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Abstract: Sea-surface petroleum pollution is observed as “oil slicks” (i.e., “oil spills” or “oil seeps”)
and can be confused with “look-alike slicks” (i.e., environmental phenomena, such as low-wind
speed, upwelling conditions, chlorophyll, etc.) in synthetic aperture radar (SAR) measurements,
the most proficient satellite sensor to detect mineral oil on the sea surface. Even though machine
learning (ML) has become widely used to classify remotely-sensed petroleum signatures, few papers
have been published comparing various ML methods to distinguish spills from look-alikes. Our
research fills this gap by comparing and evaluating six traditional techniques: simple (naive Bayes
(NB), K-nearest neighbor (KNN), decision trees (DT)) and advanced (random forest (RF), support
vector machine (SVM), artificial neural network (ANN)) applied to different combinations of satellite-
retrieved attributes. 36 ML algorithms were used to discriminate “ocean-slick signatures” (spills
versus look-alikes) with ten-times repeated random subsampling cross validation (70-30 train-test
partition). Our results found that the best algorithm (ANN: 90%) was >20% more effective than
the least accurate one (DT: ~68%). Our empirical ML observations contribute to both scientific
ocean remote-sensing research and to oil and gas industry activities, in that: (i) most techniques
were superior when morphological information and Meteorological and Oceanographic (MetOc)
parameters were included together, and less accurate when these variables were used separately; (ii)
the algorithms with the better performance used more variables (without feature selection), while
lower accuracy algorithms were those that used fewer variables (with feature selection); (iii) we
created algorithms more effective than those of benchmark-past studies that used linear discriminant
analysis (LDA: ~85%) on the same dataset; and (iv) accurate algorithms can assist in finding new
offshore fossil fuel discoveries (i.e., misclassification reduction).

Keywords: oil slicks; oil spills; oil seeps; look-alike slicks; ocean remote sensing; satellite; synthetic
aperture radar (SAR); RADARSAT; microwave sensors; classification algorithms; cross validation;
machine learning

1. Introduction

Petroleum pollution is mainly observed at the sea surface as the signature of “oil
slicks” [1]. These can occur either as: (i) “oil spills”—anthropogenic operational spillages,
leaks, accidents, human negligence, machinery failure, etc. [2]; or (ii) “oil seeps”—naturally
occurring oil seepages on the seafloor that emerge to the ocean surface [3]. The ocean
remote-sensing scientific community has long devoted attention to mapping the extent
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of oil slicks on the sea surface (e.g., [4]). Space-borne sensors can provide the spatial and
temporal location of oil slicks, and, therefore, assist in mitigating the impact of petroleum
pollution and in limiting the spread of eventual environmental damage [5]. The synoptic
view provided by satellite sensors is of great importance when considering the dynamics of
oil slicks to reduce property losses, provide reliable and rapid notifications to surveillance
monitoring systems, support countermeasure actions, etc. [6,7].

Synthetic aperture radar (SAR) has been shown to be the most useful active remote
sensor for operationally detecting oil slicks [8,9]. Oil spills and oil seeps produce similar
signatures in SAR data [10]. Likewise, oil slicks do not have a unique signature: environ-
mental phenomena (e.g., low-wind speed, upwelling conditions, algal blooms, rain cells,
biogenic films, etc.) can closely resemble oil slicks in SAR imagery—these false alarms are
the so-called “look-alike slicks” [11]. Consequently, the identification of remotely-sensed
sea-surface “petroleum targets”, i.e., “ocean-slick signatures” (spills versus look-alikes) or
“oil-slick signatures” (seep-spill), are a challenge [12,13].

The processing chain to remotely detect petroleum targets on the sea surface is often
regarded as a two-step task: (i) image segmentation separating polygons with oil-slick
candidates from the oil-free surface, i.e., smooth from rough scattering regions in SAR
data, respectively [14]; and (ii) classification of the oil-slick candidates into mineral oil or
look-alikes [15]. These tasks are usually completed by means of human interpretations
or semi-automatic approaches [16–18]. A third task recently evolved from the second:
oil-category classification—i.e., seep-spill discrimination [19]. The segmentation step yields
attributes describing the candidate polygons, whereas the classification exploits this feature-
extracted information.

Machine-learning (ML) methods are widely applied in oceanography, geosciences, and
other multidisciplinary fields [20,21]. A broad review stating the general use of ML data-
driven methods applied to remote-sensing information is presented by Maxwell et al. [22].
The specific use of ML methods to classify sea-surface petroleum targets using satellite mea-
surements is also a well-studied topic. For example, a comprehensive survey (>100 studies
spanning for a decade: 2010–2020) was carried out by Al-Ruzouq et al. [23], who sorted com-
monly used ML methods to classify ocean-slick signatures into two ML levels: “traditional”
and “deep-learning” techniques. While the former includes, but it is not limited to, naive
Bayes (NB), K-nearest neighbor (KNN), decision tree (DT), random forest (RF), support
vector machine (SVM), artificial neural network (ANN), among other approaches [24], the
second level accounts for autoencoder, convolutional neural network, deep-belief network,
recurrent neural network, generative adversarial network, etc. [25]. Two review papers
by Lu and Weng [24] and Ball et al. [25], indicate that there is still no consensus in the
published literature of which ML method is the best for classifying sea-surface petroleum
targets in satellite images.

One of the simplest, but robust, techniques that can be used for ML modeling is linear
discriminant analysis: LDA [26]. LDAs were explored by Carvalho et al. [27–29] for seep-
spill classification: overall accuracies of ~70% were obtained using ~5000 samples imaged
with RADARSAT-2 in Campeche Bay, Gulf of Mexico [30]. In a pair of follow-up papers,
LDAs were used in a similar fashion, but to classify the signatures of oil spills and look-
alikes off the coast of Brazil using RADARSAT-1 measurements: (i) exploiting ~770 samples,
Carvalho et al. [31] combined morphological information (e.g., area and perimeter) with
Meteorological and Oceanographic contextual information (“MetOc parameters”), in a total
of 39 combinations of variables, reaching overall accuracies of ~84%; and (ii) making use of
~550 samples, Carvalho et al. [32] accounted for a total of 114 combinations of variables
that included morphological, MetOc, and site-specific contextual geo-location information
(“Geo-Loc attributes”, e.g., latitude and longitude) to find overall accuracies up to ~85%. In
the current paper, these oil spills versus look-alikes LDA overall-accuracy results serve as a
benchmark to compare with the results of other ML methods.

Many papers involving ML methods applied to petroleum targets strove to separately
investigate individual techniques in such classification tasks, e.g., [33–35]. The comparison
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of different ML methods applied to the same data, to assess their success in the classifica-
tion of oil spills from look-alike slicks, as here, is not the focus of many published papers.
Xu et al. [36] presented one of the few comparative evaluations of various ML methods
to classify ocean-slick signatures. They consolidated a comparison of seven techniques
(two traditional and five deep-learning) and reported success of up to ~92% while using
~190 samples imaged with RADARSAT-1 off the Canadian coast. Their findings were
expressed by median area under the curve (AUC) values, and not in overall accuracies, as
used here.

The primary intent of this paper is to assess the accuracy of various ML methods to
discriminate ocean-slick signatures: oil spills versus look-alike slicks. To reach this goal, a
data analysis experiment was carried out to perform cross-validation procedures to train
and test six traditional ML classification techniques: NB, KNN, DT, RF, SVM, and ANN.

The main contribution of this study is that few papers have published comparisons of
various ML methods to classify spills from look-alikes in the same analysis (e.g., [36]) as
thoroughly as performed here. A two-fold key motivation for our research is: (i) there is
a challenge to rank the effectiveness of each technique with several aspects (e.g., number
of available samples, class balance and type, application of data transformations, quality,
choice, and combination of attributes, etc. [33–35]); and (ii) recent oil-related disasters—
including the 2010 Deepwater Horizon blowout in the Gulf of Mexico ([37]) and the 2019
massive spillage along the northeastern coast of Brazil ([38])—are outstanding indications
of a dire need for accurate and improved approaches to classify sea-surface petroleum
targets, which can also be applied to smaller oil slicks [12,13].

The framework of the manuscript is organized as follows: Section 1 introduced
background information and our goals; Section 2 reports our methods addressing our
research strategy describing our experiment, region of interest, database, ML methods, and
performance metrics; Section 3 presents our outcomes; Section 4 discusses our results; and
Section 5 summarizes our major conclusions and makes suggestions for future research.

2. Methods and Materials

Classification problems are frequently taken as a three-phase process: first, a learning
phase constructs a classification model, then, the classification phase uses the model to
predict the class label for data not used in the learning phase [39]. A third phase may,
or may not, occur with the models being applied to new, unseen data not used in the
previous phases [40]. Here, we conducted phases one (training phase) and two (testing
phase)—phase three (validation phase) will be presented in Carvalho et al. [41].

In our experiment, unbiased accuracy estimates were obtained with the classification
models being trained and tested on independent partitions of the dataset (Section 2.1). The
database, region of interest, and six traditional ML classification techniques are discussed in
Sections 2.2–2.4, respectively. Five performance metrics were used to evaluate and compare
our results: overall accuracy, sensitivity, specificity, and the predictive values (positive and
negative); these are explained in Section 2.5.

The current research builds on the analyses of Carvalho et al. [31,32], who exploited
LDAs to classify oil spills from look-alikes. Their overall-accuracy classification results are
the benchmark used here. A simple and powerful visual programming open-access suite
was used in our ML experiment: Orange Data Mining [42,43].

2.1. Research Strategy of Our Training and Testing Experiment

This experiment was divided into five stages as shown by the black circles on the
flow diagram in Figure 1. Two ways of feature-set reduction were investigated: (i) typical
feature-selection approaches were explored; and (ii) the combinations of variables were
divided by attribute-type characteristics (Sections 2.1.1 and 2.1.2). Traditional ML classi-
fication techniques were then applied (Section 2.1.3), leading to the definition of the ML
classification algorithms to be tested (Section 2.1.4) and evaluated (Section 2.1.5).
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Figure 1. Flow diagram summarizing the architecture of the proposed experiment, which is interra-
cially related to our objective. See Section 2.1: Research Strategy.

2.1.1. Stage 1: Feature Selection

Feature selection aims, in general, to reduce the dataset size (i.e., dimensionality
reduction) at the same time as achieving a more efficient analysis [44]. Feature selection
ranks the individual attributes of a given dataset, such that features can be considered
useful with respect to the purpose of the study (in our case, classification) based on their
relevance and redundancy [45]. Different feature-selection approaches have been proposed
in the literature—those most frequently used are reviewed in [39,46,47].

Here, in the search for the most favorable feature subset, seven popular feature-
selection approaches were investigated: (i) Information Gain (Info gain [48,49]), (ii) Gain
ratio [50,51]; (iii) Gini [52]; (iv) Multifactor Analysis-of-Variance (ANOVA [53]); (v) Chi
square (χ2 [54]); (vi) ReliefF [55]; and (vii) Fast Correlation Based Filter (FCBF [56]). From
this pool of approaches, only one was held to establish the most important variable set to
be carried to the next stages. The selected approach was defined by comparing the feature-
ranking results of each approach one to another. The following stages of this experiment
were performed twice:

- Mode 1: Before feature selection; and
- Mode 2: After feature selection.

2.1.2. Stage 2: Combinations of Variables

The database used in our experiment has two types of variables characterizing the
ocean-slick targets: morphological information and MetOc parameters—Section 2.2 below.
From the knowledge gained from past studies (e.g., [31,32]), we chose to analyze each of
these variable types together and separately. As such, three combinations of variables were
carried to the next stages:

- Combination 1: Both attribute types together;
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- Combination 2: Only morphological information; and
- Combination 3: Only MetOc parameters.

2.1.3. Stage 3: Traditional Machine-Learning (ML) Classification Techniques

We used six traditional ML classification techniques:

- Naive Bayes (NB);
- K-nearest neighbor (KNN);
- Decision tree (DT);
- Random forest (RF);
- Support vector machine (SVM); and
- Artificial neural network (ANN).

Reliable classifier accuracy estimates are usually obtained with “cross-validation”
procedures [40]. The simplest type of such procedure is the “holdout method”, in which the
dataset is divided into two random and independent partitions: one to train and another to
test the classifiers [39]. However, as the estimations of the holdout method are pessimistic
(i.e., only a single partition of the initial dataset is used to derive the model), another type of
cross validation with bias-reduced estimation is suggested: “repeated random subsampling
method”, which, in essence, is the holdout method repeated k times [57]. The third type
is the “k-fold cross validation”, in which the dataset is partitioned into k subsets of equal
size—one-fold at a time, also repeated k times, is held for testing, while the other folds for
training, thus, leading to mutually exclusive subsets in which each sample is used only
once in the test set. Other than the first type, the other two cross-validation types benefit
fully from the existing samples to repeatedly create training and testing sets [39].

We chose to estimate the accuracy of our classifiers with repeated random subsampling
cross validation. Different data-fraction recommendations are found in the literature, e.g.,
2/3 to train and 1/3 to test ([39]), 70% (or 80%) for training and the remaining 30% (or
20%) for testing ([58]), etc. As any of these partitions are considered valid, here, we simply
selected a fixed 70-30 partition. In our Orange Data Mining set up, we tuned the test set
to have a balanced number of class samples in relation to the training set. k was set to 10,
and during these repetitions the data samples were randomly selected between train-test
sets, and the greatest test accuracy of each algorithm was the one to consider [57]. This
procedure occurred for each of the six traditional ML classification techniques.

2.1.4. Stage 4: Classification-Algorithms Comparison

The conjunction of the first stage (before and after feature selection) with the second
stage (both types together, morphological information, and MetOc parameters) defined
what we refer to as a “variable set”. Those depicted in Figure 2, are:

- Variable Set A: Mode 1 and Combination 1 (Figure 2A);
- Variable Set B: Mode 1 and Combination 2 (Figure 2B);
- Variable Set C: Mode 1 and Combination 3 (Figure 2C);
- Variable Set D: Mode 2 and Combination 1 (Figure 2D);
- Variable Set E: Mode 2 and Combination 2 (Figure 2E); and
- Variable Set F: Mode 2 and Combination 3 (Figure 2F).
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Figure 2. Schematic displaying the three levels in which the 36 machine-learning (ML) classification
algorithms were compared: (i) Primary comparison level: The six techniques were compared among
themselves six times using the same set of attributes in each of the six white boxes; (ii) Secondary
comparison level: Each technique was compared using different sets of attributes three times before,
and three times after feature selection—two vertical black boxes; and (iii) Tertiary comparison
level: Every technique was compared using different sets of attributes two times per combination
of variables—three horizontal gray boxes. A, B, C, D, E, and F refer to the six variable sets. See
Section 2.1.4.

The six ML classification techniques applied to these six variable sets resulted in
36 possible outcomes. Effectively, each of these 36 standalone instances formed what we
refer to as an “algorithm”. As a result, we have used 36 data-driven ML classification
algorithms to address the problem of classifying petroleum signatures observed at the sea
surface. As portrayed in Figure 2, the performances of these algorithms were compared in
different levels—one should bear in mind the three comparison levels that took place:

- Primary comparison level: The six techniques were compared among themselves six
times using the same set of attributes, i.e., six variable sets (white boxes in Figure 2: A,
B, C, D, E, and F);

- Secondary comparison level: Each technique was compared using different sets of
attributes three times before and three times after feature selection (vertical black
boxes in Figure 2: A-B-C and D-E-F, respectively); and

- Tertiary comparison level: Every technique was compared using different sets of
attributes two times per combination of variables (horizontal gray boxes in Figure 2:
A-D, B-E, and C-F, respectively).
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Furthermore, these 36 algorithms were also compared with results from past re-
search [31,32]. These authors also investigated oil spill versus look-alike classification
algorithms applied to combinations of similar but different variables than used here; how-
ever, they used the simpler LDA technique (Section 2.4.1 below).

2.1.5. Stage 5: Classification-Accuracy Assessment

The six ML methods were ranked six times using the same set of attributes, i.e., primary
comparison level. This ranking was based on a fundamental performance metric: overall
accuracy. Four auxiliary performance metrics were also used to verify the robustness of
the algorithms.

2.2. Database

Even though a number of oil slick databases exist and may be obtained in the relevant
literature—for instance, from the Gulf of Mexico (e.g., [19,27]) and from the European Seas
provided by European Maritime Safety Agency ([59])—the main reason for our database
choice is that it has been used in previous studies, also to discriminate spills from look-
alikes but with a simpler ML technique (i.e., LDA in Carvalho et al. [31,32]). Those past
results are used here as a benchmark to evaluate our findings. Other major assets for this
database selection are listed below:

1. It consists of remotely-sensed sea-surface petroleum targets from the Brazilian coast
(Section 2.3), being a relevant site to evaluate machine-learning methods to classify oil-slick
targets in satellite SAR measurements, and thus discriminating them from look-alike slicks;

2. It is assumed that all observations are independent due to the diverse elements of the
satellites, sampling location and time, etc.—relevant environmental aspects of this database
are presented in Section 2.3 below; additioanlly, as the spatio-temporal representativeness
of the analyzed targets is of great concern, this and other individual characteristics of the
database are given in the two subsequent subsections;

3. It comes from validated samples [15];
4. It has a binary classification of each sample as an oil spill or a look-alike slick that

was based on human interpretation by specialists and was used here to assess the accuracy
of our classifiers (Sections 2.4 and 2.5);

5. It has a close-to-even class balance between oil spills (n = 350; 45.5%) and look-alikes
(n = 419; 54.5%);

6. The 769 samples were taken from 402 RADARSAT-1 scenes from July 2001 to
June 2003;

7. Three major types of attributes are present: morphological information, MetOc
parameters, and Geo-Loc attributes (the latter one was not accounted for)—see Section 2.2.1
below;

8. Beside the radar satellite data, infrared and visible satellite measurements are
included—see Section 2.2.2 below; and

9. It was previously compiled and reviewed by Bentz [15], as well as exploited by
Moutinho [60] and Carvalho et al. [31,32].

2.2.1. Train-Test Set (769 Samples)

The 769 instances within the two classes have nine distinct origins. The spill class
is associated with oil from four sources: offshore facilities (exploration and production),
ship-spills, and confirmed mineral oil from unknown sources (i.e., orphan-spills); no oil
seeps were registered. The look-alike class is represented by five environmental events:
low-wind speed, upwelling conditions, algal blooms, rain cells, and biogenic films.

The ocean-slick targets in this dataset were described by a number of attribute types,
but only two were evaluated here: morphological information and MetOc parameters. Nine
pieces of morphological information, describing the geometry, shape, and dimension of the
ocean-slick targets, were explored here: area, perimeter (Per), perimeter to area ratio (PtoA),
compact index (CMP = (4·Pi·Area)/(Per2)), fractal index (FRA = 2·ln(Per/4)/ln(Area)),
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length to width ratio (LtoW, i.e., aspect ratio), density (DEN), curvature (CUR), and number
of target parts (NUM). Three MetOc parameters, retrieved as averaged values within the
limits of the ocean-slicks’ polygons, were explored here: wind speed (WND), sea-surface
temperature (SST), and chlorophyll-a concentration (CHL). We did not apply any data
transformations, such as log10 or cube root, as in Carvalho et al. [31,32], and thus our
evaluations were completed with the non-transformed data.

2.2.2. Satellite Sensors

Our database comprises measurements from the widely used Radarsat-1, which
generates C-band HH polarized (transmitting and receiving at horizontal polarization) SAR
images with 8-bit digital resolution. These path-oriented images with ground resolutions
of 100 m were acquired using two beam modes: ScanSAR Narrow and Extended Low [61].

Measurements from different Earth-Observation System (EOS) sensors provided the
MetOc parameters in our database: (i) WND: The SeaWinds scatterometer was a microwave
sensor carried by the Quick Scatterometer (QuikSCAT) satellite from 1999 to 2009. It pro-
vided sea-surface wind fields with accuracies of <2 m/s and 20◦ in direction, and nominal
spatial resolution of ~25 km [62]; (ii) SST: The Advanced Very High Resolution Radiometer
(AVHRR) sensor onboard the National Oceanic and Atmospheric Administration (NOAA)
polar-orbiting satellites provided SST measurements with a nominal spatial resolution of
~1 km at nadir [63,64]; and (iii) CHL: Two sensors provided the CHL data: Sea-Viewing
Wide Field-of-View Sensor (SeaWiFS) onboard the OrbView-2 satellite ([65]) and Moderate
Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite ([66]). They
both have a nominal spatial resolution of ~1 km at nadir.

2.3. Regions of Interest

The content of the database originates in a specific region of interest off the coast
of Brazil: the Campos Basin (Figure 3). This area has vast oil and gas reservoirs, and
as in any area with many offshore oil facilities, there have been oil spills from these
installations [15]. This basin has dynamic environmental conditions that vary throughout
the year and is subject to highly changeable weather, thus guaranteeing good environmental
representativeness in our data.

Figure 3. Region of interest: Campos Basin, Brazil. See Section 2.3. Courtesy of Adriano Vasconcelos
(UFRJ/COPPE/PEC/LAMCE/LabSAR).

This region is well known for ultra-deep petroleum activities, and its oil and gas
platforms are mostly found in deep waters (>1000 m). The main surface-water circulation
flow is from northeast to southwest guided by the Brazilian Current, but the region often
experiences semi-permanent cyclonic vortices [67]. The meteo-oceanographic conditions in
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this basin undergo constant easterly winds triggering powerful upwelling lowering the SST
to ~11 ◦C [68]. The upwelled water, originating near Antarctica, not only cools the Campos
Basin SST’s, but also brings nutrients to surface layers increasing the primary productivity
and CHL detectable from satellites [69].

2.4. Machine-Learning (ML) Methods

As opposed to “deep-learning” methods, the six ML techniques in our analysis have
been considered “traditional” ML classification techniques [23]. The six traditional tech-
niques are regarded here as “simple” (NB, KNN, and DT) and “advanced” (RF, SVM, and
ANN). Others have proposed different divisions for various ML methods: linear versus
non-linear, tree-based versus non-tree-based, etc. [70].

Due to the simplicity of the traditional techniques, compared to deep learning, they
are suitable for the objectives of our investigation (i.e., knowledge discovery [39]). Few
parameter settings are involved, and, besides, these techniques provide more easy-to-
understand, intuitive information leading to improved knowledge from their outcomes [71].

In our practical ML implementations, instead of using the Orange Data Mining default
settings, we adopted our own customized setting based on verification among possible
optional adjustments. Hyper-parameters are not related to the input data but can affect the
final experimental results. NB and DT were the only two methods without any changes
in their different hyper-parameter quantities. In KNN, the weight was set to distance. RF
underwent two modifications: one in the basic properties (we chose to replicate training)
and another in the growth control (subsets were not split). The optimization parameter of
SVM did not have an iteration limit. There were three ANN changes: activation (tanh),
solver (L-BFGS-B), and with replicate training.

LDA is another simple traditional technique. Although not directly exploited here,
LDAs were applied to classify spills and look-alikes reported in past studies [31,32]. The
overall accuracy of the LDA classification is used here as a standard benchmark for consider-
ing an acceptable performance for the ML classification algorithms, see below. Our selection
of traditional ML methods is presented briefly below, from basic to more sophisticated,
with references provided for more detailed information.

2.4.1. Performance Benchmark

- Linear Discriminant Analysis (LDA): This is one of the simplest, long-established
techniques widely used for classification problems [40,72]. LDAs focus on maximizing
the separability between the known classes by computing a set of discriminant func-
tions and thus allocating a sample to the class of maximum function value. Although
several LDA extensions and variations exist (e.g., flexible, global-local, quadratic,
dual-space, null-space, regularized, penalized, probabilistic, etc.), the considered one
is the regular LDA derived from the Fisher LDA—in which only linear combinations
of inputs are used [26].

- Past LDA Papers: Carvalho et al. [31,32] published LDA analyses to classify spills
from look-alikes. Even though these past studies used the same dataset used here
(Section 2.2), they did not carry out cross validation and all samples were used in their
training phase. While Carvalho et al. [31] used all 769 samples, Carvalho et al. [32]
performed quality-control filters and only used 560 samples. They exploited various
combinations of variables using morphological information and MetOc parameters:
Carvalho et al. [31,32] compared 39 and 114 combinations of variables, respectively;
these included the application of different data transformations (i.e., log10 and cube
root). Their best non-transformed overall-accuracy LDA results, using the same com-
binations of variables to those defined here in Section 2.1.2 (i.e., both types together,
only morphological information, and only MetOc parameters), are taken as our bench-
mark. These are shown in Table 1: ~83% with morphological and MetOc attributes,
~79% only morphological information, ~77% only MetOc parameters. When other
combinations, using aspects of morphological and MetOc attributes, were used, a
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slightly improved overall accuracy of ~84% was reached ([31]), and further progress
was possible when a Geo-Loc attribute (bathymetry) was accounted for: ~85% ([32]).
The other four performance metrics ranged between ~73% and ~91% (Table 1).

Table 1. Linear discriminant analysis (LDA) results from Carvalho et al. [31,32] that classified oil
spills from look-alike slicks using the same database as the one used here (Section 2.2). These are
used here as a benchmark to compare with the performance of six traditional machine-learning (ML)
methods (Sections 2.4.2 and 2.4.3). Models LDA 1, 2, 3, 4, and 5 refer to their analyses without data
transformation, so as to the use of different combinations of variables: morphological information,
Meteorological and Oceanographic parameters (MetOc), and geo-location attributes (Geo-Loc). The
symbol + indicates explored types of variables. See Figure 4 for information about overall accuracy,
sensitivity, specificity, and predictive values (positive and negative). See Section 2.4.1.

Model Oil Spills Look-Alikes Targets Morphological MetOc Geo-Loc Variables Samples Study

LDA 1 305 87.1%
78.2% 334 79.7%

88.1% 639 83.1% + + 9 769 Carvalho et al. [31]

LDA 2 284 81.1%
74.9% 324 77.3%

83.1% 608 79.1% + 6 769 Carvalho et al. [31]

LDA 3 277 79.1%
72.5% 314 74.9%

81.1% 591 76.9% + 3 769 Carvalho et al. [31]

Model Oil Spills Look-Alikes Targets Morphological MetOc Geo-Loc Variables Samples Study

LDA 4 316 90.3%
77.6% 328 78.3%

90.6% 644 83.7% + + 7 769 Carvalho et al. [31]

LDA 5 251 89.3%
81.8% 223 79.9%

88.1% 474 84.6% + + + 10 560 Carvalho et al. [32]

Figure 4. Confusion matrix: 2-by-2 table—Panel 1. Horizontal analysis: sensitivity and specificity—
Panel 2. Vertical analysis: predictive values (positive and negative)—Panel 3. Concise confusion
matrix structure—Panel 4. Correctly classified targets: A + D. Correctly classified oil spills (A) and
look-alikes (D). Misclassified oil spills (C) and look-alikes (B). True class: known oil spills (A + B) and
known look-alikes (C + D). Predicted class: model classified oil spills (A + C) and model classified
look-alikes (B + D). See Section 2.5.
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2.4.2. Simple Techniques

- Naive Bayes (NB): This simple technique is derived from the application of Bayes’
theorem of posterior probability—it is often named as naive Bayes (NB). Bayesian
classifiers often outperform, or are comparable in performance to, more powerful
classifiers and are faster in terms of computer time [73]. The class membership proba-
bilities are predicted by a given sample belonging to a specific class. In this technique,
it is assumed that the influence of the values of the variables on any class does not
affect the values of the other variables—this is known as class conditional indepen-
dence [39]. Indeed, because of the assumption that the variables are independent of
the classes, the application of the Bayes’ theorem is considered “naive” [39].

- K-Nearest Neighbor (KNN): This method works as follows: in the attributes n-
dimensional space, it seeks the k closest samples among all existing samples, i.e.,
each time it predicts a new sample, it searches the “nearest neighbor” in the entire
dataset used for training [40,74]. The value of k, the number of neighbors, used here
was 5. The measure of closeness is given by a metric distance, e.g., Euclidean distance.
Different from all other methods analyzed here, KNN is regarded a “lazy learner”,
mostly because it creates numerous local target function approximations making
them slower and only able to generalize once needed, as opposed to the other five
techniques that are “eager learners”, as they create a global approximation and can
generalize before a query is given [39].

- Decision Tree (DT): Decision trees are tree-structure flowcharts. In this top-down
recursive tree-induction method, the internal nodes (i.e., non-leaf nodes) indicate
tests per attribute and the tree branches correspond to the test outcomes. Terminal
nodes (i.e., leaf nodes) represent the predicted class label, while the uppermost node
is known as the root node [39].

2.4.3. Advanced Techniques

- Random Forest (RF): This technique is one of the many types of ensemble methods,
i.e., it combines the learning from a series of other individual methods [75]. RFs can
be considered as a collection of DTs, which gives rise to the name “forest”, with a
flowchart-like tree structure [76,77]. In simple terms, each of these DTs start with a
“random” choice of variable, and the chosen class of each sample is given by the vote
of each DT.

- Support Vector Machine (SVM): This technique can classify any sort of data, i.e.,
both linear and nonlinear, with a smaller chance of suffering from overfitting than
other methods [39]. This non-tree-based classifier transforms the original data into a
higher dimension level to search for a unique and optimal hyperplane, i.e., a linear
decision boundary [78]. This hyperplane separates the classes in this new multidimen-
sional feature space, and, in general terms, this separates the data by using selected
essential training samples—the so-called “support vectors” [79]. From these vectors,
the maximal margin between the two classes is defined [80,81]. There is a compromise
between reaching high accuracies and long processing times [82]. Other reference
sources are: Cherkassky and Ma [83], for the selection of hyper-parameter settings,
and Mountrakis et al. [84], for broad review of remote-sensing data SVM applications.

- Artificial Neural Network (ANN): ANNs, commonly referred to as “neural net-
works”, try to mimic the way human “neurons” connect to each other [39]. This
neuron-like process consists of several node layers made of two units: input unit
(input layer) and output unit (this output layer may contains one or more in-between
hidden layers—neurodes) [85]. A multilayer ANN with a single hidden layer is said
to be a two-layer network—the input layer is not counted because it only delivers the
input information [39]. The network nodes, also known as “artificial neurons”, have
an organized, developed structure and are fully interconnected—when one node feeds
the next node, weights and thresholds are associated with the passing of information
at each connection [39]. While the input corresponds to the values of the attributes
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used in the training samples, the output is the prediction for those samples [39]. The
ANN learns from these connections while it adjusts the weights, so it is able to predict
the class label of each sample. This ANN learning process is known as connectionist
learning [39]. Even though ANNs are capable of handling noisy data, they usually
have long run times, have a long list of required hyper-parameter settings, and are
difficult to interpret, as compared to other advanced techniques, e.g., SVM [71].

2.5. Algorithms’ Accuracies

We use the standard approach of classifying sea-surface targets by comparing the
“predicted class” (i.e., independent case) with those from the “true class” (i.e., dependent
case) [39]. The former class accounts for the classification model outcome and the latter
class is represented by categorical memberships determined by specialists.

Here, our accuracy assessments were evaluated based on information extracted from
2-by-2 confusion matrices (Figure 4: Panel 1)—five performance metrics were exploited:
a fundamental one (i.e., overall accuracy) and four auxiliary ones (i.e., sensitivity and
specificity, and positive and negative predictive values) [86]. Panels 2 and 3 of Figure 4
demonstrate how the auxiliary performance metrics are calculated. Other terms are found
in the literature referring to sensitivity (e.g., “recall”) and positive-predictive value (e.g.,
“precision”) [87]. In addition, sensitivity and specificity are frequently referred to as
“producer’s accuracy”, whereas the predictive values are termed as “user’s accuracy” [88].

Even though we express our results as ranks based on the fundamental overall-
accuracy metric, the other four auxiliary performance metrics are also important in deter-
mining the overall success of the classifiers, as these metrics corroborate the individual
achievements of the algorithms by verifying the misclassification tradeoff [89]. An effec-
tiveness limit was set to evaluate the algorithms’ accuracies: 60% [27–29,31,32]. If any of
these metrics fall below this level, the algorithms are considered ineffective, referred to
as being null and void. Figure 4 (Panel 4) outlines the structure accounting for all five
accuracy-assessment metrics in a single table.

Other ways are found in the literature to assess the performance of classification algo-
rithms, including the area under the curve (AUC) [90]. The combination of two auxiliary
performance metrics provides another possible performance metric: the F-measure, i.e., the
square root of sensitivity times the positive-predictive value [91]. These two performance
metrics are better for problems with imbalanced classes ([39]), which is not the case here.

3. Results
3.1. Feature Selection (Stage 1)

Feature-selection ranks were found not to be the same for the seven feature-selection
approaches. Discrepancies occurred among the different selection approaches, i.e., the
importance given to each attribute varied. Three approaches produced similar rankings
(Info gain, Gain ratio, and Gini), whereas the other four approaches (ANOVA, χ2, ReliefF,
and FCBF) presented quite different rankings. After comparing the results from these seven
approaches, and analyzing the similarities and divergence of all rankings, the decision was
made to use those from Info gain, given in Table 2.
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Table 2. Feature-selection ranking results (Information Gain: Info gain—Section 2.1.1) explored for the
training and testing of machine-learning (ML) algorithms in our experiment. The explored variables
are those from our database (769 samples from the Campos Basin, Brazil—Sections 2.2 and 2.3).
The selected attributes (i.e., six “most representative” ones) are indicated with *. Color-code: black
(morphological information), gray (MetOc parameters), and red (calculated cutoff threshold—see the
text; Section 3.1). The relative-importance percentages (%) of each variable are shown and refer to the
highest rank.

Attributes Info Gain %

* 1) PtoA Perimeter to Area Ratio 0.224
* 2) Area Area 0.215 95.8
* 3) WND Wind Speed 0.191 85.4
* 4) Per Perimeter 0.145 64.8
* 5) FRA Fractal Index 0.133 59.6
* 6) CHL Chlorophyll-a Concentration 0.082 36.7

Calculated Cutoff Threshold 0.078 35.0

7) NUM Number of Target Parts 0.077 34.3
8) DEN Density 0.067 30.0
9) SST Sea-Surface Temperature 0.067 29.7

10) CUR Curvature 0.063 27.9
11) LtoW Length to Width Ratio 0.046 20.3
12) CMP Compact Index 0.039 17.6

The decision limit (or stopping criteria) to select variables based on the values of
feature-selection ranks is user defined [39]. Therefore, the “best” attributes were separated
by the “worst” ones by a specific cutoff threshold that we determined from the ranking
values. Taking the most important variable as a reference, the relative importance of the
other variables was computed—for example, the highest ranked variable was PtoA (its
rank was 0.224), whereas the second and third ranked variables were Area (0.215) and
WND (0.191); so, their relative-importance percentages in relation to PtoA were 95.8% and
85.4%, respectively, as shown in Table 2.

After evaluating the Info gain rank values and their relative percentage of importance,
a calculated cutoff threshold was set to 35% relative to the highest variable’s rank. As a
result, variables with ranks below 0.078 were discarded—i.e., six variables were considered
“less discriminative” and eliminated: NUM, DEN, SST, CUR, LtoW, and CMP. This reduced
the attribute-wise dataset size by half (Table 2). The six “most representative” attributes
ordered by the Info gain ranking are: PtoA, Area, Per, and FRA (four morphological pieces)
and WND and CHL (two MetOc pieces). These are indicated in Table 2 with an asterisk.
Note that: (i) before feature selection (Mode 1), the ML algorithms used all twelve attributes
in our database (vertical black box on the left side of Figure 2: A, B, and C); and (ii) after
feature selection (Mode 2), the ML algorithms only used the attributes selected with Info
gain (vertical black box on the right side of Figure 2: D, E, and F).

Additionally, when only the six pieces of morphological information, or three MetOc
parameters, were used separately in any of the feature-selection approaches, the ranking
values for each variable did not change. This is because feature-selection evaluates the
importance of each variable, so the ranking should not alter if variables are removed or
included [39]. On the other hand, the removal or inclusion of samples (not performed here)
may alter the individual variable importance.

3.2. Combinations of Variables (Stage 2)

Feature selection identified the attributes within the six “variable sets” defined by
the two feature-selection modes and the three combinations of variables: (A) All twelve
variables; (B) The nine pieces of morphological information; (C) The three MetOc param-
eters; (D) All selected attributes; (E) Only the four selected morphological information;
and (F) Only the two MetOc parameters. Figure 5 illustrates these six variable sets that
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were applied to the six ML methods forming the 36 algorithms evaluated in the primary
comparison level (white boxes in Figure 2). Variable sets A, B, and C represent those from
before feature selection (Mode 1), whereas variable sets D, E, and F are those from after
feature selection (Mode 2)—these two groups of variable sets were used in the secondary
comparison level (vertical black boxes in Figures 2 and 5). Another grouping accounted
for pairs of variable sets corresponding to each of the defined combinations of variables:
A and D (Combination 1: both attribute types together), B and E (Combination 2: only
morphological information), and C and F (Combination 3: only MetOc parameters)—these
three groups of variable sets were used in the tertiary comparison level (horizontal gray
boxes in Figures 2 and 5).

Figure 5. Six variable sets (A, B, C, D, E, and F) that were applied to the machine-learning (ML)
classification techniques. Morphological information (black font): Area, Perimeter (Per), Perimeter to
Area ratio (PtoA), compact index (CMP), fractal index (FRA), length to width ratio (LtoW), density
(DEN), curvature (CUR), and number of target parts (NUM). Meteorological and Oceanographic
(MetOc) Parameters (gray font): wind speed (WND), sea-surface temperature (SST), and chlorophyll-a
concentration (CHL). See Sections 2.1.4 and 3.2.

3.3. Classification-Accuracy Assessment (Stage 5)

The performance and effectiveness of the six traditional ML classification techniques
were evaluated alongside the classification-accuracy assessment of the 36 data-driven ML
classification algorithms (Figures 6 and 7). This section presents the performance findings
reported in both figures: Figure 6 contains six tables visually aligned with the comparison
levels portrayed in Figures 2 and 5, whereas Figure 7 graphically represents some of the
tabular outcomes in Figure 6.
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Figure 6. Classification-accuracy assessment of the 36 data-driven machine-learning (ML) classi-
fication algorithms derived from the first three stages of our experiment: (i) two feature-selection
modes (before (Mode 1) and after (Mode 2) feature selection—Section 2.1.1); (ii) three combinations
of variables (both attribute types together (Combination 1: morphological and MetOc), geometry,
shape, and dimension attributes (Combination 2: morphological information), and Meteorological
and Oceanographic Parameters (Combination 3: MetOc)—Section 2.1.2); and (iii) six ML methods
(naive Bayes (NB), K-nearest neighbor (KNN), decision trees (DT), random forest (RF), support vector
machine (SVM), artificial neural network (ANN)—Section 2.1.3). The six white boxes (A, B, C, D,
E, and F), the two vertical black boxes ((A, B, and C) and (D, E, and F)), and the three horizontal
gray boxes ((A and B), (B and E), and (C and F)) are visually aligned with the three comparison
levels and six variable sets depicted in Figures 2 and 5. See Figure 4 for information about overall
accuracy, sensitivity, specificity, and predictive values (positive and negative). Green: the most
effective algorithm (1st). Blue: 2nd and 3rd ranks. Orange: 4th and 5th ranks. Red: the least accurate
algorithm (6th). Symbols: best and worst of all 36 algorithms (++ and −−) and best and worst
algorithms of each feature-selection mode (+ and −). See Figure 7 and Section 3.3.

Figure 7. Overall-accuracy results from the 36 data-driven machine-learning (ML) classification
algorithms derived from the first three stages of our experiment (Section 2.1). Panel 1 on the left
presents content focusing on the six traditional ML classification techniques: naive Bayes (NB),
K-nearest neighbor (KNN), decision trees (DT), random forest (RF), support vector machine (SVM),
artificial neural network (ANN)—Section 2.1.3. Panel 2 on the right illustrates the two feature-
selection modes (before and after feature selection—Section 2.1.1) from the secondary comparison
level (two vertical black boxes in Figure 2, Figure 5, and Figure 6). The three combinations of variables
are: (i) both attribute types together (Combination 1: morphological (Morph.) and MetOc); (ii)
geometry, shape, and dimension attributes (Combination 2: morphological information); and (iii)
Meteorological and Oceanographic Parameters (Combination 3: MetOc)—Section 2.1.2. See Figure 6
and Section 3.3.
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The six tables in Figure 6 correspond to the variable sets (Sections 2.1.4 and 3.2)
and have the ML methods ordered from what we previously considered basic to more
sophisticated—simple (NB, KNN, and DT) and advanced (RF, SVM, and ANN). This
ordering is used to aid the visual comparison of the algorithm performance. Each table in
Figure 6 has the six ML methods ranked by the cross-validation test-set overall accuracy.
These methods have also been colored to facilitate several comparisons: green (most
effective algorithm), blue (second and third most successful), orange (fourth and fifth
ranks), and red (least accurate algorithm)—as given by the primary comparison. The best
and worst of all 36 algorithms are indicated (++ and −−), as are the best and worst for each
feature-selection mode (+ and −). The comparisons below are presented in subsections per
comparison level: primary, secondary, and tertiary.

The evaluations in the primary comparison level used the same sets of variables
for the six ML methods (white boxes in Figure 2, Figure 5, and Figure 6). At the other
two comparison levels, each algorithm was compared using different sets of attributes.
However, different sets of attributes in the secondary level refer to exploiting different
attribute types (vertical black boxes in Figure 2, Figure 5, and Figure 6), whereas the tertiary
level relates to having variables of the same type (horizontal gray boxes in Figure 2, Figure 5,
and Figure 6). In the latter level, the exception is in Combination 1 that uses both attribute
types.

The two panels shown in Figure 7 illustrate the overall-accuracy information shown in
Figure 6—while panel 1 (left) focuses on the six traditional ML classification techniques as
in the primary comparison level, panel 2 (right) depicts the feature-selection modes from
the secondary comparison level.

3.3.1. Primary Comparison Level

This section refers to the six white boxes in Figure 2, Figure 5, and Figure 6.

- Variable Set A: Figure 6A shows the results of using all twelve variables without
feature selection: Area, Per, PtoA, CMP, FRA, LtoW, DEN, CUR, NUM, WND, SST, and
CHL (Figure 5A: variable set A). ANN achieved the best accuracy (90%), which was
also the most accurate of all 36 algorithms (shown by ++). Such accuracy outperformed
the least accurate algorithm in this level by 9.1 percentage points: NB (80.9%). This
was the largest overall-accuracy difference between the best and worst accuracy per
variable set (Figure 7).

- Variable Set B: Figure 6B shows the results of using the nine pieces of morphological
information prior to feature selection: Area, Per, PtoA, CMP, FRA, LtoW, DEN, CUR,
and NUM (Figure 5B: variable set B). SVM was the most accurate algorithm (83%)
outperforming the least accurate one by 7.4 percentage points: DT (75.7%).

- Variable Set C: Figure 6C shows the results of using the three MetOc parameters
before feature selection: WND, SST, and CHL (Figure 5C: variable set C). RF reached
the highest accuracy (~81%) with 4.3 percentage points from the least accurate: DT
(76.5%). This overall-accuracy difference was one of the smallest of all variable sets
(Figure 7).

- Variable Set D: Figure 6D illustrates the outcomes of using the six feature-selected
attributes from both attribute types: PtoA, Area, WND, Per, FRA, and CHL (Figure 5D:
variable set D). As in Figure 6A, ANN was the most accurate algorithm (~84%). This
top accuracy is not just for this specific variable set, but was also the highest accuracy
among all variable sets that used feature-selected variables (Figure 7). As shown,
feature selection reduced the accuracy by ~6 percentage points.

- Variable Set E: Figure 6E shows the outcomes of using the four feature-selected
morphological information: PtoA, Area, Per, and FRA (Figure 5E: variable set E). SVM
and ANN tied as the most successful algorithms at ~76% but this was the lowest of
all best accuracies within all six variable sets. The least accurate algorithm was DT
(~68%), which was also the least accurate of all 36 algorithms (indicated by −−).
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- Variable Set F: Figure 6F illustrates the outcomes of using the two feature-selected
MetOc parameters: WND and CHL (Figure 5F: variable set F). This was the only case
in which a simple technique outperformed the advanced ones: NB reached the highest
accuracy (~81%) at 3.9 percentage points above the least-accurate simple technique:
DT (77%). This was the smallest overall-accuracy difference between the best and
worst classifiers (Figure 7).

Table 3 reviews the best and worst results per variable set.

Table 3. Review of best (green) and worst (red) overall-accuracy results per variable set: A, B, C,
D, E, and F (six white boxes in Figure 2, Figure 5, and Figure 6). Simple machine-learning (ML)
methods: naive Bayes (NB), K-nearest neighbor (KNN), and decision trees (DT). Advanced ML
methods: random forest (RF), support vector machine (SVM), and artificial neural network (ANN).
A, B, and C: Before feature selection (Mode 1) all twelve attributes within our database. D, E, and
F: After feature selection (Mode 2)—only attributes selected with Information gain (Sections 2.1.1
and 3.1). These two groups of variable sets refer to the secondary comparison level (two vertical black
boxes in Figure 2, Figure 5, and Figure 6). A and D: Both attribute types (Combination 1). B and E:
Only morphological information (Combination 2). C and F: Only MetOc parameters (Combination 3).
These three groups of variable sets refer to the tertiary comparison level (three horizontal gray boxes
in Figure 2, Figure 5, and Figure 6). Symbols: best and worst of all 36 algorithms (++ and −−) and
best and worst algorithms of each feature-selection mode (+ and −). See Figure 7 and Section 3.3.1.

A D

++ ANN 90.0% Best 83.9% ANN +
NB 80.9% Worst 75.2% KNN

B E

SVM 83.0% Best 76.5% SVM ANN
− DT 75.7% Worst 67.8% DT −−

C F

RF 80.9% Best 80.9% NB
DT 76.5% Worst 77.0% DT

3.3.2. Secondary Comparison Level

Here we discuss the contents of the two vertical black boxes in Figure 2, Figure 5, and
Figure 6.

- Mode 1 (Before Feature Selection): Most techniques (NB, KNN, DT, and RF) were
more accurate when all variables of both attribute types were used (Combination
1) and performed worse with morphological information (Combination 2); Figure 7.
However, two advanced techniques (SVM and ANN) were best when using all vari-
ables of both attribute types (Combination 1), but were less accurate with MetOc
parameters (Combination 3).

- Mode 2 (After Feature Selection): The pattern observed above was also frequent in
most techniques (DT, RF, SVM, and ANN); Figure 7. These were also more accurate
when exploiting variables from both types (Combination 1) and were also less accurate
when accounting for morphological information (Combination 2). Here, two simple
techniques (NB and KNN) deviated from this pattern and were more accurate with
MetOc parameters (Combination 3) and less accurate with morphological information
(Combination 2).

Table 4 presents the best and worst results per ML method.
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Table 4. Review of best (green) and worst (red) overall-accuracy results per machine-learning (ML)
method and per algorithm. Simple techniques: naive Bayes (NB), K-nearest neighbor (KNN), and
decision trees (DT). Advanced techniques: random forest (RF), support vector machine (SVM), and
artificial neural network (ANN). Left column (A, B, and C): Before feature selection (Mode 1) all
twelve attributes within our database. Right column (D, E, and F): After feature selection (Mode 2)—
only attributes selected with Information gain (Sections 2.1.1 and 3.1). These two groups of variable
sets refer to the secondary comparison level (two vertical black boxes in Figure 2, Figure 5, and
Figure 6). A and D: Both attribute types (Combination 1). B and E: Only morphological information
(Combination 2). C and F: Only MetOc parameters (Combination 3). These three groups of variable
sets refer to the tertiary comparison level (three horizontal gray boxes in Figure 2, Figure 5, and
Figure 6). Best and worst of all 36 algorithms: (++) and (−−). Best and worst accuracy per ML
method: ++ and −−. Best and worst accuracy per technique and per feature-selection mode: + and
−. See Figure 7 and Section 3.3.2.

Naive Bayes (NB)

++ 80.9% A D 80.0%
− 76.5% B E 74.3% −−

80.4% C F 80.9% ++

K-Nearest Neighbor (KNN)

++ 81.3% A D 75.2%
− 76.5% B E 71.7% −−

79.6% C F 80.4% ++

Decision Trees (DT)

++ 82.6% A D 80.0% +
− 75.7% B E 67.8% (−−)

76.5% C F 77.0%

Random Forest (RF)

++ 87.0% A D 82.2% +
− 77.4% B E 74.3% −−

80.9% C F 79.6% ++

Support Vector Machine (SVM)

++ 88.3% A D 83.5%
83.0% B E 76.5% −−

− 77.0% C F 77.4%

Artificial Neural Network (ANN)

(++) 90.0% A D 83.9% +
79.6% B E 76.5% −−

− 78.3% C F 77.8%

3.3.3. Tertiary Comparison Level

This section concerns the three horizontal gray boxes in Figure 2, Figure 5, and Figure 6.

- Combination 1 (Both Attribute Types): the six techniques were more accurate before
(A) than after (D) feature selection. The variable set A provided the best of all 36 algo-
rithms: ANN (90%)—indicated in Figure 6A by ++. The overall-accuracy difference
between the best and worst algorithms within A, and well as D, was about ~9%.

- Combination 2 (Morphological Information): without exception all six algorithms
performed better before (B) than after (E) feature selection. The variable set E provided
the worst performance of all 36 algorithms: DT (~68%) indicated by −− in Figure 6E.
As in Combination 1, the overall-accuracy difference between the best and worst
algorithms within B, and well as E, were also about ~9%.

- Combination 3 (MetOc Parameters): Only RF and ANN better performed before
feature selection (C) than after (F), as this pattern was inverted for the other ML
methods that reached improved outcomes with fewer variables (after feature selection:
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F) than with more variables (before feature selection: C). In both variable sets (C and
F), the algorithms produced the smallest overall-accuracy differences between the best
and worst algorithms of all (~4%); about half of those from the other four variable sets,
i.e., A, B, D, and E.

3.4. LDA Benchmark Comparison

Our overall-accuracy benchmark is presented in Table 1. Those LDA accuracies were
reached with the same database used here and included all variables of both types together
and separately [31,32]. Hence, we focus on comparing them to our 18 algorithms that used
variable sets before feature selection for a fair comparison (Figures 2 and 5–7):

- LDA 1 (83.1%): This is analogous to those using variable set A (Mode 1 and Combina-
tion 1), and was outperformed by all advanced techniques (RF (87.0%), SVM (88.3%),
and ANN (90.0%)) but was more effective than all simple ones (NB (80.9%), KNN
(81.3%), and DT (82.6%)).

- LDA 2 (79.1%): This used variable set B (Mode 1 and Combination 2) and was only
inferior to SVM (83.0%) and ANN (79.6%); but other algorithms were less accurate.

- LDA 3 (76.9%): This algorithm matched variable set C (Mode 1 and Combination 3)
but performed worse than all algorithms except DT (76.5%).

- LDA 4 (83.7%): This was the best of all 39 combinations reported by Carvalho
et al. [31], also using variables from both attribute types, and performed better than 34
of our algorithms, besides the ones that were better than LDA 1 and ANN with both
attribute types after feature selection (83.9%).

- LDA 5 (84.6%): Carvalho et al. [32] were able to improve the LDA accuracy by
combining the two attribute types with a Geo-Loc attribute (bathymetry). They
explored 114 different combinations of variables.

4. Discussion

The bipartite train-test set of the repeated random subsampling cross validation
method (70-30 partition), accompanied by balanced sample-class sets and test-phase accu-
racy estimations, secured unbiased classification outcomes. Additionally, our classifiers
undergoing 10-times repeated random subsampling cross validation produced a good
capability for generalization [41].

One of the few other studies that compared various ML methods to classify ocean-slick
signatures in satellite imagery was by Xu et al. [36]. As a feature-selection approach they
used permutation-based variable accuracy importance [92]. They adopted different criteria
to produce a different set of selected variables to each ML method they analyzed. This
formed a comparison of different techniques that used different variables, as opposed
to here, where we compared different techniques using the same set of attributes—i.e.,
primary comparison level: white boxes in Figure 2. However, in the other two comparison
levels considered here, there were comparisons of the same technique using different sets
of variables—i.e., secondary and tertiary levels: vertical black boxes and horizontal gray
boxes in Figure 2, respectively.

One could argue that our database should contain more data to demonstrate the
reliability of the conclusions of our paper due to the number of instances analyzed here:
769 samples. Indeed, it is a smaller quantity than those of other studies found in the
literature (e.g., ~5000 in Carvalho [19] or Carvalho et al. [27–29]) but was, however, a larger
quantity when compared to other published studies (e.g., Xu et al. [36], Mattson et al. [93], and
Cao et al. [94], that only used 198, 194, and 267 samples, respectively). In fact, we are using
the same dataset as in past studies, i.e., [31,32]. It is believed that the more data available,
the better the result might be, but the number of samples in a database should not always
be the only consideration as data quality is also important. Regarding the matter of data
quality: (i) our database comes from a relevant site in the Brazilian coast (Campos Basin)
where oil spills and look-alike slick targets are observed; (ii) the diverse elements of our
database (i.e., satellites, sampling location and time, among others) undertake the sampling
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observations as independent; (iii) the samples have been validated [15]; (iv) there is a close-
to-even split class balance (spills (n = 350; 45.5%) and look-alikes (n = 419; 54.5%)); (v) the
769 samples came from 402 different RADARSAT-1 scenes spanning two years (July 2001 to
June 2003); (vi) two types of attributes have been concomitantly explored (morphological
information and MetOc parameters); (vii) radar, infrared and visible satellite measurements
are accounted for.

The results presented in Section 3.3, regarding classification-accuracy assessment,
arose from our empirical observation; we do not intend to state new ML theorems. Our
findings may be data-specific, as our comparison occurred using a specific dataset with
various sets of attributes of different attribute types.

The comparisons at the primary level (Section 3.3.1) demonstrated that the advanced
techniques (RF, SVM, and ANN) reached superior accuracies than the simpler ones (NB,
KNN, and DT); Figure 7. The one exception (variable set F accounting only for two MetOc
parameters, Figure 6F) was where NB was best. The highest accuracies were usually those
from ANN and SVM, with three and two of the most effective outcomes. The algorithms
with the poorest performance were from simple techniques, in which DT accounted for
four of the six lowest scores. All algorithms performed well, from ~62% and >90% (overall
accuracy). As such, considering our 60% limit to accept an algorithm as effective, none
of the 36 algorithms were deemed null and void. Of the 144 possible values for the auxiliary
metrics, only ten were below 70%; nine of which were in the variable set E: after feature selection
(Mode 2) and only morphological information (Combination 2)—Figures 5E and 6E. When using
this variable set, only RF had all five performance metrics above 70% (Figure 6E).

The comparisons at the secondary level (Section 3.3.2) demonstrated that most tech-
niques were superior when using variables from both attribute types (morphological and
MetOc) and less accurate when using morphological information alone (Figure 7). This
pattern of better performance with Combination 1 occurred ten of the possible twelve times,
with Combination 3 giving best accuracies for the other two (Table 4). One could argue that
having more variables, as in Combination 1, which accounts for both attribute types, would
include more information, thus ensuring better accuracies. However, our results reveal that
it is not the quantity of variables that matters the most, as morphological information (9 and
4 variables) accounted for more variables than MetOc parameters (3 and 2 variables). The
main factor controlling the accuracy of the algorithms is the variable type: morphological
versus MetOc. The pattern of having the worst performance with Combination 2 occurred
ten of the possible twelve times, with Combination 3 giving worst accuracies for the other
two (Table 4). Better accuracy results with only morphological information, than with only
MetOc parameters, was not found by Carvalho et al. [31,32] in their LDA analyses, in which
they observed the opposite (Section 3.4).

The simple techniques (NB, KNN, and DT) were usually more accurate than the ad-
vanced ones (RF, SVM, and ANN) when less complexity was involved (i.e., fewer variables
were included—MetOc parameters only) than when more attributes were included (Figure 7).
The opposite held true for the more advanced techniques, which dealt well with more
variables (i.e., reached higher accuracies—both attribute types) than in the cases with fewer
variables. This is apparent in the color-coding of Figure 6: while A and D account for
more variables, the advanced techniques are green and blue (1st, 2nd, and 3rd ranks) and
the simple ones are orange and red (4th, 5th, and 6th ranks). This pattern is inverted in
C and F that account for fewer variables: simple (green and blue) and advanced (orange
and red). In the center variable sets (morphological information: B and E) there was a
transition from more to fewer variables; for B (more variables: 9 without feature selection)
the advanced techniques were superior and in E (fewer variables: 4 with feature selection)
the simple techniques performed slightly better (Section 3.3.3). These patterns may be
related to quantity (more versus fewer variables), quality of the variables (attributes type:
both versus only MetOc parameters), and complexity of the technique.

In general, most comparisons at the tertiary level (Section 3.3.3) revealed a pattern in
which the better-performing algorithms used more variables (before feature selection: A, B,
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and C) while lower accuracies resulted from using fewer variables (after feature selection:
D, E, and F); this was independent of the Combination considered (Figure 6 and Figure 7).
In Combination 3, NB, KNN, DT, and SVM were exceptions. Such a pattern occurred in
different sets of variables of the same attribute type; even though Combination 1 accounts
for both attribute types, it also yields better accuracies with more (A) than with fewer (D)
variables. Likewise, Table 3 and Table 4 indicate that the algorithm accuracies tended to
decrease after the feature-selection attribute removal. This may indicate that important
variables have been eliminated by feature selection. Perhaps the cutoff threshold of 35%,
used to reject variables based on the ranking results, could be relaxed (Table 2).

The overall-accuracy difference between the best and worst algorithms of Combina-
tions 1 or 2 showed greater variations between the best and worst performances (~9%).
The use of Combination 3 had half of that difference (~4%). These overall-accuracy differ-
ences were independent of the variable set. This difference may indicate that using more
attributes, i.e., Combination 1 (12 and 6 variables) and Combination 2 (9 and 4 variables),
brings more complexity to the classification than using fewer attributes, i.e., Combination 3
(3 and 2 variables). Such complexity would lead to the advanced techniques outperforming
the simple ones. Perhaps it indicates that since there are errors and uncertainties in all
measurements, these overwhelm the information the additional attributes bring to the
problem. This indicates a study is needed to determine the adjustments, if any, of the
ranking caused by inherent inaccuracies in the measurements.

The LDA benchmark comparison (Section 3.4) showed that both papers, i.e., [31,32],
reported a clear stratification on overall-accuracy ranking of the algorithms: those using
both attribute types were better than those using morphological information, followed by
MetOc parameters. However, we did not observe this pattern. On the contrary, MetOc
outperformed morphological; here, each were less effective than using both types together.
One possible explanation for this disparity could be the number of combinations of variables
explored in each study: while Carvalho et al. [31,32] compared 39 and 114 combinations of
variables, respectively, we only compared six combinations; three before and three after
feature selection. More research is needed to explain the differences in these results.

5. Summary and Conclusions

This study fills a scientific gap by comparing and evaluating six traditional machine-
learning (ML) classification techniques applied to several combinations of satellite-retrieved
attributes to classify petroleum targets observed at the sea surface (Campos Basin, Brazil;
Figure 3). We implemented a series of 36 ML classification algorithms that were evaluated
with 10-times repeated random subsampling cross validation. These algorithms produced
a good capability of generalization, as defined by their test-set overall accuracy estimations,
achieved with 70-30 train-test partition and balanced class sets (Figure 1). 769 ocean-slick
signatures, imaged in 402 RADARSAT-1 scenes (2001–2003), were analyzed here: oil spills
(350; 45.5%) and look-alike slicks (419; 54.5%).

Simple techniques (naive Bayes (NB), K-nearest neighbor (KNN), and decision trees
(DT)) were compared with advanced techniques (random forest (RF), support vector ma-
chine (SVM), and artificial neural network (ANN)). Our data analysis experiment exploited
two types of attributes: morphological information (area, perimeter (Per), perimeter to
area ratio (PtoA), compact index (CMP), fractal index (FRA), length to width ratio (LtoW),
density (DEN), curvature (CUR), and number of target parts (NUM)) and Meteorological
and Oceanographic (MetOc) parameters (wind speed (WND), sea-surface temperature
(SST), and chlorophyll-a concentration (CHL)). Five performance metrics were used to
evaluate our results: sensitivity, specificity, positive- and negative-predictive values, and
overall accuracy (Figure 4). Feature selection was accomplished (Information gain) and,
based on the importance given to each attribute, the dataset size was reduced by half (PtoA,
Area, Per, FRA, WND, and CHL) with a stopping criterion set to a relative importance
of 35% of the highest variable’s rank (Table 2). The ML based comparison occurred at
different levels:
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- Primary: techniques compared among themselves;
- Secondary: techniques compared using different types of attributes: before (Mode 1)

and after (Mode 2) feature selection; and
- Tertiary: techniques compared using different types of attributes: both types together

(Combination 1), morphological information (Combination 2), and MetOc parameters
(Combination 3).

The conjunction of the two Modes with the three Combinations defined the six variable
sets. The most important results are listed below (Figures 2 and 5–7).

5.1. Primary Comparison Level

Advanced techniques were usually superior to the simpler ones (Table 4). Of the six
variable sets, ANN and SVM had three and two best performances, whereas the poorest
performance was from DT with four lowest scores (Table 3).

Considering the fundamental performance metric (overall accuracy), an algorithm
using ANN was the most effective of all 36 (90%), whereas an algorithm using DT was
the least accurate among all (~68%). The best and worst overall-accuracy results are
summarized below:

- Mode 1 and Combination 1 (all twelve attributes): 90% (ANN) and ~81% (NB);
- Mode 1 and Combination 2 (all nine pieces of morphological information): 89%

(SVM) and ~76% (DT);
- Mode 1 and Combination 3 (all three MetOc parameters): ~81% (RF) and 76.5%

(DT);
- Mode 2 and Combination 1 (only the the six feature-selected attributes): ~84%

(ANN) an ~75% (KNN);
- Mode 2 and Combination 2 (only the four pieces of feature-selected morphological

information): 76.5% (SVM and ANN) and ~68% (DT); and
- Mode 2 and Combination 3 (only the two feature-selected MetOc parameters):

~81% (NB) and 77% (DT).

If we refer to the four auxiliary performance metrics (sensitivity and specificity, and
positive and negative predictive values), all algorithms performed quite well: from ~62%
and >90%—only ten of the 144 possible values were below 70%. No algorithms were
deemed null and void, i.e., with performance metrics below 60%.

5.2. Secondary Comparison Level

It has been demonstrated that most techniques were usually superior when variables
from both attribute types together were included and less accurate when using only mor-
phological information (Table 3). Of the twelve possible outcomes, the use of Combination
1 produced ten best performances and with the use of Combination 2 there were ten of the
worst performances (Table 4). This differs from our benchmark study (Section 5.4).

We also determined that the simple techniques tend to be more accurate than the
advanced ones when using fewer variables (i.e., MetOc parameters only) than when using
more variables. On the contrary, advanced techniques dealt better with more attributes (i.e.,
both attribute types) than with fewer attributes (Table 4).

5.3. Tertiary Comparison Level

It has been shown that the algorithms with the better performance used more variables
(without feature selection), independently of which Combination was considered (Table 4).
The accuracy of the algorithms usually dropped when feature selection was used. This was
probably due to the removal of important variables, which is directly related to the choice
of the cutoff threshold.

Another observed pattern concerns the overall-accuracy difference between the best
and worst algorithms of the ML method that used the same variable sets (Table 3). The best
and worst performance variations resulting from the use of Combinations 1 and 2 (~9%)
were almost twice as large as those using Combination 3 (~4%).
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Since Combination 1 (12 and 6 variables) and Combination 2 (9 and 4 variables) account
for more attributes than Combination 3 (3 and 2 variables), it seems that more information
leads to increased complexity, and, as such, the advanced techniques outperformed the
higher accuracy of the simple ones.

5.4. LDA Benchmark Comparison

The results of past studies ([31,32]) that used LDAs on the same dataset were a
benchmark against which we compared our results. This gave confidence in our conclusions
showing the techniques used here created more effective algorithms; 90% with ANN
compared to the best LDA accuracy ~85%. Nevertheless, this benchmark also showed that
the LDA is indeed powerful and capable of discriminating oil spills from look-alike slicks
to a good and successful level.

5.5. Concluding Remarks

If one were to choose a single technique to be applied to unseen data not used in
our training and testing cross validation experiment, advanced ANN and SVM have been
shown to be more effective. However, this could depend on the available set of variables in
the new data; for instance, if in the unseen data there are only the same MetOc parameters
and no morphological information, the simple technique NB would be recommended
instead. Additionally, it would be good practice to match the variable importance rank
measured by the same feature selection approach, i.e., perhaps even if the same variables
are present, their importance might not be the same in the datasets: train-test versus unseen.
Nevertheless, that does not mean that if another dataset from a different location were used
for training and testing, with another partition size (e.g., 90-10), or even with a different
cross validation choice (e.g., k-fold cross validation), that the outcomes found here would
be the same. This is the challenge of endeavoring to classify remotely-sensed sea-surface
petroleum signatures. We also undertook a thorough comparison of six traditional ML
classification techniques (NB, KNN, DT, RF, SVM, and ANN) in the same analysis. The
current analysis contributes to both scientific ocean remote-sensing research and to oil
and gas exploration and production operations. Regarding the former, our outcomes can
reduce misclassification between oil spill and look-alike slick signatures—quantitative
cornerstone of our research. In relation to the second, our results can assist oil and gas
offshore industry activities in finding new offshore fossil fuel discoveries, so as in planning
mitigation actions, organizing logistical interventions, studying environmental impacts,
etc.—qualitative consequence of such misclassification reduction.

5.6. Suggestions for Future Research

One application could be applying our best algorithms from each technique to datasets
from different regions, thus quantifying their capability for generalization with validation
of their achievements with new, unseen data. Another further step into improving the
classification of remotely-sensed sea-surface petroleum signatures could be the application
of other ML methods using the same dataset, perhaps applying deep-learning, given its
growing popularity [39], and thus use the analyses presented here as a benchmark. In
fact, benchmarking should not be a standalone investigation, but a continuous process
that also applies to ML based investigations. The application of data transformations, e.g.,
log10 or cube root, could also promote improvements (e.g., [27–29,31,32]). Since different
feature-selection approaches give different results, an interesting suggestion of identifying
the “important” variables could be through “vote biding”, based on the results of different
feature-selection approaches [36].
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