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Abstract: The continuous and extensive pinewood nematode disease has seriously threatened the
sustainable development of forestry in China. At present, many studies have used high-resolution
remote sensing images combined with a deep semantic segmentation algorithm to identify standing
dead trees in the red attack period. However, due to the complex background, closely distributed
detection scenes, and unbalanced training samples, it is difficult to detect standing dead trees (SDTs)
in a variety of complex scenes by using conventional segmentation models. In order to further solve
the above problems and improve the recognition accuracy, we proposed a new detection method
called multi-scale spatial supervision convolutional network (MSSCN) to identify SDTs in a wide
range of complex scenes based on airborne remote sensing imagery. In the method, a Gaussian
kernel approach was used to generate a confidence map from SDTs marked as points for training
samples, and a multi-scale spatial attention block was added into fully convolutional neural networks
to reduce the loss of spatial information. Further, an augmentation strategy called copy–pasting
was used to overcome the lack of efficient samples in this research area. Validation at four different
forest areas belonging to two forest types and two diseased outbreak intensities showed that (1) the
copy–pasting method helps to augment training samples and can improve the detecting accuracy
with a suitable oversampling rate, and the best oversampling rate should be carefully determined
by the input training samples and image data. (2) Based on the two-dimensional spatial Gaussian
kernel distribution function and the multi-scale spatial attention structure, the MSSCN model can
effectively find the dead tree extent in a confidence map, and by following this with maximum
location searching we can easily locate the individual dead trees. The averaged precision, recall, and
F1-score across different forest types and disease-outbreak-intensity areas can achieve 0.94, 0.84, and
0.89, respectively, which is the best performance among FCN8s and U-Net. (3) In terms of forest type
and outbreak intensity, the MSSCN performs best in pure pine forest type and low-outbreak-intensity
areas. Compared with FCN8s and U-Net, the MSSCN can achieve the best recall accuracy in all forest
types and outbreak-intensity areas. Meanwhile, the precision metric is also maintained at a high
level, which means that the proposed method provides a trade-off between the precision and recall in
detection accuracy.
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1. Introduction

Pine wilt disease (PWD) is one of the most destructive diseases of the genus Pinus
trees and is responsible for environmental and economic losses around the world [1–3].
The number of brown or red pine needles gradually increases when the Pinus trees are
infected the PWD, which causes damage to pine trees until mortality [4]. Moreover, the
host agent pinewood nematode (PWN) (Bursaphelenchus xylophilus) can carry PWD and
spread to the surrounding healthy pine trees quickly. PWD is called a “cancer” of pine
trees due to its fast infection rate and lack of efficient treatment. If the diseased trees are
not cleared in time, the whole Pinus forest will be endangered. Therefore, comprehensive,
rapid, and accurate identification of standing dead trees (SDTs) caused by PWD across a
large-scale area is very important for controlling further PWD spread and protecting the
Pinus forest [5,6].

There are many ways to investigate PWD when considering the source data and work
conditions. The traditional method for monitoring PWD is mainly through investigation
and sampling in the field, which is time-consuming, costly, and spatially restrictive [7,8].
The development of remote-sensing technology improved the efficiency and accuracy in
detecting tree disease across large extended areas and its usefulness has been recognized by
many researchers [9,10]. Due to the symptoms of infected pine trees, including reddening
or browning of the leaves, visual assessment with high spatial resolution imagery by
foresters or experts has been widely used in practice work [11]. However, the accuracy
of the identification depends on the experience of interpreters and it is inefficient across
large areas.

With the development of digital image processing and machine-learning technology,
various methods combined with different spatial resolution remote-sensing images have
been applied in detecting the abnormalities in forests caused by pests or disease [12–14].
The time-series spectral characteristics derived from MODIS and Landsat imagery have
been verified as useful to detect forest disturbances caused by pests or diseases. Spectral
characteristics such as tasseled cap transformation and vegetation indices, with change-
detecting models, have been successfully used in detecting mountain pine beetle, spruce
beetle, et al. [15,16]. However, insect-caused mortality is more difficult to detect from space
than other forest disturbances such as fire or clear-cutting due to the mixture of spectral
reflectance from live and dead trees with coarse spatial resolution imagery [17]. Moreover,
these studies focused on detecting the areas with tree mortality, in particular distinguishing
the areas between healthy and dead trees [18,19]. It is difficult to locate the dead trees at
the individual tree level. The spatial resolution of the imagery is a major factor influencing
the detection at the individual tree level [20]. Finer spatial resolution imagery showed the
potential ability in detecting crown attacks by pests and disease; for example, Quickbird
multi-spectral imagery (2.4 m spatial resolution), Worldview-2 (2 m spatial resolution),
and airborne imagery (<0.2 m spatial resolution) combined with detecting methods were
successfully used in mapping and monitoring tree mortality in a different forest, even in
rugged, mountainous terrain [21,22].

The detecting methods support vector machine, random forest, and BP algorithm [23]
are used in dead-tree detecting. These traditional classification methods need to extract im-
age features of the target manually, which may result in low accuracy due to the background
noises in these high-spatial-resolution imageries. In recent years, a milestone deep-learning
method has been proposed and is soon widely to be used in the object-detecting and
identification field. This novelty method can detect individual dead trees without manually
selecting features [24]. Some studies use convolutional neural networks (CNN), such as
FCN, to prove their localization ability in detecting individual trees [25].
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However, it is still a challenge to detect standing dead trees with CNN with very-
high-spatial-resolution imagery at an individual-tree scale [26]. First, there are not enough
training samples to train the CNN model. Moreover, the imbalance and small sample size
between the target and the background are still the main factors limiting the detection
accuracy [27]. In most cases, only a few images contain diseased wood and the presence
of diseased wood in some images is not enough. At present, based on the small training
samples, how to augment the small training samples with sparse distribution concerning
input images is still a challenge [28].

What is more, the existence of background noise poses a challenge to further improving
the accuracy of target recognition by using ultra-high-resolution remote-sensing data [29].
For example, variation in canopy illumination and background effects were the major
factors influencing the detection accuracy. Moreover, the complexity of the forest stand
structure also influences the detection accuracy. The irregular shape of the diseased crown
and the other mixed crowns hindered the application of the method used on the individual-
tree scale [30]. Accurate location information concerning dead trees is missing in current
research. The ground crew still needs to find the specific location of the diseased trees
through visual interpretation.

Third, object detection with CNN uses rectangles or polygons to describe each tree,
which may not be suitable when trees are crowded and crown sizes are not uniform
because the individual trees may not be sufficiently visibly detectable as a rectangle or
polygon [24]. As the standing dead trees were labeled as points, it is also hard work to
depict the boundary of the SDT crown in ultra-high-spatial imageries for training. The
Gaussian kernel function was used in locating treetops; however, it was mainly used in
simple environment conditions, such as among citrus trees, which are isolated trees in the
orchard with uniform crown sizes [31]. It is still a challenge to count SDTs in high-density,
complex forests.

Therefore, we proposed a novel method based on CNN and Gaussian kernel function
to detect the standing dead trees with high-spatial-resolution airborne imagery for a variety
of forest stands in this paper. In addition, we tested an oversampling method for the
augmentation of small samples in CNN training to solve the imbalance and small PWD
samples in the research area.

2. Materials and Methods
2.1. Study Areas and Datasets

In order to ensure the generalization ability of our method, a study area with different
dead tree intensities and the forest stand structures was used. Two typical pinewood areas
attacked by PWD in different cities were used to test the effectiveness of our method. The
test dataset was collected in site A, which is located in Yi Ling city (A) (110◦51′–111◦39′ E
and 30◦32′–31◦28′ N) and contains 4 typical diseased forests. The training dataset was
collected in site B, which is located in Dang Yang city and contains 8 typical diseased forests
(B) (111◦32′–112◦04′ E and 30◦30′–31◦11′ N) (Figure 1).

The ultra-high-resolution imageries of this study area were obtained by manned aerial
flight with a Leica ADS100 camera in August 2018. The data contained four spectrums,
blue, green, red, and near-infrared, and the spatial resolution was 0.10 m. Geo-correction
and radiometric calibration were performed and the orthographic production of the multi-
spectral images was produced for further use in our study.

The ground survey was conducted simultaneously with the aerial flying. We investi-
gated the location of each diseased item by using differential GPS with a Trimble R4 GNSS
receiver and the crown size, tree diameter at the breast, tree height, and the forest type
were also surveyed in this area. Then, the standing dead trees (SDTs) caused by PWD were
counted and the intensity of dead trees caused by PWD was calculated. The risk level of
the area was classified by comparing the dead-tree intensity. According to the situation
of PWD outbreaks in the local area, we set 20 trees/ha to divide high or low-risk levels of
PWD forest. The ground survey of the two sites is summarized in Tables 1 and 2.
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Figure 1. Localization of the study areas (A and B). Training and testing areas are labeled with
different colors (blue for training and red for testing).

Table 1. Statistical information of standing dead trees in site A.

Low-Intensity Area High-Intensity Area

Area A-1 A-3 A-2 A-4
Number 116 67 118 396
Density 9 ha−1 5 ha−1 68 ha−1 58 ha−1

Table 2. Statistical information of standing dead trees in site B.

Low PWD Dead-Tree Intensity Area High PWD Dead-Tree Intensity Area

Area B-1 B-2 B-4 B-7 B-3 B-5 B-6 B-8
Number 42 43 85 25 136 62 56 123
Density 12 ha−1 18 ha−1 18 ha−1 11 ha−1 25 ha−1 28 ha−1 21 ha−1 34 ha−1

There are four forest plots in site A and eight forest plots in site B. A-1 and A-2 are
pure masson pine (Pinus massoniana Lamb.) forests, A-3 and A-4 are mixed masson pine
forests with deciduous broadleaf trees; A-1 and A-3 belong to low-intensity-level areas, and
A-2 and A-4 belong to a high-intensity-level area. B-1, B-2, B-3, and B-4 are pure masson
pine forests, B-5, B-6, B-7, and B-8 are mixed masson pine forests with broadleaf trees;
B-1, B-2, B-4, and B-7 belong to low-risk-level areas, and B-3, B-5, B-6, and B-8 belong to
high-risk-level areas.
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2.2. Methods

In accordance with the objects of this study, we proposed a novel CNN model called
multi-scale spatial supervision convolutional network architecture (MSSCN) to detect
SDTs with a confidence map. As detecting a dead tree involves finding the pixels that
are abnormal in an image with n ×m pixels and s bands, we can convert this problem to
estimate the pixel confidence concerning being a PWD point. Therefore, a 2D confidence
map should be estimated with our novel CNN model and the peaks (local maximum) in
the 2D confidence map will be recognized as the SDTs. In the following, we describe how to
generate a confidence map with ground truth SDT points with a Gaussian kernel function to
train the CNN model. Then, we show the oversample strategy for small samples. Moreover,
we introduce the architecture of our novel CNN model combined with the multi-scale
spatial attention network.

2.2.1. Confidence Map of SDT Generated by Gaussian Kernel Function

Considering the set of standing dead trees L = { l1, l2, . . . , li}, where li in set L represents
the ith standing-dead-tree (SDT) location in an image, the ground truth confidence map C
is obtained by aggregating the individual confidence value of each li with a 2D Gaussian
kernel at each SDT location. The confidence value C of each location l is calculated with
Equation (1):

C(l) = max{
i=1 to n

Ci(l)} (1)

Ci(l) = exp(−‖l − li‖2
2

σ2 ) (2)

where i represents the standing-dead-tree points, n means the total number of standing-
dead-tree points in the research area, Ci(l) is the confidence value to the ith point which is
calculated with Equation (2) and σ is the gaussian kernel parameter that controls the spread
of the peak and corresponds to the size of the tree canopy. Figure 2 illustrates the process
of calculation and the implications of the confidence map. Obviously, the parameter σ is
an important parameter to control the spread size. In this study, we test the influence of
different σ on detection accuracy. The ground truth confidence map was used to train the
CNN model.
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2.2.2. Augmentation Strategy for Small-SDT Detection

There are two issues in SDT detection concerning the dataset we derived. First, due
to the small shape (<32 × 32 pixels) of the Pinus tree crowns and the low number of dead
trees in an area, the samples of dead tree crowns were not enough and the area covered by
dead tree crowns was much smaller in each image, which indicated a lack of diversity in
the locations of SDT trees. Second, in terms of number, the SDTs in each input image are not
distributed homogenously; the number of SDTs ranged from 10 to 200 in each input image.
This phenomenon caused a distribution imbalance problem. In order to overcome these
problems, we adopted an augmentation strategy called the adaptive oversampling and
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allocating (AOA) method to augment samples based on the research of Kisantal (2019) [28].
The main idea of AOA is to oversample a certain small object and allocate it to each input
image by copy–pasting according to a priori information of small-object distribution. The
total number of oversampled small objects n can be calculated by:

n = min{θn0, η
A
a
} (3)

where θ is the oversampling rate, n0 is the initial number of small objects, η is the density
coefficient to control the maximum number of oversampled objects, the initial value was
set to 5%, A is the total area of images, and a is the average area of small objects.

Then, the allocation strategy was used to allocate the oversampled number to each
input image with the following equation:

ni = n× e(−α(ri−r))

∑i e(−α(ri−r))
(4)

where ni is the oversampled number in the ith input image, α is the adjusted coefficient,
ri is the ratio of the initial number of small objects of the ith image to the total number of
small objects in all images, r is the averaged sample ratio of all input images.

Lastly, we randomly selected ni SDTs objects in images and cropped out a small square
image from each image and pasted them in random locations of images without diseased
pine area (Figure 3). When pasting each object, we ensured that the pasted object did not
overlap with any existing objects and the pasted areas were in the disease-free areas with
the same forest type as the samples. The aim was to simulate the distribution diversity of
diseased wood in real scenarios.
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Figure 3. Schematic diagram of the data enhancement process. (a) Crop out the SDTs with
adapted pixel size window from each image without overlap; (b) pasted at random without overlap;
(c) locations in the pasted area in non-diseased pine area.
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2.2.3. Multi-Scale Spatial Supervision Convolutional Network

A multi-scale spatial supervision convolutional network architecture (MSSCN) was
proposed in our study to detect the SDTs in a complex background. The architecture of
MSSCN was seen in Figure 4. This model was based on a fully convolutional network
(FCN) [32], the main structure includes the encoder stage and the decoder stage.
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The encoder stage is a downsampling process to derive multi-scale spatial features
and contains five convolutional blocks (Figure 4). The first block has one convolutional
layer with 64 filters of size 3 × 3, followed by a 2 × 2 max-pooling layer. The second bock
has three convolutional layers with 128 filters of size 3× 3 followed by a 2× 2 max-pooling
layer. The third block has four convolutional layers with 128 filters of size 3 × 3 filters
followed by a 2 × 2 max-pooling layer. The fourth block has six convolutional layers with
128 filters of size 3 × 3 followed by a 2 × 2 max-pooling layer. The fifth block has six
convolutional layers with 128 filters of size 3 × 3 followed by a 2 × 2 max-pooling layer.
All convolutional layers use rectified linear units (ReLU) as the activation function.

The difference from the conventional Resnet34 is that we add the atrous block in the
last four convolutional blocks, which aims to solve the problem of lost spatial information of
a single plant disease in the downsampling process and proposes an attention mechanism
to extract the spatial details of the SDTs.

Actually, an atrous block is the aggregation of a series of dilated convolutional layers
combined with a 1 × 1 convolutional layer and a sigmoid layer (Figure 4). It allows us to
effectively enlarge the field of view of filters without increasing the number of parameters
or the amount of computation and to extract spatial-pyramid-feature information [33].

Considering 2D processing, for each dilated convolutional layer, it can be described as
an equation:

y(i, j) =
k−1

∑
p=0

k−1

∑
q=0

x(i + m× p, j + m× q)w(p, q) (5)
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where x represents the input feature map; y is the output feature map; i, j represent the row
and column in the input and output feature map; w is the kernel filter with k×k size; p and
q are the positions in w; and m is the dilation rate which represents the stride in the input
feature map and helps to enlarge the field of view of kernel filter. Dilation can increase the
receptive field of a convolution kernel. The field view size of a dilated convolutional layer
with dilation rate m and kernel size k can be computed as Equation (6).

FOV = (m− 1)× (k− 1) + k (6)

With different m, we can derive serious receptive field information. In our study, an
atrous block is constructed with a dilation rate of 3, 6, 12, and 18 followed by a 1 × 1
conventional layer and a sigmoid layer. This atrous block was added to the initial structure
(Figure 4), which provides supervision weight for shallow and middle layer features, and
guides the model to pay more attention to spatial and contextual information.

In the decoder stage, an upsampling convolutional layer was used to expand the size
of low-level features and derive the same resolution with input features at the last step.
Moreover, a concatenation with the corresponding feature map in the encoder stage was
used to compensate for the lost information in the max-pooling layer and enable precise
localization [32].

To train this MSSCN model, the mean square error (MSE) loss function was applied at
the end of the model. The formula can be seen in Equation (7).

MSE = ∑ (y− fθ(x))2 (7)

where y represents the ground confidence map; fθ(x) represents the predicted value of the model.

2.2.4. SDT Localization from the Confidence Map

The location of each standing dead tree is derived from the peaks (local maximum) of
the predicted confidence map. First, the peaks must have confidence values greater than a
threshold T. Second, the peaks need to be separated by at least δ pixels to avoid the noise
and prevent the SDTs very close to each other from being detected as one item. In our
study, we set the T as 0.5 and δ as 10 pixels.

2.2.5. Experiment Setup

The original images in sites A and B were subset to 256 × 256 pixels patches. The
patches in site A were used to test the model performance and the patches in site B were
used to train our MSSCN model. In the end, we acquired 566 training patches and 139 test
patches. Since the number of diseased trees was small and not uniform in the training
patches, we tested the influence of the oversampling rate on the detection accuracy using
our model; the oversampling rate θ was set from 1.0 to 2.0 with steps of 0.2 (Equation (3)).
The crop window size was set according to the crown size of trees and the image spatial
resolution; we set it to 20 pixels based on the average crown size in our study. This ensures
the distribution of pasted dead tree crowns in the whole map is rational and does not cause
too much concentration of SDTs.

In order to test the performance of the MSSCN model, a benchmark comparison
was provided by a standard fully convolutional network model (FCN), such as FCN8s
and U-Net.

In model training, the stochastic gradient descent (SGD) optimizer was used with a
momentum of 0.9. The hyperparameter of the learning rate and the number of epochs was
tuned. In our study, they were set to 0.01 and 100.
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2.2.6. Assessment of Model Accuracy

For quantitative evaluation of the model performance, we formed the confusion matrix
and derived precision (P), recall (R), and F1-score (F1) to assess the accuracy. The equations
are listed as follows.

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

F1 = 2× P× R
P + R

(10)

Here, R (recall) is the tree detection rate, P (precision) is the correctness of the detected
trees, F1 is the overall accuracy of the detected trees, TP (true positive) is the number of
correctly detected trees, FN (false negative) is the number of trees that were not detected
(omission error), and FP (false positive) is the number of extra trees that did not exist in the
field (commission error).

3. Results
3.1. Analysis of Gaussian Kernel Parameter

Figure 5 presents the relationship between loss values with epochs at different Gaus-
sian kernel parameters. The purpose of this test was to show how much the Gaussian
kernel parameter σ influences the results with the MSSCN model. In accordance with the
tree crown size, we tested σ increases from 1 to 3 with steps of 1. The results show that σ
had a great influence on the results. In our models, the training and validation loss function
values were more stable in small σ than in large σ as σ influenced the confidence map,
whether the tree canopy was a proper cover or not. When using small σ, the areas around
the peak points in the confidence map were smaller than the tree canopy, and isolated
treetops can clearly be found (Figure 6a,b). In contrast, when using the bigger σ, the areas
around peaks may be confused when the peaks are close; individual trees cannot be clearly
distinguished at the boundary area (Figure 6d).
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The accuracy with different σ in our research area is listed in Table 3. The best result
was obtained for σ = 2.0, which is better fitted to the size of the tree canopy in this case.

Table 3. The evaluated σ on generating the confidence map to train with the MSSCN model.

σ Precision Recall F1-Score

1.0 0.95 0.62 0.74
2.0 0.92 0.69 0.79
3.0 0.83 0.62 0.71

3.2. Analysis of Oversampling Method

Figure 7 presents the detection accuracy metrics in precision, recall, and F1 values
changed with the oversampling rate θ when σ is set to 2.0.
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In general, we found that the oversampling strategy had a positive effect on overall
accuracy. From Figure 7, we found that, with an increase in θ, recall and F1 values increased
compared to the original training size (θ = 1), while the precision value was higher than
98.8% and did not change much when θ increased. The most gain was achieved when θ
was set to 1.6, which help to improve the recall value by 0.84 and F1 value by 0.89. While θ
is greater than 1.6, the growth rate of recall and F1 value decreased but is still greater than
the original.

3.3. Comparison of the Accuracy of Different Models

The proposed method was compared with recent benchmark methods such as FCN8s
and U-Net. Table 4 shows the results obtained by all methods using precision, recall, and F1
metrics across four different testing sites with oversampling rate θ set to 1.6 and Gaussian
kernel parameter σ set to 2.

Table 4. The comparison of the proposed approach with benchmark approaches in different sites.
Recall below 0.7 is colored light gray, while F1 over 0.85 is marked with dark gray.

Model Site TP FN FP P R F1

FCN8s A-1 99 17 2 0.98 0.85 0.91
A-2 71 47 0 1.00 0.60 0.75
A-3 45 22 1 0.98 0.67 0.80
A-4 313 83 4 0.99 0.79 0.88

Avg 0.99 0.73 0.83
U-Net A-1 100 16 8 0.93 0.86 0.89

A-2 70 48 5 0.93 0.59 0.73
A-3 51 16 6 0.89 0.76 0.82
A-4 297 99 38 0.89 0.75 0.81

Avg 0.91 0.74 0.81
MSSCN A-1 104 12 11 0.90 0.90 0.90

A-2 84 34 0 1.00 0.71 0.83
A-3 62 5 5 0.93 0.93 0.93
A-4 335 61 18 0.95 0.85 0.89

Avg 0.94 0.84 0.89

We can see that the proposed method MSSCN achieved the best results in F1 and recall
metrics with averages of 0.89, and 0.84 across all test sites, respectively. In addition, the
MSSCN method achieved a precision of 0.94, while FCN8s and U-Net provided averaged
precision values of 0.99 and 0.89, respectively.

We also found a notable difference in accuracy at different testing sites. In general, a
better result (highest F1, recall, and precision) will be obtained in pure masson forests with
low dead-tree intensity than in mixed forests with high dead-tree intensity.

In addition, the precision of all methods was larger than the recall in all testing sites.
The differences between precision and recall were also larger with benchmark methods
(FCN8s, U-Net) than the MSSCN method, which means that our proposed method was not
insensitive to different forest types and disease intensity outbreak areas.

Figure 8 shows the visual results of predictions generated by three methods in different
PWD intensity sites. We can see that our approach has fewer errors in detecting dead trees,
while FCN8s and U-Net approaches omit dead trees, especially in mixed forests with
high intensity.
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4. Discussion
4.1. The Effect of the Gaussian Kernel Function

The Gaussian kernel function helped us to easily conduct “soft annotation” concerning
the training samples. Prior studies [24,31,34], have noted that it was laborious work to
depict dead tree crown boundaries as training samples, while in our study we only collected
the center position to represent diseased wood and used the Gaussian kernel function to
simulate the spatial distribution probability map (called confidence map) to represent the
diseased area. This “soft annotation” method not only reduces the annotation workloads
but also quantitively describes the confidence probability of the diseased individual tree
crown and surrounding elements.

However, not much attention was paid in the previous study to the effect of the
Gaussian kernel parameter σ on results. In our study, we found that the value of σ directly
affected the confidence map. A larger σ resulted in a larger high-probability area in the
confidence map, which would result in a higher weight to the background pixels than the
target pixels in the MSSCN model and decreased training accuracy in the end. Especially
in the complex stands, due to the small tree crown with canopy gap, it is difficult to
obtain suitable data in this complex forest area (Figure 6). Determining how to obtain an
appropriate σ in the monitoring area is important for accurately detecting dead trees [35].
In this study, we tested three Gaussian parameters and found that the relatively small
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Gaussian filtering range is better than others. In the future, we should build a strategy to
obtain a σ with a self-adaption method according to the forest stand condition.

4.2. Oversampling Strategy in Promoting Detection Accuracy

One of the factors behind the low accuracy in object detection is the lack of repre-
sentation of objects in training data, especially in small-object detection and imbalance
samples [36]. In our study, the crown size of a standing dead tree was diverse and the
training number in each image scene varied widely due to the forest type and PWD out-
break intensity. Imbalance of samples and tree crown size in each training image was very
common. Oversampling and augmentation are very common strategies for resolving prob-
lems. In accordance with Kisantal (2019), the oversampling strategy with the copy–pasting
method was used to provide a variety of spatial distribution states for standing dead trees,
which makes the model more generalized and improves the detection accuracy [28]. The
parameter called the oversample rate θ in the copy–pasting method is very important for
training because unsuitable θ may cause overfitting or underfitting in the DL model [37]. In
our study, we also found that “the bigger the better” does not apply to the oversample rate.
With an increase in θ, the accuracy metrics do not show a linear growth trend. In terms of
F1 and recall metrics, the best accuracy with the MSSCN model was achieved when θ set to
1.6 in our study. In terms of the precision metric, we found that it is independent of θ. These
results indicated that our proposed method can predict standing dead trees with high recall
and precision, having a very low number of false detection and commission errors. This
means that our model can provide a trade-off between the precision and recall concerning
detection accuracy. However, in other forest conditions with different input data, the best
oversample rate should be carefully determined by the input training samples.

4.3. MSSCN Model on Detection Accuracy

Several reports have shown that fully convolutional neural networks present a remark-
able ability in classification and object detection [20]. Meanwhile, these studies also point
out that it is a challenging task in detecting multi-scale objects, especially in a complex
environment. In our study, we found that the dead-tree crown size and sample number
in each image scene were diverse, which leads to the low recall accuracy in FCN8s and
U-Net. There are two reasons: one is that FCN8s and U-Net models easily lose spatial
information in downsampling, especially when processing high-resolution images [38]; the
second reason is that some small tree crowns often contain only a few pixels, which is often
ignored in the downsampling process, resulting in the model not being able to restore more
positioning reference information in prediction [39,40].

In order to solve this problem, the multi-scale spatial attention module implemented
by the atrous conventional block was added to the deep learning network to generate
multi-scale features by aggregation of series-dilated convolutional filters at different full
convolutional layers [41,42]. This helps us to enlarge the field of view of each filter and find
the best trade-off between the context information and the accurate localization [26,33,43].
This mechanism improves the missing detection problem in FCN8s and U-Net model, and
increases the recall accuracy of small dead-tree crowns in dense canopy scenes, as shown
in Figure 8. Moreover, compared with FCN8s and U-Net model, the multi-scale spatial
attention module enables the model to learn the spatial relationship between any position
in the feature map, which can highlight the accurate position of the dead trees and reduce
the interference of background noise [44].

4.4. The Influence of Forest Type and Disease Outbreak Intensity on Detection Accuracy

Prior studies have noted that the complexity of forest types has an influence on the
detection results, especially in individual tree detection [29,35]. We also found that it is
easier to detect dead trees in pure forests than in mixed forests in our research area. The
main reason is that, due to the diversity of trees in mixed forests, the crown features’
variability in remote-sensing images is magnified, which would cause the model to become



Remote Sens. 2022, 14, 3075 14 of 16

more difficult to train. This finding is consistent with that of Chadwick (2020), who
suggested that accurate tree detection is possible with fine-spatial-resolution imagery and
point clouds [45].

Moreover, we also found disease outbreak intensity in the research area has an effect on
detection accuracy. The main possible reason is a higher diversity of canopy characteristics
in the remote-sensing images caused by the different stages of pest occurrence. From
Figure 8, we can obviously find diverse colors in canopy colors from dark green to dark red
in high-disease-infestation areas. In addition, the canopy structure may also be influenced
by the different levels of disease infestation. The variety of canopy color and structure in
high-disease-outbreak areas caused the model to become more difficult to train than the
low-intensity area. Many researchers have found that the stage of pest or disease outbreak
influenced the tree mortality mapping with high-spatial-resolution satellite imagery [46].
Complex color variations of the canopy at different disease stages further increase the
difficulty of SDT detection when training samples are imbalanced. Further research should
be undertaken to investigate the characteristics of the canopy at different disease stages.

5. Conclusions

Comprehensive, rapid, and accurate identification of pine nematode diseased trees in
a complex forest environment is basic and challenging work. In this study, we proposed a
novel method called the MSSCN model, which combines the Gaussian filter and multi-scale
spatial attention to detect standing dead trees in different forest types and disease-outbreak-
intensity areas. In addition, the oversample strategy called the copy–pasting method was
used to solve the problem of lack of efficient samples. Validation at four different forest
areas belonging to two forest types and two diseased outbreak intensities showed that
(1) the copy–pasting method can help to improve the detection accuracy, but the best
oversample rate should be carefully determined by the input training samples and image
data. (2) Based on the two-dimensional spatial Gaussian kernel distribution function and
the multi-scale spatial attention structure, the MSSCN model can effectively find the dead-
tree extent in a confidence map; when this is followed by maximum location searching, we
can easily locate the individual dead trees. The averaged precision, recall, and F1-score
across different forest types and disease-outbreak-intensity areas can achieve 0.94, 0.84, and
0.89, respectively, which is the best performance among FCN8s and U-Net. (3) In terms of
forest type and outbreak intensity, the MSSCN performs best in pure pine forest type and
low-outbreak-intensity areas. Compared with FCN8s and U-Net, the MSSCN can achieve
the best recall accuracy in all forest types and outbreak-intensity areas. Meanwhile, the
precision metric is also maintained at a high level, which means that the proposed method
provides a trade-off between the precision and recall concerning detection accuracy.
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