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Abstract: The river cross-section elevation data are an essential parameter for river engineering. 

However, due to the difficulty of mountainous river cross-section surveys, the existing bathymetry 

investigation techniques cannot be easily applied in a narrow and shallow field. Therefore, this 

study aimed to establish a model suitable for mountainous river areas utilizing an unmanned aerial 

vehicle (UAV) equipped with a multispectral camera and machine learning-based gene-expression 

programming (GEP) algorithm. The obtained images were combined with a total of 171 water depth 

measurements (0.01–1.53 m) for bathymetry modeling. The results show that the coefficient of de-

termination (R2) of GEP is 0.801, the mean absolute error (MAE) is 0.154 m, and root mean square 

error (RMSE) is 0.195 m. The model performance of GEP model has increased by 16.3% in MAE, 

compared to conventional simple linear regression (REG) algorithm, and also has a lower bathym-

etry retrieval error both in shallow (<0.4 m) and deep waters (>0.8 m). The GEP bathymetry retrieval 

model has a considerable degree of accuracy and could be applied to shallow rivers or near-shore 

areas under similar conditions of this study. 

Keywords: river survey; mountainous river cross-section; gene-expression programming (GEP); 

Chishan river basin; multispectral camera; unmanned aerial vehicle (UAV) 

 

1. Introduction 

The river cross-section is an essential parameter in water resources planning, hydrau-

lics engineering, flow discharge modeling, ecological assessment, and river management 

[1–10]. In a general survey, the cross-sections are covered by a water body, thus, the in-

vestigators have to measure the distance from water surface to the riverbed, i.e., bathym-

etry. Typically, bathymetry is directly investigated using water-contact equipment, such 

as rope [3], lead fish [11], real-time kinematics (RTK) [12], and an acoustic doppler current 

profiler (ADCP) [7]. These kinds of bathymetry observation methods have a very high 

accuracy for mapping cross-sections, but the investigators need to carry heavy and expen-

sive equipment to the field and take several hours or even days to collect the data [13], 

which makes survey updates rare or allows them to be conducted only on the sites of 

special interest [14]. Therefore, recently, many scholars have used remote sensing (RS) 

techniques, e.g., satellite or unmanned aerial vehicle (UAV), to retrieve river bathymetry 

data [8,15–19]. 

In recent RS-based bathymetry retrieval studies, Hernandez et al. [15] used light de-

tection and ranging (LiDAR) to measure the seabed topography of La Parguera Nature 

Reserve in 2016. Worldview 2 (WV2) satellite image data, simple linear regression (REG) 
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concept-based algorithm, and bands’ ratios of the satellite spectrum were used to retrieve 

water depth. The research results show that the root mean square error (RMSE) at 1 to 10 

m is 1.260 m and the atmosphere, water quality, and turbidity have an impact on the ac-

curacy of water depth retrieval. 

Kim et al. [17] conducted a water depth survey using an UAV in 2019. The authors 

combined this with principal component analysis (PCA) to select the high influence spec-

tral bands and then used REG, artificial neural network (ANN), and geographically 

weighted regression (GWR) algorithms to develop a water depth retrieval model. The co-

efficient of determination (R2) of REG, ANN, and GWR were 0.587, 0.595, and 0.851, re-

spectively. The results indicated that the GWR model has certain accuracy for water depth 

retrieval and the choice of spectral band has an influence on the retrieval results. 

Kasvi et al. [16] conducted a water depth retrieval study of the Pulmanki River, Fin-

land in 2019. ADCP, REG, and structure from motion (SfM) developed from UAV aerial 

photography were used for modeling. The results show that ADCP has the best water 

depth measurement accuracy with mean absolute error (MAE) ranging from 0.030 m to 

0.070 m, followed by REG (0.050–0.170 m) and SfM (0.180–2.980 m). The mean errors (ME) 

were similar and were in the order of ADCP (−0.030 m to 0.000 m), REG (−0.170 m to 0.020 

m), and SfM (−0.440 m to 3.200 m). The author also points out that the error from image 

retrieval is similar to ADCP water depth measurement. Owing to the inability of ADCP 

to measure the 0 to 0.2 m shallow water depth, the cost of image retrieval water depth is 

considerably lower than that of ADCP, and given the lack of data, therefore, the image 

retrieval method should be used to estimate water depth under the suitable conditions of 

use. 

Janowski et al. [18] developed a novel methodological approach to assess the suita-

bility of airborne LiDAR bathymetry for the auto-classification and mapping of the sea-

floor based on ML classifiers in 2022. The application results show that the random forest 

algorithm has the best performance in scenarios and the overall accuracy in all scenarios 

ranged from more than 75% to 91%, with a median of 84%. 

Although the abovementioned state-of-the-art techniques show a reasonable and re-

liable bathymetry modeling ability, they are mainly established for the application of wide 

areas and huge scales, e.g., wide rivers [9,16,20,21], lakes [5], or oceans [10,18,19,22]. Ad-

ditionally, due to the limitation of satellite spatial and temporal resolution and the influ-

ence of cloud cover, most of the research results are only applicable to large sections and 

high-water-depth areas [23]. The riverbed sections of a large number of small and shallow 

rivers cannot be reasonably retrieved, and there are spatial resolution and observation 

frequency limitations in estimating water depth via satellite. Therefore, the existing ba-

thymetry retrieval models are not easy to apply in regions which have narrow and shal-

low conditions with rapidly changing morphology [7] like the mountainous rivers in Tai-

wan. 

Taiwan is located in a typhoon-prone area with steep topography, rainfall is uneven 

during high and low water periods, and the flow rate varies considerably; therefore, the 

river section changes frequently, and the information of section surveys needs to be up-

dated frequently [2,6]. Nevertheless, it is not easy to survey the river section directly with 

specific bathymetry, i.e., water depth. In addition, the rivers of Taiwan are predominantly 

in mountainous areas, and there are 131 named rivers in Taiwan, and more than 1000 

submerged streams and wild streams, which are narrow and shallow (Figure 1). Under 

the circumstances of the bathymetry investigation in narrow and shallow river, the rapid 

development of UAV and advanced machine learning (ML) algorithm in recent years can 

possibly compensate for the lack of satellite image water depth retrieval. Samboko et al., 

[9] reviewed a study on the use of UAVs for river surveys and noted that UAVs can carry 

sensors to dangerous or inaccessible areas for surveys, and calibration can be conducted 

with relevant models developed to improve the applicability of this method. Moreover, 

Ashphaq et al. [19] reviewed over 100 research articles of satellite-derived bathymetry 

(SDB) retrieval models from past 50 years; the authors indicated that machine learning 
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(ML) algorithms have a better modeling performance in the bathymetry where water 

depth is less than 20 m but require more relative studies for an applicability evaluation. 

For there are many narrow and shallow rivers in Taiwan’s mountainous area and the 

riverbed changes frequently; manually investigating the river cross-section is difficult, and 

the applicability of the existing RS-based bathymetry retrieval model in shallow and nar-

row area are still unknown. Therefore, the authors aimed to link the gap between practical 

needs and the shortage of the existing bathymetry retrieval models by the following ob-

jectives in this study:  

(1) using UAV with multispectral camera to capture images and surveyed cross-section 

under shallow bathymetry conditions; 

(2) applying a ML algorithm to establish a water depth retrieval model for the rivers of 

Taiwan’s mountain area, which has yet been found in related studies; 

(3) encrypting the established model to Python-based program for further application, 

which can be used to simulate water depth for the shallow river or near-shore areas 

that are not easily measured under similar conditions as this study, where the water 

depth could be estimated by multispectral sensor mounted on the UAV. 

 

Figure 1. Digital terrain model (DTM) map of the rivers in Taiwan. 

2. Materials and Methods 

2.1. Study Area 

The study area is in the upstream of the Jiashian river weir section in Chishan River 

sub-watershed of the Kaoping River catchment (Figure 2) [24], which is built for supplying 

0.3 million m3 of water per day on average for public and industrial use in Kaohsiung 

City, Taiwan, and providing 0.8 million m3 of water per day to the Nanhua Reservoir [25]. 

The river section is a typical mountainous river in Taiwan, with a river width of ap-

proximately 150 m, an elevation of 245 m, and a catchment area of 404.6 km2. In this loca-

tion, the average annual rainfall is 2794.4 mm with an abundance of rainfall occurring in 

the wet season (May to October), as opposed to the dry season (November to April). From 

2005 to 2007, the total rainfall averages in the dry and wet seasons were 235.9 and 2558.5 

mm, respectively. It can be seen that the rainfall distribution at the location is unevenly 

distributed between the two seasons, which causes the flow discharge during the wet sea-

son to be approximately 90% of the annual total amount (1.14 billion m3). Moreover, based 

on the suspended sediment concentration (SSC) observations in the river section in the 

dry and wet seasons in 2003, the average SSC is 5.2 mg/L and 65.5 mg/L [26]. However, in 

2009, typhoon Morakot caused an extreme rainfall event (1029 mm in 24 h), which lead to 

catastrophic flow discharge to occur in the Chishan River. The recorded flow discharge 

was 9308 m3/s in contrast to the designed 200 years return period flow discharge of 8380 

m3/s, therefore, almost all of the hydraulic constructions were destroyed [27]. After the 

typhoon event, the river’s characteristics, especially SSC, changed to 129.3 mg/L in the dry 
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season and 491.1 mg/L in the wet season in 2018, and the high SSC also caused a significant 

change in the river morphology and rapid changing river cross-section [1]. 

 

Figure 2. Location map of Kaoping River catchment, modified from [24]. The orthophoto of the 

study area was taken on 10 April 2017. 

2.2. Bathymetry Investigation 

The Trimble R6-II RTK GPS was used for measuring the water depth of the upstream 

cross-section of the Jiaxian weir. In order to avoid the mountainous orographic precipita-

tion and its high flow discharge occuring during the observation at the end of the wet 

season (after October), the experiments were conducted during the end of the dry season 

on 6 April 2016, 10 April 2017, and 2 May 2017. The static vertical accuracy of the equip-

ment was up to ±5 + 1 ppm RMS, which meets the requirements of river cross-section 

surveys. The photos taken during the investigation are shown in Figure 3. It should be 

noted that the flow channel in the three observations was not always in the same position, 

and the color of the water, i.e., turbidity, was also different. The observation took place 

after a rainfall event on 6 April 2016, which has more sediment in the flow. In the obser-

vation, the submerged topographic change points were used as survey points, the sur-

veyed bathymetry points were marked in Figure 4, and the data distribution is shown in 

Figure 5. 

 

Figure 3. Surveyed bathymetry points in this study. The pink and blue color points were the inves-

tigations marks in 2016 and 2017, respectively. The background orthophoto was taken on 10 April 

2017. 

study area
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(a) (b) 

Figure 4. The pictures taken while surveying the cross-section of the study area in 2017. (a) was 

setting up the ground control point for RTK adjustment, and (b) was surveying the cross-section of 

the upstream of the Jiashian river weir. 

 

Figure 5. Data distribution of water depth survey samples (n = 171). 

2.3. UAV and Multispectral Camera 

The aerial camera carrier is senseFly Ebee+ (Figure 6), which was equipped with a 

Parrot Sequoia multispectral camera with a spectrum of green (550 ± 40 nm), red (660 ± 40 

nm), red edge (735 ± 10 nm), and near-infrared (NIR, 790 ± 40 nm). In each flight mission, 

the aerial altitude was about 100 m and the ground resolution was 17.12 cm. The number 

of aerial photographs was 772 to 1076 for a single cruise, with three flights taken on 6 April 

2016, 10 April 2017, and 2 May 2017 (Figure 7, Table 1). Wind conditions and flight stabil-

ity analysis are unavailable in this study. After obtaining the image data, Pix4D software 

was used to perform image stitching, control point correction, and normalized difference 

vegetation index (NDVI) [28], Equation (1), and the normalized difference water index 

(NDWI) calculations [29], Equation (2). The spectral information and indices value distri-

bution including maximum, minimum, average, and standard deviation, obtained in the 

study are listed in Table 2. The spectral images, including green band, red band, red edge 

band, NIR band, and point cloud, generated from Pix4D of the study area are shown in 

Figures 8 and 9. 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 (1) 

𝑁𝐷𝑊𝐼 =
(𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅)
 (2) 

where NDVI is the normalized difference vegetation index, NDWI is the normalized dif-

ference water index, NIR is the near-infrared reflection, RED and Green are the red and 

green reflections, respectively. 
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Figure 6. SenseFly Ebee+ was used in this study. The picture taken before the flight mission on 10 

April 2017. 

   
(a) (b) (c) 

Figure 7. Three orthophotos of the study area taken on (a) 6 April 2016, (b) 10 April 2017, and (c) 22 

May 2017. 

    
(a) (b) (c) (d) 

Figure 8. The picture of different bands taken by the Parrot Sequoia multispectral camera (2 May 

2017) and mosaiced by pix4D software. (a) green band, (b) red band, (c) red edge band, and (d) NIR 

band. 
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(a) (b) (c) 

Figure 9. The point cloud generated by Pix4D software. (a) Generated point cloud based on UAV 

aerial pictures, (b) final point cloud picture, and (c) the zoom-in view of point cloud of the study 

area. 

Table 1. The information from the quality report of each UAV flight missions. 

Items 6 April 2016 10 April 2017 2 May 2017 

Images 772 1076 856 

Median of Key-points per Image 20,000 21,111 53,203 

Median of Matching Points per Image 8870.85 5889.67 12,485.60 

Ground Control Points (GCP) 20 19 6 

The Mean RMS Error of GCP in X-axis 0.009 m 0.006 m 0.003 m 

The Mean RMS Error of GCP in Y-axis 0.007 m 0.004 m 0.004 m 

The Mean RMS Error of GCP in Z-axis 0.013 m 0.008 m 0.004 m 

Number of 3D Densified Points 97,694,554 125,818,685 400,257,260 

Average Density (per m3) 37.37 64.61 776.11 

Table 2. Spectral sample data description (n = 171). 

Index Max Min Average Standard Deviation 

Green 0.094 0.038 0.071 0.008 

NIR 0.079 0.044 0.065 0.008 

NDVI 0.148 −0.323 −0.163 0.071 

NDWI 0.264 −0.290 0.044 0.093 

2.4. Data Processing 

A total of 171 matched water depth-spectral data were obtained, near-infrared reflec-

tion (NIR), green, NDVI, and NDWI were used as inputs to the water depth retrieval 

model, referring to previous studies [12,22,30,31], the measured water depth data was 

used as the output. 

All of the data were normalized as Equation (3) and randomly sorted, referring to 

[32,33]. Of the total data, 70% were used as the training dataset to build the model (n = 

138), and then 30% of the remaining data (n = 33) were used for the model test. The results 

of the t-test after the classification of the datasets are presented in Table 3. The results 

show that the characteristics of the classified datasets did not reach statistically significant 

differences. 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (3) 

where x refers to the spectral and water depth data; xmax and xmin are the maximum and 

minimum of the dataset, respectively; xnorm refers to the value after the data x normaliza-

tion. 

  

(c) 
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Table 3. Significance test between training dataset (n = 138) and testing dataset (n = 33). 

Variable 
Average Values of Variables 

p-Value Significant Difference 
Raw Dataset Training Testing 

Green 0.071 0.070 0.072 0.411 - 

NIR 0.065 0.065 0.064 0.446 - 

NDVI −0.163 −0.162 −0.172 0.450 - 

NDWI 0.044 0.041 0.063 0.244 - 

Water Depth (m)  0.646 0.633 0.701 0.386 - 

2.5. Development of Water Depth Retrieval Model 

Gene-expression programming (GEP), an advanced machine learning algorithm, was 

used to develop water depth retrieval model. The results were compared with simple lin-

ear regression (REG) based simulations, which is commonly used in previous studies 

[15,23,34], to evaluate the advantages and disadvantages of the GEP model. 

2.5.1. Gene-Expression Programming (GEP) 

GEP is an algorithm that combines the advantages of genetic algorithm (GA) for lin-

ear symbolic coding and genetic programming (GP) for solving nonlinear complex prob-

lems. The concept of GEP is to start with an initial race and to evolve toward a predeter-

mined goal through a continuous evolutionary process (including selection, replication, 

mating, mutation, adaptation, retrieval, and conversion). Besides improving the short-

comings of GA premature convergence and GP combination explosion, the evolutionary 

speed of GA is 100 times higher than that of GA and GP [35]. 

GEP encoding rules are the same as GA algorithm, both are encoded in equal linear 

symbols to form “genes”. Then one or more genes are combined to form a chromosome. 

Among them, different types of nodes can be placed at the gene location, including func-

tion and terminal nodes. The function nodes can be arithmetic or logical operands and 

comparison operands (+, −, ×, ÷, ln, sin, cos, <, =, >… etc.), and the terminal nodes can be 

custom variables or constants. The structure of each chromosome is at least divided into 

head and tail sizes, and the head size can contain function nodes and terminal nodes, 

while the tail size has only terminal nodes, and the number of tail genes is related to the 

head size. A tree structure, called a gene expression trees (ETs), can be built based on the 

chromosome of gene binding, and the expression of the chromosome can be obtained ac-

cording to the bottom-up and left-to-right rules, as shown in Figure 10 [36]. Referring to 

Wang et al. [37], the operands used in this study were +, −, ×, ÷, ln, sin, cos, <, =, >…, con-

junction function was minimization (min), chromosome number used for modal training 

was 50, head size was 10, gene number was 2, adaptation function was mean absolute 

error (MAE), and the number of iterations of modal training was 100,000. 
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Figure 10. GEP modeling operation flowchart [36]. 

2.5.2. Simple Linear Regression (REG) 

REG is a conventional linear algorithm, which is used as the contrast of GEP algo-

rithm in this study. The training dataset and testing dataset is the same as GEP. 

𝑅𝐸𝐺 = 𝑎𝑖𝑥𝑖 + 𝛽 + 𝜀 (4) 

where xi is the ith input, α is the parameter, β is an intercept of the regression, and ε is the 

error term. 

2.6. Model Accuracy Evaluation 

The model simulation results can be evaluated via the calculation of evaluation met-

rics. The coefficient of determination (R2), absolute error (AE), MAE, ME, and RMSE were 

used to evaluate the rationality of the model Equations (5)–(8) in this study. Herein, R2 is 

the ability to evaluate the ratio of the variation value of the model to all variation values. 

The larger R2 is, the more the model can explain the proportion of all variation values; and 

the closer R2 is to 1.0, the more the model has the ability to explain. However, since R2 is 

susceptible to extreme values, simulation results may differ greatly from the actual value 

when R2 is close to 1. Therefore, error quantity is needed to evaluate the advantages and 

disadvantages of the model and analyze the main range of error. 

𝑅2 =
∑ (𝑦̂𝑖 − 𝑦)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

 (5) 

𝑀𝐴𝐸 =
1

𝑛
∑ 𝐴𝐸

𝑛

𝑖=1

=
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

  (6) 

𝑀𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1

 (7) 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

𝑛 − 1
, (8) 

where R2 is the coefficient of determination, 𝑦̂𝑖  is the predicted value in ith datum, 𝑦𝑖  is the 

observed value in ith datum, 𝑦̅ is the average of the observations, n is the number of actual 

observations, MAE is the mean absolute error, AE is the absolute error, ME is the mean 

error, and RMSE is the root mean square error. 
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3. Results 

3.1. Simulation Results and Accuracy Evaluation 

Figure 11 shows the water depth results simulated according to the two models and 

Table 4 shows the accuracy evaluation results. As observed, GEP and REG have similar 

performance in model training and test stage, while the GEP algorithm may have better 

performance in R2, MAE, and RMSE than the linear-based REG due to its ability to handle 

complex dimensional problems and learning. It should be mentioned that the reason why 

the different quality of the models, partitioning, or structure of the models is not discussed 

is due to the relatively small dataset of this study. 

In ME, although the value of REG was small (−0.008 m), it was not significantly dif-

ferent from that of GEP (0.012 m). The bathymetry retrieval model developed by REG is 

shown in Equation (9). The GEP model (Figure 12), which is composed of five sub-ETs 

(Appendix A, Figures A1–A5), is compiled in Python language, and the program is en-

closed in Appendix B. 

𝐵𝑎𝑡ℎ𝑦𝑚𝑒𝑡𝑟𝑦 = (𝑎 × 𝑁𝐼𝑅) + (𝑏 × 𝐺𝑟𝑒𝑒𝑛) + (𝑐 × 𝑁𝐷𝑉𝐼) + (𝑑 × 𝑁𝐷𝑊𝐼) + 𝑒 (9) 

where a, b, c, and d, respectively, are the constants of the REG bathymetry retrieval model. 

In this study, a = −21.834, 𝑏 = −4.797, c = 1.196, d = 2.586, and e = 2.469. 

 

Figure 11. Bathymetry retrieval results from GEP and REG models. 

 

Figure 12. The illustration of the GEP bathymetry retrieval model. 
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Table 4. Bathymetry retrieval accuracy of GEP and REG models. 

Model 
R2 MAE (m) ME (m)  RMSE (m)  

Training Testing Training Testing Training Testing Training Testing 

GEP 0.632 0.801 0.188 0.154 0.003 0.012 0.242 0.195 

REG 0.569 0.729 0.211 0.184 <0.001 −0.008 0.262 0.225 

3.2. Error Evaluation 

The observed water depth and the retrieval AE of the two models for the test dataset 

are compared and discussed. As shown in Figure 13 and Table 5, the simulation perfor-

mance of REG for shallow water (<0.4 m) and deep water (>0.8) is generally poor com-

pared with that of GEP model, and the retrieval error in the middle water depth [0.4 m, 

0.8 m] is close to that of the GEP model. It should be mentioned that regarding all of the 

enormous errors, i.e., datum numbers, 1, 8, 24, 25, 27, and 33, were observed after a rainfall 

event in a turbid water condition on 6 April 2016. Therefore, the numerous errors in the 

near-surface and bottom layers may be caused by light penetration, scattering variation, 

water quality, or riverbed composition [5,16,38].  

As to the statistical part of error, the number of AE error was classified at an interval 

of 0.1 and then counted in this study, as shown in Figure 14. It can be seen that the AE of 

approximately 90.9% water depth retrieval in GEP is less than 0.30 m, which is better than 

that in REG (81.8%). In the percentage of AE > 0.50 m, GEP (3.1%) is also lower than that 

in REG (9.1%), which indicates that the GEP algorithm can avoid large errors in water 

depth retrieval. This result is of great significance to retrieval of shallow water depth as it 

can improve the rationality of the model retrieval of water depth. 

Table 5. MAE comparison for three depth ranges in the testing dataset. 

Model 

Observed Bathymetry (m)  

<0.4 0.4–0.8 0.8–1.48 0–1.48 

MAE (m) 

GEP 

REG 

0.194 

0.220 

0.110 

0.112 

0.163 0.154 

0.221 0.184 

 

Figure 13. The absolute error (AE) of modeled and observed water depth of the testing dataset. 
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Figure 14. Frequency distribution of water depth AE of the testing dataset. 

4. Discussion 

In this study, the water depth reverse research model was developed for the moun-

tainous rivers in southern Taiwan. The results show that huge absolute errors occur in the 

turbid water, which is similar to the findings of [5,16,38]. Furthermore, this study com-

pares the modeled results and errors with relevant studies. Although the study area, data 

source, and data range were different from other studies and the results could not be di-

rectly compared, the water depth retrieval results of each study can be used to slightly 

evaluate the difference in accuracy of the water depth evaluation of different models.  

As shown in Table 6, in the MAE section, the GEP model developed in this study 

exhibits a higher retrieval error (0.154 m) than that (0.112 m) of the REG model developed 

via [16]; the value is higher than MAE (0.053 m) obtained at 0.20 to 1.50 m water depth via 

the contact measurement with ADCP but lower than that (0.740 m) of the water depth 

obtained using the SfM method. In ME, the retrieval error (REG = −0.008 m, GEP = 0.012 

m) of this study is similar to that of the ADCP contact measurement result of and better 

than the water depth results obtained via telemetry combined with the deep learning or 

random forest algorithm [16,21,39,40]. Finally, in the RMSE comparison section, GEP out-

performed the simulation results of the water depth retrieval model developed using ma-

chine learning [23,34,40,41] or linear algorithms [15,23,34] in previous studies, which in-

dicates that the GEP water depth retrieval model developed in this study has a certain 

degree of accuracy. Considering that the UAV has the ability to quickly survey a large 

area according to the user’s needs and the MAE error is of the same magnitude as ADCP 

but the price is only 10% of ADCP, it should be able to meet the shallow water depth 

survey requirements of mountainous rivers in Taiwan.  

The established bathymetry model showed a certain degree of retrieval accuracy of 

the study area. Nevertheless, the authors should mention that the water depth retrieval 

model is influenced by many factors, including light sources, turbidity and the penetra-

tion range [18,39], water composition, underwater vegetation cover, riverbed composition 

[16], and other parameters which may inhibit acoustic waves like salinity, temperature, 

etc. [19]. Therefore, the evaluation of the water depth near the surface or near the bottom 

layer may cause low accuracy, but it can be seen from the comparison of error distribution 

that GEP has the ability to avoid significant error. Additionally, compared with other 

studies, high-resolution multispectral images are adopted in this study. Therefore, the dif-

ferences in the resolution of images, types of aircraft, and multispectral camera bands may 

affect the retrieval results. In the actual application, the model should be selected based 

on the development of the model, using the accuracy requirements and the results of cur-

rent surveys. 
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Table 6. Comparison of water depth retrieval results between this study and related research. 

Study 
Tool 

Factor Value (m)  Range (m)  
Method Remote/Contact 1 

Kasvi et al. [16] ADCP 2 C MAE 0.030–0.070 (avg. 0.053) 0.20–1.50 

Kasvi et al. [16] REG R MAE 0.050–0.170 (avg. 0.112) 0.00–1.50 

This study ML (GEP) R MAE 0.154 0.01–1.53 

This study REG R MAE 0.184 0.01–1.53 

Kasvi et al. [16] SfM R MAE 0.180–2.980 (avg. 0.740) 0.00–1.50 

This study REG R ME −0.008 0.01–1.53 

This study ML (GEP) R ME 0.012 0.01–1.53 

Kasvi et al. [16] ADCP 2 C ME −0.030–0.000 (avg. −0.015) 0.20–1.50 

Kasvi et al. [16] REG R ME −0.170–0.020 (avg. −0.087) 0.00–1.50 

Jérôme et al. [21] REG R ME 0.130 0.09–1.01 

Mandlburger et al. [39] ML (DL) R ME 0.150 0.00–12.00 

Kasvi et al. [16] SfM R ME −0.180–3.200 (avg. 0.357) 0.00–1.50 

Sagawa et al. [40] ML (RF) R ME 0.250–1.370 (avg. 1.008) 0.00–5.00 

This study ML (GEP) R RMSE 0.195 0.01–1.53 

This study REG R RMSE 0.225 0.01–1.53 

Lee et al. [23] ML (NN) R RMSE 0.310–0.400 (avg. 0.358) 1.50–9.00 

Lee et al. [23] MBVA R RMSE 0.440 1.50–9.00 

Sandidge and Holyer [41] ML (NN) R RMSE 0.480 0.00–6.00 

Lee et al. [23] ML (NN) R RMSE 0.510–0.520 (avg. 0.515) 1.00–11.00 

Lee et al. [23] MBVA R RMSE 0.540 1.00–11.00 

Lee et al. [23]  TBRA R RMSE 1.020 1.50–9.00 

Lee et al. [23] TBRA R RMSE 1.250 1.00–11.00 

Hernandez and Armstrong [15] REG R RMSE 1.260 1.00–10.00 

Su et al. [34] REG R RMSE 1.340 0.00–5.00 

Sagawa et al. [40] ML (RF) R RMSE 0.830–1.910 (avg. 1.634) 0.00–5.00 

Su et al. [34] ML (LM) R RMSE 2.070 0.00–5.00 
1 R: Remote sensing; C: Contact measurement. 2 The investigation range of ADCP is from 0.2 m to 

1.5 m due to the equipment limitation. ADCP: acoustic Doppler current profiler; ML: machine learn-

ing; RF: random forest; NN: neural network; LM: Levenberg–Marquardt; DL: deep learning; SfM: 

specific structure from motion; MBVA: multiband value algorithm; TBRA: two-band ratio algo-

rithm. 

5. Conclusions 

Due to the rivers in the mountainous areas of Taiwan being often narrow and shallow 

and under the influence of extreme rainfall caused by climate change, the scour and dep-

osition of riverbeds change rapidly, and how to quickly obtain a reasonable riverbed 

cross-section has become a topic faced in river engineering. In this study, an UAV 

equipped with a multispectral camera was used to shoot the high-resolution multispectral 

images of Taiwan mountainous streams for quickly obtaining a river cross-section. The 

bathymetry retrieval model is developed using the GEP and REG algorithms. The results 

show that the MAE performance of GEP has increased by 16.3%, compared to the REG 

model. For the further comparison with relevant studies, the accuracy of the GEP model 

is close to or better than related studies using images to retrieve water depth and can avoid 

the occurrence of significant error. GEP is suitable for the water depth retrieval of rivers 

in mountainous areas in Taiwan and can be used for river management planning and 

disaster prevention management evaluation or the shallow shores of shallow rivers or 

near-shore areas that are not easily measured under similar conditions as this study.  

That being said, in practical applications, considering the basis of model develop-

ment, accuracy requirements, and field survey results when choosing a suitable model 
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remains necessary. This study only discusses the capability of the GEP algorithm applied 

to shallow water river in the southern mountainous region of Taiwan and indicates that 

its retrieval accuracy is sufficient for the water depth evaluation of the study area, which 

can be used as an alternative when water depth is not available on site, so it cannot be 

fully compared with other case studies. For further research, it is suggested that research-

ers might conduct more extensive case studies or meta-studies on the RS water depth re-

trieval technology, e.g., deep learning algorithms, generalized additive model (GAM), 

and decision trees. 
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Appendix A. Sub-ETs of GEP Bathymetry Retrieval Model 

 

Figure A1. Sub-ET1 of GEP bathymetry retrieval model. 

 

Figure A2. Sub-ET2 of GEP bathymetry retrieval model. 
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Figure A3. Sub-ET3 of GEP bathymetry retrieval model. 

 

Figure A4. Sub-ET4 of GEP bathymetry retrieval model. 

 

Figure A5. Sub-ET5 of GEP bathymetry retrieval model. Where, Avg is average function, Pow is 

power function, Nop is no operation, Min is minimize function, Max is maximize function, X3~5 is 

x to the power of 3~5, Floor is floor function, Pow10 is 10 to the power of x, Exp is exponential 

function, Atan is arctangent function, Mul is multiplication function, Div is division function, Add 

is addition function, Sub is subtraction function, Not is complement function, Mod is floating-point 

remainder function, Sin is sine function, Ln is natural log function, and C1 to C15 is constants, which 

can be found in Appendix B. 
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Appendix B. Python-Based Code for Shallow Water Depth Retrieval by UAV Imagery 

#------------------------------------------------------------------------ 

# UAV and Multispectrum: senseFly Ebee+, Parrot Sequoia 

# Study area: Jiashian weir, Kaohsiung County, Taiwan 

# Data range on water depth: 0.01m to 1.53m 

# d[0]: NIR; d[1]: Green; d[2]: NDVI; d[3]: NDWI 

#------------------------------------------------------------------------ 

from math import * 

def bathymetry(d): 

C1 = 3.0629214683402; C2 = 7.44743097927145; C3 = −6.01210684838703; 

    C4 = 5.67636563981775; C5 = 5.26783952924083; C6 = 465.48597815585; 

    C7 = 59.4521367572932; C8 = −9.7882015442366; C9 = -3.5382776565035; 

    C10 = −8.9856119439729; C11 = −6.1264381847591; C12 = −5.0825760673849; 

    C13 = 4.88974384648924; C14 = 6.4059468784722; C15 = 1.63019287697989; 

    y = 0.0 

y = ((((C2+d[3])*min(d[3],d[0],d[0]))+pow(pow(d[0],4.0),(d[2]*d[3]))+((floor 

(d[3])+pow(10.0,d[1])+C1)/3.0))/3.0) 

 

y = min(y,exp(atan(((floor(min(d[0],d[2],d[0]))/exp((d[0]-d[2]-d[3]))/(d[0]*C4* 

d[0]*C3))+C3)))) 

 

y = min(y,pow(exp((max(d[2],d[0],d[0],d[3])+((d[0]+d[3]+d[3]+d[3])/4.0)+d[0]+ 

d[2])),((pow(C5,3.0)+(d[0]*C6*d[2])+(d[3]+d[3]+d[3]+d[3])+(C7*d[2]*C5))/4.0))) 

 

y = min(y,((((d[0]+d[1]+C8+d[0])+(d[1]/d[2]/d[0]/d[2])+pow(d[0],5.0)+pow 

(d[0],d[3]))+(((d[0]+d[2]+d[2]+d[3])/4.0)-d[0]-d[3]-d[3])+((d[1]+d[3]+d[2]+d[0]) 

/4.0)+(d[3]*d[2]*d[0]*d[0]))/4.0)) 

 

y = min(y,max((1.0-(gepMod(C15,d[2])*C9*C10*d[0])),(((C10+C11+C12)/3.0)), 

(max(C12,C9,d[1],C13)*sin(d[3])*log(C14)))) 

 

return y 

     

def gepMod(x,y): 

# The built-in function is incorrect for cases such as −1.0 and 0.2. 

    numSign = 0.0 

    if ((x/y) < 0): 

        numSign = −1.0 

    elif ((x/y) > 0): 

        numSign = 1.0 

    else: 

        numSign = 0.0 

    return x - (numSign * floor(abs(x / y))) * y 
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