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Abstract: The deformation of landslides is a non-linear dynamic and complex process due to the
impacts of both inherent and external factors. Understanding the basis of landslide deformation is
essential to prevent damage to properties and losses of life. To forecast the landslides displacement, a
hybrid machine learning model is proposed, in which the Variational Modal Decomposition (VMD)
is implemented to decompose the measured total surface displacement into the trend and periodic
components. The Double Exponential Smoothing algorithm (DES) and Extreme Learning Machine
(ELM) were adopted to predict the trend and the periodic displacement, respectively. Particle Swarm
Optimization (PSO) algorithm was selected to obtain the optimal ELM model. The proposed method
and implementation procedures were illustrated by a step-like landslide in the Three Gorges Reservoir
area. For comparison, Least Square Support Vector Machine (LSSVM) and Convolutional Neutral
Network–Gated Recurrent Unit (CNN–GRU) were also conducted with the same dataset to forecast
the periodic component. The application results show that DES-PSO-ELM outperformed the other
two methods in landslide displacement prediction, with RMSE, MAE, MAPE, and R2 values of
1.295mm, 0.998 mm, 0.008%, and 0.999, respectively.

Keywords: landslide displacement prediction; Extreme Learning Machine; Variational Modal De-
composition; machine learning

1. Introduction

Landslide is one of the most common, frequent, and detrimental geo-hazards around
the world. It has caused great harm to human lives, properties, and infrastructures. The
Three Gorges Reservoir (TGR) area of China, a 660 km-long area along the Yangtze River
behind the large Three Gorges Dam, is exposed to geo-hazards due to the volatility of
hydrological conditions like seasonal precipitation and periodical reservoir water level
(RWL) [1–3]. Landslide is the most representative term among those geo-hazards, with
over 4200 potential landslides distributed in the TGR area [4]. The fatal Qianjiangping
landslide, with 14 million m3 materials, was reactivated as the RWL rose to 135 m after
the initial impoundment of the TGR in 2003. In this catastrophic landslide, a 30 m high
impulse water wave was triggered, 24 people died, and 129 buildings and many crafts
were destroyed [5]. To avoid or reduce damage induced by landslides, an early warning
system has been gradually established and improved in this area to effectively and timely
identify the large deformation of the potential landslides, and collect the reservoir water
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level and rainfall data [4]. However, a landslide is a complex and non-linear system, and
the mechanisms might be not yet clearly understood and different from each other. As
the direct output of this system, displacement of landslides is the result of the compound
action of the inherent geological circumstances and mechanical complexity of landslides,
as well as external triggering factors over time. As a critical component of the landslides
early warning system, displacement prediction of landslides in advance has been proved
an effective way for early prevention of landslide geo-hazards and avoiding the loss of
property and lives [6,7]. However, accurate prediction of landslide displacement triggered
by multi-factors is still challenging.

As a result of the prosperity of artificial intelligence, researchers have devised a lot of
different intelligent data-driven machine learning (ML) algorithms to solve nonlinear com-
plicated problems in many fields. Several representative ML models were also conducted
to forecast landslide displacement. Artificial neural network (ANN) [8], random forest [9],
support vector machine (SVM) [10–12], extreme learning machine (ELM) [13–16], and
the long short-term memory (LSTM) neural networks [17–20] have been broadly studied
and successfully utilized in landslide displacement prediction. According to their real
applications, those popular models can be classified into two categories: univariate fore-
casting model and multivariate forecasting model. The univariate forecasting model simply
takes the preceding displacement as the indicator for predicting the future displacement
of landslides, while the multivariate forecasting model can consider external triggering
factors of landslide deformation as well. Landslide total surface displacement can be split
into trend and periodic parts [21]. The trend component can be forecasted by the univariate
forecasting model and the periodic component which is affected by external influences can
be forecast with the multivariate forecasting model. Therefore, the multivariate model may
accomplish a smaller forecast error than the univariate model since the influencing factors
are taken carefully into account [6,22].

In this study, we proposed a hybrid machine learning model coupling the double
exponential smoothing (DES) and the particle swarm optimization-extreme learning ma-
chine (PSO-ELM), a novel artificial neural network architecture, to forecast the landslides
displacement which is frequently strongly affected by reservoir water level changes and
rainfall. The Baijiabao landslide in the TGR area, which has a step-like (intermittent) defor-
mation characteristic, was regarded as a case study herein. On the grounds of time series
decomposing and fully understanding the deformation mechanism of this landslide, six
major influences related to RWL and rainfall were input into the prediction model. The
least-square support vector machine (LSSVM) and convolutional neural networks–gated
recurrent unit (CNN–GRU) is also applied for comparison with the ELM model. The
prediction results demonstrate that the ELM model has a higher predictive performance
than the other two models.

2. Methodology
2.1. Procedure of the Proposed Model for Landslide Displacement Prediction

Figure 1 shows a schematic plot of the proposed hybrid machine learning model
for landslide displacement prediction. The wireless sensors deployed on the landslide in
TGRA generally include reservoir water level gauge, rainfall gauge, and global navigation
satellite system (GNSS). The former two devices are employed to automatically monitor
the external triggering factors, such as RWL and rainfall, which have a strong contribution
to the step-like deformation characteristic of landslides [23]. The GNSS is implemented to
monitor the ground displacement of landslides. First, the total surface displacement of the
landslide observed by GNSS was divided into trend components and periodic components
by variational mode decomposition. The long-term trend displacement of landslides can be
predicted by the univariate double exponential smoothing model, while the periodic varia-
tion component can be predicted using the multivariate extreme learning machine model
with considering the external triggering factors, such as rainfall and RWL. Furthermore,
to achieve the best predictive performance, the best ELM model is obtained by a particle
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swarm optimization algorithm. Meanwhile, the least square support vector machine is also
implemented with the same training and testing dataset for comparison with PSO-ELM.
Lastly, the general criteria: the root mean squared error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE), and determination coefficient (R2) of prediction
results were employed to evaluate the accuracy of the proposed model.
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2.2. Displacement Decomposition

Due to the complex coupling action of primary influences, such as geological circum-
stances, and external initiating factors (e.g., precipitation, reservoir water level, snowmelt,
etc.) of the slope, the movement patterns of landslides generally demonstrate non-linear
evolution characteristics [21–23]. So far, many time series decomposition methods, such
as double exponential smoothing [22], moving average [14], empirical mode decomposi-
tion [24], wavelet decomposition [25], Hodrick–Prescott (HP) filters [16], and variational
mode decomposition (VMD) [26] have been employed to split the landslide displacement
into the long-term trend component, which is influenced by the internal factors, and the
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chaotic periodic variation component, which is affected by the influence triggers. It is
common to adopt variational modal decomposition for modal variational problem solv-
ing and signal processing due to the adaptivity and completely non-recursive property.
Compared with empirical modal decomposition (EMD) and ensemble empirical modal
decomposition (EEMD), the biggest advantage of VMD is that it can determine the number
of modal decompositions by itself. It has a theoretical basis and can be used to deal with
nonlinear sequences with poor regularity and high complexity, decomposing the nonlinear
sequences into relatively smooth subseries.

Accordingly, the cumulative displacement of landslides in TGRA can be divided into
three parts as follows:

yi = Pi + Ti + εi (1)

where yi is the total displacement of landslides, Pi denotes the periodic part of displacement,
Ti denotes the trend part of displacement, and εi indicates the random noise that might be
induced by observations. Due to the continuous monitoring of the surface displacement
using GNSS, there are unavoidable errors and measurement noises, especially the shaking
noises, in the observation data which cover up the available signals that are needed [27].
In this study, the observation noise is removed by the wavelet de-noising approach, a
commonly used method, first [28].

2.3. Univariate Model: Double Exponential Smoothing (DES)

Double exponential smoothing is one of the time series analysis approaches for predict-
ing the future trend. The basic idea of this algorithm is to introduce a weighted combination
of the previous values and the last values for updating the trend of the time series through
exponential smoothing. It is a suitable algorithm for predicting the trend of time series
without periodic fluctuations [29]. The decomposed trend component of landslide defor-
mation is considered, which is driven by the geological conditions rather than external
triggering factors. Therefore, the DES, as a univariate prediction model, is favorable to fore-
cast the trend displacement value of landslides based on the past observed time series. For
a given time series τi, the key equations associated with the DES algorithm are represented
as follows:

Si = ατi + (1− α)(Si−1 + bi−1) (0 ≤ α ≤ 1) (2)

bi = γ(Si − Si−1) + (1− γ)bi−1 (0 ≤ γ ≤ 1) (3)

Ti+1 = Si + bi (4)

where Si denotes the smoothed value calculated by the current observation τi at the time i.
bi is the best-estimated gradient at the time i. Ti+1 is the predicted value at time i + 1. The
initial values for Si and bi in DES are generally given as follows:

b0 = τ1 − τ0 (5)

S0 = τ0 (6)

2.4. Particle Swarm Optimization

Particle swarm optimization (PSO) is an optimization algorithm. It is a global search
method proposed by Eberhart and Kennedy, an optimization algorithm that simulates the
natural behaviors of organisms as well as group intelligence [30].

PSO restricts each particle to update two vectors, the velocity variable Vi =
[
v1

i , v2
i , . . . , vM

i
]

and the position vector Yi =
[
y1

i , y2
i , . . . , yM

i
]
, in the process of finding the best possible

solution, where i represents the number of the particle and M is the dimension of the
solution problem. The velocity vector denotes the characterized speed and direction of the
motion, while the position vector determines the location of the solution in the solution
room which is the basis of quality evaluation. The algorithm also requires each particle
to update a vector of its historical optimal positions pI and the population to maintain
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a global optimal vector pg. The particles update their velocity and position, calculated
as follows.

vk+1
im = ωvk

im + c1r1

(
pk

im − yk
im

)
+ c2r2

(
pk

gm − yk
im

)
(7)

yk+1
im = yk

im + vk+1
im (8)

where k is the count of hidden layer nodes, ω is a non-negative, inertial weight that adjusts
the search range for the solution space. Pi = [pi1, pi2, · · · , piM]T denotes the local optimum
location of the i th particle and Pg =

[
pg1, pg2, · · · , pgM

]T is the global best location of
the swarm. c1 and c2 are the acceleration constant that regulates the maximum learning
step. The terms r1 and r2 are two random functions that take values in the range U(0, 1) to
increase the search randomness. [vmin, vmax] is the range of the velocity.

2.5. Multivariate Model: Extreme Learning Machine (ELM)

Extreme Learning Machine, firstly proposed in 2006 [31], has shown great ability in
the field of prediction and comprehensive evaluation. ELM is a novel fast feedforward
learning algorithm. It can randomly generate the input weights and biases to obtain the
corresponding output weights of a single hidden layer neural network. The most notable
characteristic of ELM is that it is faster than traditional learning algorithms while ensuring
the accuracy of forecasting, especially for single hidden layer feedforward neural networks
(SLFN). In recent years, ELM has shown great potential for development and application,
attracting a lot of attention from researchers in academia and industry, and has achieved
fruitful research results.

In the ELM model, given N arbitrarily different training samples {(xi, ti)}N
i=1, where

xi = [xi1, xi2, . . . , xin]
T ∈ Rn, is the input vector and ti = [ti1, ti2, . . . , tim]

T ∈ Rm is the
corresponding desired output vector. In a standard ELM model with n input vectors,
L hidden layer neurons, and m output neurons with an activation function of g(x), the
mathematical model is constructed as follows:

T = Hβ (9)

Which:

H =
[

h(x1)
T , . . . , h(xN)

T
]T

=

 g(w1·x1 + b1) · · · g(wL·x1 + bL)
...

. . .
...

g(w1·xN + b1) · · · g(wL·xN + bL)


N×L

(10)

In ELM, H is also named the random feature mapping matrix, wi = [wi1, wi2, . . . , win]
T

denotes the input weights which connect the hidden layer neuron i and the input layer
neuron, bi denotes the bias of the hidden layer neuron I, β = [β1, β2, . . . , βL]

T denotes the
matrix of weights between the output and hidden layers, T = [t1, t2, . . . , tN ]

T denotes the
training sample expectation output matrix. After the parameters (wi, bi) of the hidden layer
neurons are randomly initialized according to the probability of any continuous sampling
distribution and given the training datasets, the hidden layer output matrix H is known and
invariant, and in this way, Equation (9) is transformed into solving a minimum-parametric
least-squares solution for the linear system T:

β̂ = H+T (11)
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2.6. Model Evaluation

To verify the prediction performance of the hybrid model, the root means squared
error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), the
correlation coefficient (R2) of prediction and observation were calculated as follows:

RMSE =

√
1
n ∑n

i=1

(
y∗i − yi

)2 (12)

MAE =
1
n ∑n

i=1|yi − y∗i | (13)

MAPE =
100%

n ∑n
i=1

∣∣∣∣yi − y∗i
yi

∣∣∣∣ (14)

R2 =
∑n

i=1(yi − y)
(
y∗i − y∗

)√
∑n

i=1(yi − y)2(y∗i − y∗
)2

(15)

where yi indicates the actual observed displacement value of landslide, while y∗i indicates
the predicted displacement value of landslide, and n is the number of the data points.

3. Case Study
3.1. Baijiabao Landslide

The Baijiabao landslide is situated in the Xiangjiadian village of Zigui County. It is
on the right bank of the Xiangxi River, one of the tributaries of the Yangtze River. The
landslide is approximately 2.5 km away from the confluence of the Xiangxi river and 30 km
away from the Three Gorges Dam [32]. The climate of this area is subtropical continental
monsoon climate. The average annual precipitation and temperature range from 987 to
1326 mm and 16 and 18 ◦C, respectively. The rainfall season runs between April and
October. Figure 2 shows the location and overall view of the Baijiabao landslide. The
landslide is wide at the feet, narrow at the head, and approximately bell-shaped in the
plane. The elevation and width of the upper boundary of this landslide are 280 m and
300 m, respectively. The overall slope of this landslide is approximately 16◦. The length of
the Baijiabao landslide from west to east is roughly 550 m. The toe of this landslide is at
125 to 135 m altitudes, which was immersed into the Xiangxi River in 2003. The thickness
of the upper part is about 10 to 30 m, while the lower part is 20 to 40 m. The bedrock ridge
and gully define the north and south boundary of the landslide, respectively. The volume
of the sliding mass materials was estimated to be about 990 × 104 m3, covering an area of
about 22 × 104 m2 [33].

Several detailed field investigations and explorations were conducted to identify the
landslide features. Deposits and colluvium composed the material of the landslide. It is
recognized as gravel soil [34]. The strata of the underlying bedrock belong to the Xiangxi
Formation (J1x) of Lower Jurassic and dip about 30◦ toward the southwest. The Xiangxi
formation is dominated by alternating sandstone and silty mudstone. This formation is
quite visible in the vicinity of the landslide. A crossed-section taken along I-I’ line (Figure 3)
is exhibited in Figure 4. The slope of the upper part of the landslide above the water is
15 to 20◦ while the lower part above the water has a slope angle of 5 to 10◦. The lateral
boundaries are defined by two gullies. The toe of the rapture surface was submerged into
the reservoir in 2003.

The Baijiabao landslide experienced a significant movement, and several emergency
surface monitoring monuments based on several total stations and an inclinometer ZK-1
were firstly set up to monitor the displacement of this landslide. Then, as part of the Third
stage of the Professional monitoring project in TGR of the Ministry of Natural Resources,
a monitoring system, as depicted in Figure 2, was implemented in October 2006 for early
warning. Four GNSS displacement monitoring points, numbered from ZG323 to ZG326,
were deployed to measure the surficial deformation successively. Further, another three
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new GNSS monitoring devices, numbered from ZG400 to ZG402, and four crack gauges
identified as C1, C2, C3, and C4 were implemented to intensify the system in 2016 and 2017,
respectively. The accuracy of the GNSS device and crack meter is ±5 mm and ±0.1mm,
respectively. Meanwhile, a tipping bucket rain gauge was implemented to collect rainfall
data automatically with a resolution of 0.2 mm per tip, the transmission time interval
ranges from 5 min to 24 h.
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the footpath; (f) Crack on the farmland; (g) Crack along the left boundary; (h) Transverse crack
on the road.
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3.2. Deformation Characteristics
3.2.1. Deformation History

The reservoir was first impounded to 135 m, 156 m, and 175 m in 2003, 2006, and 2008,
respectively. Then the RWL was cyclically operated between 145 and 175m every year. The
site investigation is carried out every month and more frequently during the rainfall season
since 2003, as part of the early warning system in the TGR area. Several discontinued
cracks have shown up in the south flank and two cracks in the north flank on 22 June
2003 during the first impoundment of TGR. After a heavy rainfall event, the deformation
intensified, and a series of large cracks emerged at the head of the landslide [32]. The road
also subsided when the RWL first reached 135 m a.s.l. According to data from inclinometer
ZK1 from October 2003 to July 2004, an obvious potential sliding band was detected 28
to 30 m underground, as shown in Figure 5. It indicates that the Baijiabao landslide has
experienced an obvious movement above the sliding zone. Unfortunately, the casing of
the inclinometer was cut off in August 2004 as a result of the continuous deformation of
the landslide.
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During the rainfall season in 2008, a lengthways crack appeared on the road at the left
boundary (Figure 2f). In July 2014, the right boundary crack C1 extended into the courtyard
of the resident (Figure 6b). In 2015, the transverse crack showed up along the new road,
and the road continuously sunk in the following years. The settlement is about 3 m by
now (Figure 6c,d). In June 2020, an arc transverse crack, 20 m long and 1 to 10 cm wide,
was observed on the new road which was rebuilt in July 2019 (Figure 6d). At the same
time, the parts of the road on the left boundary started to sink again (Figure 6a). It is worth
mentioning that the cracks on the left boundary open in July and close in October every
year as shown in Figure 2g.

3.2.2. Characteristics of the Monitoring Data

The deformation trend of the Baijiabao landslide is established by the surficial mon-
itoring instruments on the slope. Figure 7 displays the cumulative displacements of the
Baijiabao landslide monitored by GNSS stations from 2006 to 2020. The displacement data
illustrated that this landslide was in the stage of an overall movement toward the Xiangxi
River, and the average movement direction is N74◦E (Figure 3). The largest displacement
monitoring point is ZG326 which occurs on the right part of the landslide. The smallest is
ZG323 on the left part. The different parts of a landslide may present different velocities
due to the micro-topographic features, especially for soil landslides [35]. Although the
deformation magnitude is different, the trend is consistent. By far, the total displacement
is up to 1.8 m and exhibits a dynamic step-like pattern. As shown in Figures 7 and 8,
this landslide experiences fast movement toward the river typically in June or July every
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year when the RWL decreases to the lowest level, exhibiting an intermittently moving
pattern [36,37]. According to the field investigation, the cracks along the left boundary
were opened in the process of the RWL water falling to 145 m. However, when the RWL is
relatively high during the rest of the year, the slope moved slowly even backward slightly
(the monthly displacements appeared negative) and the cracks in the left boundary were
closed. The statistics of the annual displacement rates since 2006 in Figure 9 indicated that
this landslide experienced an alternate movement from 2006 to 2015. In the past 5 years,
the annual displacement has decreased, from 160 mm in 2015 to 40 mm in 2018. It seems
like the landslide was gradually accommodated to the cycle of the reservoir.
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Figure 7. Time series of monitoring accumulative displacement, reservoir water level, and
monthly rainfall.
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Figure 8. Monthly displacement corresponds to the reservoir water level and monthly rainfall.
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Figure 9. Annual displacement and the ratio of displacement from June to July to annual displacement.

The displacements of crack meter C1 to C4 were shown in Figure 10. Three acceler-
ated events (confined by the cyan rectangle and labeled from A1 to A3) were revealed.
In these events, the displacements increased sharply with a maximum displacement of
approximately 100 mm with the RWL drawdown from 152 to 145 m in June. In contrast, the
movement during the rest of the year was subtle unless stimulated by extreme events. Like
the extreme rainfall event in October 2017, a long-duration rainfall from late September
to October caused this deformation. This rainfall event activated many landslides in the
Zigui county, TGR area (such as the Baibao landslide and the Tanjiwan landslide) [38]. The
trend is highly consistent with the GNSS. But the magnitude is different: the displacement
from April 2017 to January 2020 at C1, C2, and C4 were 273, 413, and 413 mm, respectively,
whereas it is 187, 219, 197, and 252 mm for ZG323, ZG324, ZG325, and ZG326, respectively
within the same period.
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3.3. Prediction of Landslide Displacement

The GPS monitoring point ZG324, which is located at the front of the profile I-I’ of the
Baijiabao landslide, was used for the establishment of the predicting model. According to
the analyses before, the rainfall and the reservoir level impose an important effect on the
landslide movement. Thus, the rainfall and RWL were also input into the proposed model.

Wavelet transform was adopted for de-noising to remove the monitoring error. The
monitoring data from December 2006 to June 2016 were input into the model for training,
the data from July 2016 to February 2019 were adopted for validation, and the remaining
(from February 2019 to July 2020) were utilized to test the capability of the hybrid model.

3.3.1. Trend Displacement Prediction

The VMD decomposing method was applied to decompose the original total surface
displacement into the trend part and the periodic part. The results are exhibited in Figure 11.
It depicts that the trend displacement was an approximate monotonically increasing se-
ries. The trend displacement rate and the periodic displacement rate decreased in recent
years. This phenomenon may be due to the strength–regain mechanisms in the reactive
intermittently moving landslides [36,37]. Even though the strength of the sliding zone is
reduced to the residual state during sliding, it could be recovered to some extent during
a more stable period. Hence the displacement rate is decreasing. It has been recognized
in other reactive landslides in the TGR area, such as the Muyubao landslide [33], and the
Bazimen landslide [18].
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The trend displacement is dominated by the internal circumstances which represent
the inherent behaviors of the landslides in the long term, such as geological conditions,
structures, and materials [39]. It is popular to apply the double exponential smoothing
method for the trend displacement predicting [40].

Figure 12a shows the result of the predicted trend displacement by the DES algorithm.
Figure 12b illustrates the regression between the predicted and the measured value of the
trend displacement, and the correlation coefficient is 1.00005 which indicates the excellent
performance of this method.
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3.3.2. Periodic Displacement Prediction

It is important to predict the periodic displacement for obtaining the total displacement.
Considering the analysis of the deformation characteristics above, the total displacement
of the Baijiabao landslide was governed by the RWL and seasonal rainfall. Figure 13
demonstrates that the periodic displacement decreases or increases when the RWL is rising
or falling. However, the pace does not match and there is a time lag between the periodic
displacements and the RWL. Considering the dependence of the movement on the state
evolution of the landside and the external factors, six major influence factors were adopted,
including the rainfall of the current month, the change of RWL during the last month, the
RWL of the current month, the RWL of the last month, the RWL two months before, and
the variation of the periodic displacement during last month.

Those major influences were input into the PSO–ELM model, and the predicting
results are presented in Figure 14a. It illustrates that the shape of the periodic displacement
was accurately captured and the crests and the valleys of the periodic displacements were
predicted, which verifies that the reasonability and reliability of the input major influences
in return. Figure 14b indicated that the correlation coefficient between the measured and
predicted value is 0.99696 (close to 1 means high accuracy) and most of the predictors
are concentrated in the 95% prediction band, which means PSO–ELM is a very effective
method for periodic displacement prediction.
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3.3.3. Total Displacement Prediction

The total displacement equals the summation of the predicted trend and periodic
component. Figure 14c indicates that the proposed DES–PSO–ELM model has a splendid
performance in the prediction of the measured displacement. Most predicted points were
gathered in the 95% prediction band in Figure 14d i.e., the proposed hybrid machine
learning model can be applied to predict the total displacement of landslides.

3.4. Comparison with Other Conventional Models

The periodic displacement was also predicted by the least square support vector
machine and convolutional neural networks—gated recurrent units to assess the superiority
of the proposed hybrid model. Figure 15 exhibits the prediction results of three comparison
methods, it illustrates that the pattern of the periodic displacement was captured by three
models, but the trough and crest vary a lot. The LSSVM and CNN–GRU model show less
adaptability to the turn values.
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Table 1 presents the performance results for three models. RMSE, MAE, and MAPE of
the total data set for DES–PSO–ELM are the minimum for three models, 1.295%, 0.998, and
0.008 respectively. DES–PSO–ELM, in general, in training, validation, and testing is more
excellent than the other two models.

Table 1. Comparison of different models for periodic displacement prediction (July 2016 to July 2020).

Model RMSE MAE MAPE (%) R2

DES–PSO–ELM

total 1.295 0.998 0.008 1.000
training set 1.340 1.041 0.012 1.000

validation set 1.369 1.088 0.001 0.999
testing set 0.657 0.512 0.001 0.991

DES–LSSVM

total 2.542 1.944 0.013 0.999
training set 1.824 1.458 0.017 1.000

validation set 3.829 3.207 0.002 0.989
testing set 3.551 2.904 0.002 1.032

DES–CNN–GRU

total 2.409 1.811 0.015 1.000
training set 2.045 1.535 0.021 1.000

validation set 3.297 2.533 0.002 0.999
testing set 2.708 2.350 0.002 0.961
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4. Discussion
4.1. Effects of RWL

The movement of the Baijiabao landslide shows a remarkable response (the open
and close of the crack) to the periodic operation of the reservoir, especially during the
drawdown in Figure 6. Figure 7 illustrates that when the RWL was drawn down to about
150 m, the monthly displacement increased sharply and lasted for approximately 1 or
2 months every year. Figure 8 shows that the displacement from June to July accounted for
more than 50 percent of the annual displacement every year and 75 percent most of the
time. The proportion of ZG323, ZG325, and ZG326 exceeded 100 percent in some years
which means the body of the landslide moved forward in these two months and backward
in some other specific months when the RWL is higher.

The detailed examination of the monthly displacement rate scatters, in Figure 16, also
suggested that fast movement scatters were mostly spread between 145 m and 152 m, and
the majority of negative points are concentrated in the red rectangle when the RWL is
higher than 160 m. In addition, the data show that the fast point only shows up when the
RWL rate is between 0.2 and −0.6 m/day and mostly is characterized by the negative rate
of RWL. It demonstrated that the low RWL during the drawdown (mainly from 152 to
150 m) has a favorable condition for the acceleration of the Baijiabao landslide while the
high RWL (higher than 160 m) has a worse condition. 152 m during the drawdown could
be an RWL threshold for deformation warning of this landslide.

4.2. Effects of Rainfall

Due to the low RWL phase being overlapped by the rain season, it is hard to analyze
the relations between displacement and rainfall. Figure 17 shows that with the monthly
rainfall rise, the monthly displacement did not show an obvious upward trend even at the
same water level (the points in the same color). On the contrary, the RWL of the points with
large displacement is low. It suggested that the monthly rainfall amount can not reflect the
rainfall effect properly.
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Figure 17. Effect of Rainfall on landslide displacement illustrated by ZG323.

As shown in Figure 10, the maximum daily rainfall of 83.4mm occurred on 11 May
2017 but the fast movement did not occur this month. The displacement increased fast
after a 22-days long rainfall event in October 2017. The 22 days of cumulative rainfall
from 27 September 2017 to 18 October 2017, is 280.4 mm which is the biggest 22 days
of cumulative rainfall (DCR) from 2017 to 2020. This event caused many landslides in
Zigui County [38]. The displacement of cracks started to increase on 2 October and the
cumulative rainfall was about 120.3 mm. The increment was about 12 to 97 mm in this
rainfall event. It suggested that long-duration-low-intensity rainfall has an impact on the
stability of the Baijiabao landslide.
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5. Conclusions

In this study, a hybrid machine learning model coupling double exponential smooth-
ing, particle swarm optimization, and extreme learning machine were proposed. Applying
this model, the displacement of the Bajiabao landslide in the TGR area was used for test-
ing. The LSSVM and CNN–GRU models were used for comparison. The total landslide
displacement can be predicted accurately with the proposed model which proved to be the
best with RMSE of 1.295%, MAE of 0.998, MAPE of 0.008, and accuracy of 1.000.

The annual displacement of the Baijiabao landslide has decreased during the past
five years, and the effect of the cycle of the reservoir on the stability has diminished. The
primary external influences of the Baijiabao landslide are the fluctuation of the reservoir
and the long-duration seasonal rainfall. The displacement from June to July accounts for
more than 50% of the annual displacement. The rise of the reservoir has contributed to the
stability of the Baijiabao landslide which was reflected by the displacement monitoring
data. The RWL 152 m during the drawdown could be the deformation warning threshold
of this landslide.
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