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Abstract: The quality of satellite-based precipitation products including TMPA 3B42, IMERG-early,
IMERG-final, and CMORPH-CRT, is evaluated by comparing with gauge observations in Hunan
province of China between 2017 and 2019. By using the outputs of the Dominant River Routing
Integrated with VIC Environment (DRIVE) model, the hydrological applications of gauge- and
satellite-based precipitation products are analyzed by comparing them with streamflow observations.
Furthermore, we conduct a case study considering Typhoon Bailu. It is found that IMERG-final
can produce better results compared to the other three satellite-based products against gauge-based
precipitation. In terms of discharge simulations, the gauge-based precipitation provides the most
accurate results, followed by IMERG-final. During Typhoon Bailu, the peak of the mean gauge-based
precipitation in the rainfall center (24.5◦N–26◦N, 111◦E–114◦E) occurred on 25 August 2019, whereas
the daily streamflow reached its peak one day later, suggesting the lagged impact of precipitation
on streamflow. From the Taylor diagram, the gauge-based precipitation is the most accurate for
estimating the streamflow during Typhoon Bailu, followed by IMERG-final, IMERG-early, TMPA
3B42, and CMORPH-CRT, respectively. Overall, gauge-based precipitation has the best performance
in terms of hydrological application, whereas IMERG-final performs the best among four satellite-
based precipitation products.

Keywords: satellite-based precipitation; discharge simulations; Typhoon Bailu

1. Introduction

Precipitation is an essential physical process in the global water and energy cycles [1–5]. The
accurate estimation of precipitation is crucial for hydrological simulation, climate change
studies, and other scientific researches [4,6–8]. In general, three primary instruments are
used to measure precipitation, including rain gauges, weather radars, and satellites. Rain
gauge networks are sparse in remote areas [9], and are limited in terms of spatial and
temporal variability [10–12], and weather radars are influenced by atmospheric conditions
and complex topography [13–17]. In contrast, satellite precipitation products can provide
global precipitation maps with high spatial and temporal resolutions [18]; therefore, how
remote sensing satellite precipitation data can capture the characteristics of observed
precipitation is a relevant topic.

In recent years, a suite of satellite-based precipitation products have become available
at the global scale, such as the TMPA 3B42 [19,20], IMERG [21], CMORPH-CRT [22], and
the PERSIANN-CDR [23]. Many researchers have evaluated the precision of these satellite
precipitation products in specific countries and regions worldwide, including China [24–34].
Cai et al. evaluated the quality of the TMPA 3B42-V7 data set over the Hun-Tai Basin at
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daily, monthly, and annual scales [25]. Chen et al. compared gauge-based precipitation
with TMPA and IMERG products for monsoon and tropical cyclone precipitations in south
China [26]. Cheng et al., evaluated the drought-monitoring applicability of TRMM and
GPM precipitation products in China [27]. Li et al., analyzed the reliability of TRMM
rainfall data over the Poyang Lake [34]. In previous studies, researchers have mainly
focused on the evaluation of satellite-based precipitation products over China’s Xiang River
Basin at daily and monthly scales [29–32]. However, few researchers have aimed their
studies at the entirety of Hunan Province. Likewise, few have performed hydrological
assessments of hydrological model outputs driven by gauge- or satellite-based precipitation.
It is crucial for study of hydrological application in Hunan, which is a humid region with a
large population. Therefore, the purpose of our study is to evaluate four satellite-based
precipitation products in comparison with gauge-based precipitation observations for the
entire Hunan province. The simulation outputs of the DRIVE model driven by different
precipitation products are compared with the observed streamflow. Despite the fact that
Hunan is an inland province, it is also influenced by typhoons that affect its neighboring
provinces. Consequently, we also carried out a case study focused on Typhoon Bailu. Thus,
the highlights of this study are to evaluate various satellite precipitation products at a finer
spatial and temporal scale, and to use the state-of-the-art DRIVE hydrological model to
reveal the hydrological application of different precipitations.

We provide detailed descriptions of the data and methods used in Section 2; the
performance of satellite-based precipitation products and the hydrological simulations are
described in Section 3. Section 4 is a discussion, and conclusions are provided in Section 5.

2. Data and Methods

This study uses the DRIVE model, which couples the Variable Infiltration Capacity
(VIC) land surface model [35,36] and the Dominant River Tracing (DRT)-based Routing
(DRTR) model [37–42]. The DRT methods includes hydrographic upscaling algorithms
and resulting global data sets for large-scale hydrological modeling. The DRIVE model
includes flood inundation modules and is suitable for flood simulation at different spatial
and temporal scales. Researchers have also applied the DRIVE model in many other
studies [37,42–46]. The detailed descriptions of the DRIVE model can be found in the
literatures [37,45,46].

In this study, we perform discharge simulations during a period from 2017–2019
at a temporal resolution of 3-hourly and a spatial resolution of 0.125◦ × 0.125◦. The
meteorological inputs of the DRIVE model include wind speed, temperature (minimum
and maximum), and precipitation. The 3-hourly wind speed and temperature data are from
the MERRA-2 [47]. We have interpolated the precipitation observations at 97 rain gauges
(Figure 1) by using the Cressman interpolation algorithm [48]; the interpolated rain gauge
data is gridded and is used as reference. The satellite-based products included the TMPA
3B42 V7 [19], IMERG Early Run (IMERG-early) V06 [49], IMERG Final Run (IMERG-final)
V06 [50], and CMORPH-CRT [22] products. All the input data are converted from their
original resolution to the DRIVE input format.

The Hunan Hydrological and Water Resources Survey Center (accessible at http://yzt.
hnswkcj.com:9090/#/ in Chinese, accessed on 1 September 2021) provided the observed
streamflow at 84 hydrological gauges. We also obtain the best track data for Typhoon
Bailu from the Tropical Cyclone Data Center, China Meteorological Administration (http:
//tcdata.typhoon.org.cn, accessed on 1 September 2021) [51,52].

This study applies a number of statistical metrics to access the performance of different
precipitation products, including correlation coefficient (R), the Nash–Sutcliffe efficiency
(NSE) [53], mean error (ME), root mean square error (RMSE), and Taylor diagram [54]. NSE
values range from −∞ to 1, where the value of 1 indicates the perfect performance, and
positive NSE indicate the acceptable performance [53]. R values range from −1 to 1, and
the value of 1 represents the perfect performance in this study. RMSE values range from
0 to +∞, and the value of 0 indicates the best performance. The positive mean error (ME)
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indicates the overestimation of bias, whereas negative ME indicates the underestimation
of bias [31], ME values range from −∞ to +∞, where the value of 0 indicates the best
performance. The Taylor diagram includes various indicators such as root mean square
error (RMSE), correlation coefficient (R), and standard deviation, and it can reveal the
model performance in many aspects.

3. Results
3.1. Evaluation of Satellite-Based Precipitation

Figure 1 depicts the annual mean precipitation from 2017–2019, estimated from dif-
ferent precipitation products. We observed large gauge-based annual mean precipitation
in the north-central, eastern, and southern parts of Hunan Province. Meanwhile, smaller
annual mean precipitations are shown in northern and central parts of Hunan. Generally,
the TMPA 3B42 and gauge-based precipitation have similar precipitation distributions in
the north-central and eastern parts of Hunan. However, TMPA 3B42 tends to overestimate
the precipitation in west-central and southwestern Hunan and a small part of eastern
Hunan, and underestimate it in the north-central areas, where are the highest precipita-
tion shown in gauge-based precipitation. However, the distribution of TMPA 3B42 has
the most similar distribution with gauge-based precipitation compared to the other three
products. The IMERG products overestimate the majority of the distribution compared
with gauge-based precipitation shown in the north-central, eastern, and southern parts
of Hunan. IMERG-final produces a similar distribution to IMERG-early, but has lower
and more accurate values. After the corrections based on ground observations, the perfor-
mance of IMERG-final has improved compared to satellite-only IMERG-early products.
CMORPH-CRT tends to underestimate precipitation in the north-central parts of Hunan,
but overestimates it in central Hunan and some parts of southeastern Hunan.

The linear correspondence between 3-hourly gauge-based precipitation and satellite-
based precipitation estimates in Hunan is shown in Figure 2. We observe that satellite-based
precipitation estimates are rather consistent with the gauge observations, and that TMPA
3B42 shows a good correlation (CC = 0.78) with gauge-based precipitation; however, it tends
to underestimate precipitation (ME = −0.04 mm); the RMSE for TMPA 3B42 is 0.78 mm.
The correlation coefficient is 0.81 between IMERG-early and gauge-based precipitation;
however, IMERG-early overestimates the precipitation (ME = 0.01 mm) at the 3-hourly,
regional scale, and the RMSE for IMERG-early is lower than TMPA 3B42, which is 0.75 mm.
IMERG-final has the highest correlation (CC = 0.87) and the smallest RMSE (0.58 mm)
against the gauge-based precipitation observations it underestimates the gauge-based
precipitation with ME of −0.01 mm. CMORPH-CRT has a higher correlation with the
gauge-based precipitation compared to TMPA 3B42 and IMERG-early. However, it has the
largest ME (−0.06 mm), showing that it can capture the temporal variations of observed
precipitation but underestimates it to some extent. Overall, IMERG-final performs the
best at 3-hourly scale in Hunan Province. CMORPH-CRT and IMERG-early show better
performance than TMPA 3B42. Except for IMERG-early, the other precipitation products
underestimate the precipitation.

In Figure 3, the spatial distribution of the mean error show that TMPA 3B42 underesti-
mates gauge observations over eastern Hunan and overestimates them over western Hunan
at 3-hourly, grid scale. IMERG-early tends to overestimate gauge observations over most
districts in Hunan, except for the northwest and small parts of southern Hunan, so is the
IMERG-final. However, IMERG-final shows the smaller ME compared with IMERG-early
at grid scale (Figure 3). CMORPH-CRT underestimates gauge observations over the most
regions in Hunan, but overestimates them in the central parts.

The monthly mean precipitation illustrated in Figure 4 shows four satellite-based
precipitations are able to demonstrate the monthly changes of observed precipitation
in Hunan. We observe high precipitation in the spring and summer months (i.e., May,
June, and July). During these months, satellite-based precipitation overestimates the
values compared with gauge observations. Meanwhile, IMERG-early has an obvious
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overestimation in March. From October to December, except for IMERG-final, other satellite-
based precipitations underestimate the monthly precipitation. From January to February,
TMPA 3B42 and CMORPH-CRT underestimates the monthly precipitation, whereas IMERG
products overestimate it. In terms of monthly precipitation, IMERG-final and TMPA 3B42
perform better than IMERG-early and CMORPH-CRT in capturing the magnitude and
variation in precipitation.
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3.2. Evaluation of DRIVE Outputs Driven by Different Precipitation

We use the DRIVE model to simulate river discharges during 2017–2019, and compare
the outputs of the DRIVE model driven by different precipitation inputs with the ob-
served streamflow at 84 gauges in Hunan. The DRIVE model outputs have been validated
compared with the observations at 1121 stations globally in previous study [37].

In terms of the NSE score, we observed positive values for different precipitation
inputs for most of the gauges (see Figure 5). As shown in Table 1, gauge-based precipitation
produces the most accurate discharge simulations, with 66 gauges showing positive NSE
values, 61 out of 84 gauges (73%) having values greater than or equal to 0.2, and 22 out
of 84 gauges (26%) having NSE values greater than or equal to 0.5. This is followed by
TMPA 3B42, with 64 positive NSE values, 53 out of 84 gauges (63%) having NSE values



Remote Sens. 2022, 14, 3127 7 of 17

greater than or equal to 0.2, and 3 out of 84 gauges having values greater than or equal
to 0.5. We observed that IMERG products (IMERG-early or IMERG-final) provide more
accurate hydrological performance than TMPA 3B42. Specifically, IMERG-final performs
better in this hydrological application than IMERG-early, showing 65 gauges with positive
NSE values, 54 out of 84 gauges (64%) with values greater than or equal to 0.2, and 13 out
of 84 gauges (15%) with NSE values greater than or equal to 0.5 (Table 1). IMERG-early
performs well, with 7 gauges having NSE values greater than or equal to 0.5. CMORPH-
CRT performs well, with 60 gauges showing positive NSE values and 4 gauges having
values greater than or equal to 0.5.
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Table 1. NSE statistics.

NSE/Data Gauge TMPA 3B42 IMERG-Early IMERG-Final CMORPH-CRT

≥0 66 64 62 65 60
≥0.2 61 53 51 54 52
≥0.5 22 3 7 13 4

The simulated and observed daily streamflows for four different gauges are shown in
Figure 6. These four gauges are located in eastern, central, western, and southern parts of
Hunan respectively (Table 2). For the Shebu gauge, the model outputs driven by gauge-
and satellite-based precipitations can capture the variation and magnitude of the observed
streamflow, demonstrating the accuracy of the DRIVE model. However, the model outputs
sometimes underestimate the peak streamflow, especially in spring and summer. For
the Lengshuijiang and Yantou gauge, the model outputs consistently underestimate the
peak streamflow. For the Fenshi gauge, the model outputs simulate the variation but
produce errors in the magnitude, especially for the peak streamflow. Among the different
precipitation-driven DRIVE simulations, the gauge-based is the most accurate, with NSE of
0.53–0.73 for the four gauges, followed by IMERG-final, with an NSE of 0.48-0.68. IMERG-
early was more accurate (NSE 0.41–0.63) than TMPA 3B42 (NSE 0.36–0.61). CMORPH-CRT
shows the worst performance, with an NSE of 0.36–0.57.
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Table 2. Locations of four gauges.

Location/Gauges Shebu Lengshuijiang Yantou Fenshi

lat 27.62 27.67 26.83 25.33
lon 112.78 111.40 109.75 112.70

drainage area 1404 16,260 5236 880

Overall, the outputs of the DRIVE model driven by gauge- or satellite-based precipita-
tion shows reasonable applicability, where the gauge-based observation is the most accurate
one, followed by IMERG-final, which has better performance than IMERG-early, TMPA
3B42, and CMORPH-CRT. Possible reasons for the magnitude errors between the model-
simulated streamflow and the observations may be the systematic error in the hydrological
model or spatial variability in precipitation distributions.

3.3. A Case Study of Typhoon Bailu

The satellite-based precipitation estimation performance, as well as the hydrological
application of gauge- and satellite-based precipitation during Typhoon Bailu are evaluated.
As shown in Figure 7, Typhoon Bailu, which originated on 20 August 2019 (UTC), first
landed in Taiwan on 24 August; it then landed in Fujian on 25 August and, eventually,
dissipated in Hunan on 26 August. We evaluated the associated performance of satellite-
based precipitation products. Furthermore, the outputs of the DRIVE model are compared
with observed streamflow during the Typhoon Bailu period.

The accumulated precipitation from 25 August 2019 at 00:00 to 27 August 2019 at 00:00
(UTC) in Hunan Province is calculated (Figure 8). Figure 8 shows that the four satellite-
based precipitation products underestimate the precipitation during the Typhoon Bailu
period, where TMPA 3B42 and CMORPH-CRT shows relatively large differences from the
gauge-based precipitation. The rainfall centers derived by TMPA 3B42 and CMORPH-CRT
are smaller than those that are gauge-based, and their spatial distributions differs, especially
in the northern and eastern parts of Hunan. In addition, the rainfall center of IMERG-early
is smaller than that of the gauge-based data, and it underestimates the precipitation in
central parts of Hunan. IMERG-final has the most similar spatial distribution to the gauge-
based observations. As illustrated in the black box in Figure 8a, the high-rainfall center,
according the gauge-based precipitation, is located at 24.5◦N–26◦N, 111◦E–114◦E.
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Figure 9 depicts the daily time-series of the mean precipitation in the rainfall center
shown in Figure 8. The gauge-based precipitation increases from 24 August and peaked
on 25 August. The satellite-based precipitation, except for IMERG-early, shows similar
variations to the gauge-based precipitation. However, the precipitation estimated by
IMERG-early peaked on 26 August. Precipitation peak estimated by IMERG-final is the
most similar to the gauge-based observations, as expected, whereas CMORPH-CRT clearly
underestimates the observed peaks.

By using ten hydrological gauges in the rainfall center, we calculate the daily time-
series of the mean streamflow in the rainfall center before and after the typhoon reached
Hunan (Figure 10). The streamflow peaked on 26 August, one day later than the pre-
cipitation peak, similar to the results reported in a previous study [55]. This means the
precipitation has a lagged effect on streamflow. It is worth noting that instead of model
outputs driven by gauge-based precipitation, the model outputs driven by IMERG-final
has the nearest peak to observed streamflow, followed by gauge-based precipitation. As
discussed above, CMORPH-CRT produces the lowest peak streamflow, which can also be
seen for precipitation.

The linear correspondences between the gauge-based precipitation accumulations and
satellite-based precipitation accumulations from 25 August 2019 at 00:00 to 27 August 2019
at 00:00 (UTC) are shown in Figure 11. It can be seen that IMERG-final has the strongest
correlation (R = 0.78) and lowest RMSE (RMSE = 11.49 mm), compared with gauge-based
observations during Typhoon Bailu; whereas CMORPH-CRT has the lowest correlation
(R = 0.68) and the highest RMSE (RMSE = 17.7 mm) with gauge-based observations during
this time. During the same period, all of the satellite-based products underestimate the
precipitation, with mean errors ranging between −2.97 mm and −11.89 mm.
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Figure 11. Scatterplots of satellite- and gauge-based accumulated precipitation in Hunan from 25
August 2019 at 00:00 to 27 August 2019 at 00:00. (a) TMPA 3B42; (b) IMERG-early; (c) IMERG-final;
and (d) CMORPH-CRT.

Taylor diagrams can reveal the similarity between observations and model outputs,
where the closest dot to the “REF” represents the most accurate performance. From the
averaged streamflow in the rainfall center during Typhoon Bailu, we found that the model
outputs driven by gauge-based precipitation is the most accurate (shown as the red dot
in Figure 12), followed by IMERG products, where IMERG-final performs better than
IMERG-early (shown as orange and green dots, respectively). CMORPH-CRT performs the
worst (shown as pink dots).
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4. Discussion

Satellite-based precipitation products are compared with gauge-based precipitation
in this study. The results show that there exist errors; possible reasons are discussed in
this section. Errors for TMPA 3B42 data are due to use of the geostationary orbit satellite
data, and the east or west deviation of the detection area may occur during the detection of
geostationary orbit satellites; the deviation of detection area will result in the deviation of
the precipitation area [56]. The error of the CMORPH-CRT precipitation data is because
the CMORPH-CRT data is based on the data fusion of multiple data; each data has its
own error, after the fusion, the errors are still existing in the data [56]. IMERG product has
better performance, because the sensitivity of the DPR and the high–frequency channels on
the GMI were increased [21,57]. IMERG-final has better performance than IMERG-early,
because it has incorporated the ground observations in retrieving precipitation estimates.

5. Conclusions

In this study, four different satellite-based precipitation products, TMPA 3B42, IMERG-
final, IMERG-early, and CMORPH-CRT are evaluated, against gauge-based precipitation
from 2017 to 2019 in Hunan Province, China. The hydrological application of gauge- and
satellite-based precipitation products are also evaluated by using the outputs of the DRIVE
model. Furthermore, a case study during Typhoon Bailu event is performed. The main
conclusions can be summarized as follows:

(1) At the 3-hourly, regional scale, IMERG-final has the strongest correlation (with a
CC of 0.87) and smallest RMSE (0.58 mm) with the gauge-based precipitation. The
results of CMORPH-CRT and IMERG-early are consistent with those of gauge-based
observations (with CCs of 0.85 and 0.81, respectively), whereas TMPA 3B42 performs
the worst relatively, with a CC of 0.78. IMERG-early overestimates the precipitation,
whereas IMERG-final, TMPA 3B42, and CMORPH-CRT underestimates it.
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(2) The gauge-based observations and four satellite-based precipitation products perform
well in a hydrological application. The gauge-based observation performs the best in
terms of estimating streamflow, with NSE values for 66 gauges (79%) are positive and
22 gauges (26%) are larger than or equal to 0.5. IMERG-final is more accurate than the
IMERG-early, TMPA 3B42, and CMORPH-CRT regarding streamflow simulations.

(3) The rainfall center in the gauge-based precipitation observations is located at 24.5◦N–
26◦N, 111◦E–114◦E during Typhoon Bailu in Hunan. The areas of rainfall centers
derived from four different satellite-based precipitation products are smaller than that
of gauge-based observations. All satellite-based precipitation products underestimate
the accumulated precipitation during Typhoon Bailu. The daily series of the mean pre-
cipitation in the rainfall center peaked on 25 August 2019, and the streamflow reached
its peak one day later, suggesting the lagged impact of precipitation on streamflow.

(4) The Taylor diagram shows that the gauge-based observations performed the best in
hydrological estimation during Typhoon Bailu, followed by IMERG-final, IMERG-
early, TMPA 3B42, and CMORPH-CRT, respectively.

Overall, gauge-based precipitation has the best performance in terms of hydrological
application, whereas IMERG-final performs best among the four satellite-based precipita-
tion products in term of precipitation evaluation and hydrological application. In future
studies, more concentrated precipitation observations may improve the accuracy of hydro-
logical simulations. Hydrological models with different structure are also necessary for the
assessment of streamflow as our results only focus on a single model.
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