremely important to fully verify
the SIC prediction ability of the ELD model. As shown in the previous section, we evaluated
the time-series prediction ability of the ELD model using RMSE and MAE. The evaluation
results show that the ELD model outperforms other machine learning models in predicting
PCs. Distinct from the time-series prediction results, the results of the SIC spatial field
prediction better reflect the evolution of SIC in spatial and temporal terms. In this section,
we combined the EOFs stored in the EOF module with the predicted PCs to obtain the
100-day spatial forecasts of the SIC. Here, we used RMSE and PCC to analyze the spatial
error and spatial correlation coefficient of the ELD model in the 100-day forecast statistics.
Meanwhile, two statistical indicators, RMSE and ACC, were used to measure the forecast
performance of the ELD model and the two baseline models.
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The RMSE and PCC in Figure 7 show that the forecasts of the ELD model perform
very well over the 100-day forecast period. At the end of the 100-day forecast, the RMSE of
the ELD model spatial field forecasts is less than 0.24, and the PCC is greater than 0.9. From
the spatial distribution of RMSE and PCC in Figure 7, we can observe that the prediction
error of the ELD model is relatively large and the correlation coefficient is relatively low
in the region with higher SIC values above 80◦ N. This may be because there are more
nonlinear factors controlling the SIC in this area, which leads to the difference between this
area and other regions, but the results still have certain reference values.
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Then, we used persistent model and optimal climate normal (OCN) methods to further
evaluate the performance of the ELD model. The persistence forecast is a forecast baseline
model that is widely used in atmospheric and oceanic forecasting. It treats the forecast
value as equal to the current value and can be expressed as follows: X(t + ∆t) = X(t),
where X(t) is the current observational value and X(t + ∆t) is the forecast result at time
t + ∆t. The OCN method is also a baseline method for mid- and long-term forecasting,
which uses several years of averaged historical data as the forecast for the next year [35]. In
this experiment, we used the averaged result from 1989–2013 as the forecast result.

Here, RMSE, PCC, and ACC were used to evaluate the accuracy of the ELD model,
persistence prediction, and OCN results. In this experiment, ACC was used to evaluate
the prediction performance of the persistence and ELD models, and PCC and RMSE are
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used to evaluate the performance of the OCN method, persistence prediction, and the ELD
model. As shown in Figure 8, over the 100-day forecast period, the RMSE of the ELD model
is consistently lower than 0.2, while the PCC and ACC are consistently greater than 0.7.
Taking the 100th day as an example, the RMSE, PCC, and ACC of the ELD model are 0.19,
0.77, and 0.74, respectively. Notably, the RMSE of the ELD model increases gently, and
the PCC and ACC decrease slowly. In contrast, the RMSE of the persistent forecast has
a greater increase, and its ACC is below 0.5 on day 20. The RMSE of the OCN result is
relatively stable, remaining at around 0.8, but much larger than the result of the ELD model.
The PCC of the OCN results is also relatively stable in the 100-day statistics, remaining at
around 0.64. The PCC of the persistent forecast and the ELD model shows a decreasing
trend with the forecast time, but the decay rate of the persistent forecast is obviously faster.
It can be observed that the ELD model is better than the persistence prediction and OCN
methods in the mid- and long-term predictions.
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4.5. Case Study and Comparison with Hybrid Coordinate Ocean Model Result

In this section, a comparison of the SIC spatial field forecast results of the ELD model
with satellite remote sensing observational data are shown in Figure 9. The 100-day samples
in 2019 predicted by the ELD model are compared with the satellite remote sensing data. As
shown in this figure, the ELD model captures the evolution of the SIC during the prediction
window. In the eastern region (black box) from the 1st to the 30th day, the SIC data of
satellite remote sensing and the results of the ELD model show a significant decrease trend,
which indicates that the ELD model can predict the spatial evolution trend of SIC well. In
the comparison experiments shown in Figure 9, errors between the forecast results of the
ELD model and the remote sensing SIC field are inevitable (especially in the forecast after
70 days). There are two main sources of its errors: (1) In the EOF module, we only select
15 EOFs for the final reconstruction. From the previous sections, 15 EOFs can explain 92%
of the information in the SIC field, but a part of the information is still directly filtered,
which can lead to non-negligible errors; (2) the rolling forecast structure of the ELD model
causes the error of each time step to accumulate in the next time step. The above two points
together cause the final forecast error, but it can be observed from the statistical results
in Section 4.4 that the forecast accuracy of the ELD model is still the best result in all
comparative experiments.
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In addition, the numerical model-based sea ice forecasting tool is currently the domi-
nant forecasting scheme, and it is widely used in operational sea ice forecasting. Therefore,
we compared the performance differences between the ELD and numerical forecast mod-
els. It is worth noting that the forecast horizon of HYCOM was 9 days, and we used the
HYCOM numerical model forecast results of Arctic sea ice concentration from 4 April to 12
April 2021 (9 days in total) for the experiment.

HYCOM is limited by the numerical calculation of a complex partial differential
equation system, which makes it difficult for the HYCOM numerical prediction model to
perform daily long-term SIC predictions. Therefore, the main purpose of the comparison
experiment in this section was to compare the prediction accuracy of the ELD model and
HYCOM at the same time step. Figure 10 shows the truth field, ELD forecast results, and
HYCOM results (https://www.hycom.org/hycom, accessed on 4 April 2021), from which
it can be observed that the forecast results of the ELD model are in good agreement with the
truth field, and the spatial field distribution pattern from days 1 to 9 has a consistent trend.
However, the forecast results of HYCOM already show great differences from the real
spatial field distribution on day 9, especially in the eastern part of this figure (black box).

https://www.hycom.org/hycom
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forecast model, days 1 to 9 in 2021 from 4 April to 12 April.

Then, we used the HYCOM results as the reference field to calculate the forecast skill
score (SS) [36] of the ELD model. As shown in Figure 11, the SS of the ELD model relative
to the HYCOM forecasts are all greater than 0, and the average SS of 9 days is 0.7172. This
part is only a single-forecast experiment, so there is no obvious trend in the results of the
forecast skill scores, but the value of SS can also reflect the forecast performance of the ELD
model. It can be observed from the forecast examples and the forecast skill that the ELD
model outperforms the HYCOM forecast model.
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5. Discussions

The ELD model makes full use of a large amount of satellite remote sensing SIC
data to combine with the deep learning model. The forecast problem of the time–space
field is transformed into the time series by the EOF method, which greatly simplifies the
forecast difficulty and shortens the forecast time. Extensive experimental results confirm
that the ELD model can obtain more accurate SIC 100-day prediction results at the expense
of relatively short time consumption. The statistical results of the 100-day forecast of
the ELD model show that the forecast RMSE increases with the forecast time. On the
one hand, this is because the prediction error of the ELD model accumulates over time
steps, which propagates the error from earlier time steps to later time steps, causing the
long-term prediction results to be inferior to short-term results. However, the ELD model
can effectively reduce the cumulative effect of this error, which is an important reason
for its excellent performance in the 100-day forecast. On the other hand, medium- and
long-term forecasting based on deep learning models may require sufficient training data
and input data. At the same time, the quality of the data used for model learning is also a
key factor in improving forecast timeliness. The pre-training of the ELD model is the most
time-consuming stage in the whole experiment and the actual operational SIC forecast. The
speed of EOF decomposition is slowed down due to the increase in the spatio-temporal
resolution of the original data set. Although EOF is very time-consuming, its running
results can be stored stably and can be directly called in subsequent prediction stages.
It is worth mentioning that, when the dynamic mechanism is unclear or the solution of
complex mathematical equations is difficult, the ELD model architecture scheme has wide
applicability and flexibility for multi-domain spatio-temporal data mining and forecasting
in the ocean and atmosphere.

The ELD model shows strong advantages in the current experimental stage, but we
still found that it still had some aspects that could be improved. First, the ELD model has
only been used for forecasting studies in a part of the Arctic. When the ELD model is used
to study and forecast the entire Arctic region in the future, the computation load of the EOF
module increases and the SIC prediction accuracy of the ELD model may decrease. If we
want to produce mid- and long-term forecasts of high-resolution SIC in the entire Arctic
region, the ELD model may need to be equipped with a high-performance computing
platform, such as the GPU cluster. More importantly, the ELD model adopts the supervised
learning method commonly used in deep learning. The label data used in the forecast
training process greatly limit the forecasting ability of the ELD model to deal with sudden
changes. In other words, the parameter results obtained by the ELD model training need to
be retrained after having been used for a certain number of times, and need to pay more
attention to data with abnormal changes in the SIC as much as possible. Such retraining
is necessary to obtain more accurate prediction results. As we all know, the evolution
process of SIC contains many dynamic and thermodynamic factors. In this experiment, we
only conducted prediction research from the perspective of the SIC single variable, which
ignored the influence of some necessary external factors on the evolution of SIC. This also
provides new ideas for follow-up research. We can integrate multiple sea ice variables for
forecasting, thereby improving forecast accuracy and forecast timeliness.

6. Conclusions

In this study, we proposed an Arctic sea ice concentration (SIC) forecast model (EOF–
LSTM–DNN) based on statistical analysis and deep learning, and extend the effective
forecast duration of SIC to 100 days. The model was driven by satellite remote sensing SIC
data. The ELD model consisted of the empirical orthogonal function (EOF) method, long
short-term memory network (LSTM), and deep neural network (DNN). Among them, EOF
converts the spatio-temporal data of Arctic sea ice concentration into time series, LSTM
encodes the historical time series, and DNN decodes the encoded information to obtain SIC
forecast results. Meanwhile, we adopted the persistence prediction and optimal climatic
normal (OCN) method as the baseline model to compare its RMSE, PCC, and ACC with
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the ELD model. The RMSE, PCC, and ACC of the ELD model at the 100th day of forecasts
were 0.2, 0.77, and 0.74, respectively. While the RMSE of the persistence prediction and
OCN results were 1.5 and 0.8, the ACC of the persistence prediction was 0.1, and the PCC
of the persistence prediction and OCN results were 0.28 and 0.64. This shows that the ELD
model is significantly better than the two baseline models mentioned above in mid- and
long-term forecasting.

In comparison with the other machine learning models, the RMSE and MAE of the
ELD model are significantly lower than those of logistic regression (LgR), back-propagation
neural network (BPNN), recurrent neural network (RNN), and LSTM. At the same time,
we compared the ELD model with the SIC results of the HYCOM numerical prediction.
From the forecast skill score (SS), it can be observed that the SS of the ELD model relative
to HYCOM is always greater than 0 (the average SS in 9 days is 0.7172), and the ELD
model has obvious advantages in capturing the spatial evolution of SIC. The above experi-
mental results all show that the ELD model has great potential in the mid- and long-term
predictions of SIC.
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