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Abstract: Air pollution is currently considered one of the most serious problems facing humans. Fine
particulate matter with a diameter smaller than 2.5 micrometres (PM2.5) is a very harmful air pollutant
that is linked with many diseases. In this study, we created a machine learning-based scheme to
estimate PM2.5 using various open data such as satellite remote sensing, meteorological data, and
land variables to increase the limited spatial coverage provided by ground-monitors. A space-time
extremely randomised trees model was used to estimate PM2.5 concentrations over Europe, this
model achieved good results with an out-of-sample cross-validated R2 of 0.69, RMSE of 5 µg/m3, and
MAE of 3.3 µg/m3. The outcome of this study is a daily full coverage PM2.5 dataset with 1 km spatial
resolution for the three-year period of 2018–2020. We found that air quality improved throughout
the study period over all countries in Europe. In addition, we compared PM2.5 levels during the
COVID-19 lockdown during the months March–June with the average of the previous 4 months and
the following 4 months. We found that this lockdown had a positive effect on air quality in most
parts of the study area except for the United Kingdom, Ireland, north of France, and south of Italy.
This is the first study that depends only on open data and covers the whole of Europe with high
spatial and temporal resolutions. The reconstructed dataset will be published under free and open
license and can be used in future air quality studies.

Keywords: PM2.5; AOD; machine learning; Europe; open data

1. Introduction

Air quality monitoring is one of the most important fields when it comes to the
individual’s health due to the high risks related to its low quality. Fine particulate matter
is an air pollutant that consists of liquid and solid molecules such as acid condensates,
sulphates, and nitrates that have negative effects on human health [1]. The harmful effects
of these particles vary depending on the concentrations, time exposure, and the particulate
diameter. Risks are higher when the diameter gets smaller; PM2.5 can penetrate deep
into the lungs and may reach the blood circulation causing dangerous diseases such as
cardiovascular problems, diabetes, prenatal disorder, and even mortality [2–5]. The effects
are more notable in urban areas, where higher population density can be found, and
more exposure will occur [6]. The form of the urban area plays an important role in the
concentration of PM2.5 [7].

The U.S. Environmental Protection Agency (EPA) has set an annual average standard
of 12 µg/m3 and a daily (24 h) of 35 µg/m3 for PM2.5 and when the amounts of these
pollutants in the ambient air exceed these limits that could cause serious health issues [8].
The revised Directive 2008/50/EC of the European Parliament (EP) and of the Council
on ambient air quality and cleaner air for Europe set limit values of annual PM2.5 to
25 µg/m3 since 1 January 2015 and not to exceed 20 µg/m3 since 1 January 2020. PM2.5
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ground-based monitors are used to measure PM2.5 with high accuracy. These stations
are considered the backbone in almost all analyses related to these particles. However,
the high cost of establishing these monitors limits the overall spatial coverage and the
researchers who are focusing on air quality were seeking new methodologies to increase
the spatial coverage so they have a better understanding on larger geographical scales.
Numerous techniques were used to increase PM2.5 spatial coverage, in other words, to
estimate the pollutant concentrations in the areas where no monitors exist. Examples of that
are interpolation techniques that count only on the ground stations [9,10]. The accuracy of
these interpolations is highly related to the spatial distribution of the stations; although
they can have good estimations in the areas that are surrounded by the network stations,
they will probably fail to have good estimations where there is a lack of the stations [9].
Land use regression (LUR) models were also used to analyse pollution, particularly in
densely populated areas [11,12].

Satellite remote sensing provides wide spatial coverage compared to the spatial cover-
age obtained from ground monitors. Aerosol optical depth (AOD) is an air quality indicator
that can be observed from satellite remote sensing, and it is defined as the measure of the
columnar atmospheric aerosol content. Numerous studies have found a positive corre-
lation between satellite-based AOD and surface particulate matter [13,14]. Researchers
have utilised satellite AOD to estimate PM2.5 by developing different types of models such
as physical models that were built based on the physical relationship between AOD and
surface PM2.5 [15]. Statistical methods which train the relationship between AOD and
PM2.5 using different statistical models [16,17] are suitable for the regions with a sufficient
number of ground stations since they require a large amount of training data [18]. The
generalised additive model (GAM) empowers the AOD–PM relationship by adding me-
teorological and land use information [19]. In the last few decades, artificial intelligence
models have been applied to estimate PM2.5 and were found to give a better description
of the complex non-linear relationship between PM2.5, AOD, and other independent vari-
ables than the previously mentioned methods [18] based on the usage of machine learning
algorithms [20–22] or deep neural networks [23,24]. These algorithms utilise satellite ob-
servations, various modelled meteorological variables, population, land use, land cover,
etc., to estimate PM2.5. The importance of the inputs differs from one area to another, but
generally, they can enhance PM2.5 estimations since counting solely on AOD to estimate
near-surface particulate matter values is not sufficient [25]. AOD without other variables
was not enough to provide good PM2.5 estimations over Europe [26]. In Great Britain,
AOD was not among the 15 most important variables when predicting PM2.5 levels [20].
Satellite AOD are more correlated with surface PM when the aerosols are well mixed within
the planetary boundary layer height (PBLH) [9]. A global study found that 69% of the
total AOD are within the PBLH [27], other studies have shown that temperature plays an
important role in capturing AOD and understanding its vertical distribution that improve
PM analysis [28]. Moreover, a higher humidity atmosphere is likely to have higher AOD
without affecting the levels of PM2.5 [9]. Other meteorological variables that affect PM2.5
are the precipitation that showed a negative correlation in some areas [29] and a positive
correlation in other parts of the world [30], and wind speed (WS) that also has different
effects from one area to another [30,31].

In this study, we report the modelling of spatiotemporal heterogeneity of PM2.5 using
machine learning to generate daily estimations of PM2.5 over the European Union member
states, together with the United Kingdom, Iceland, Liechtenstein, Norway, Switzerland,
Albania, Bosnia and Herzegovina, Kosovo, Montenegro, North Macedonia, and Serbia [32].
We will refer to the area of study as “Europe” located inside the coordinates box 26◦W,
72◦N, 42◦E, and 36◦S. The total study area covers 13,391,504 of 1 km grid cells; 5,450,009 of
the total cell number are located over land. The study period covers the years 2018–2020
with full coverage of 1 km spatial resolution using various open data. In the following
sections, we will introduce the study area and period and present the preliminary data that
were tested while building the predicting model.
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2. Primary Data

In this section, we will introduce the primary data we investigated while building the
model. Not all these data were utilised while building the model. The chosen data can be
found in Section 3.3.

2.1. PM2.5 Measurements

PM2.5 observations were collected from 848 stations across Europe represented in
Figure 1. Data was downloaded from OpenAQ which is a non-profit organisation that
collects air quality data from different governmental and research institutions and provides
it to the users [33].
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Figure 1. The location of PM2.5 ground stations with the number of valid measurements used in this study.

For each station, data between 10 a.m. and 2 p.m. local time were averaged where there
are at least 2 available observations to be consistent with MODIS satellites overpassing.
We identified a skewed distribution for PM2.5 as shown in Figure 2, we calculated the
25th percentile (Q1), the 75th percentile (Q2) of the dataset, and the inter-quartile range
(IQR = Q3 − Q1). All PM2.5 values that are higher than 2 × (Q3 + 3 × IQR which is refer
as outer fence [34]) were removed, which counted less than 1% of the total data. The
number of valid PM2.5 observations was 123,248 in 2018, 143,048 in 2019, and 158,964 in
2020 totalling 425,260 observations throughout the study period.
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2.2. AOD Data

AOD data were downloaded from GHADA, which is a Geo-Harmonized Atmo-
spheric Dataset for Aerosol optical depth at 550 nm [35]. It contains daily estimations of
AOD550 over Europe with 1 km spatial resolution. GHADA was built based on the MODIS
MCD19A2 product [36] and modelled AOD data from Copernicus Atmosphere Monitoring
Service (CAMS) [37] that were used to overcome the high percentage of gaps found in
the MCD19A2 product. This dataset showed good results when validated with NASA’s
Aerosols Robotic Network (AERONET).

2.3. Meteorological Data

Meteorological data of the following variables wind component u, wind component
v, PBLH, total column water vapour, total perception, evaporation, surface pressure, and
temperature at 2 m (T2m) were collected from ERA5-Land which is a reanalysis dataset
offering a consistent view of the development of land parameters over several decades with
a spatial resolution of ~9 km. ERA5-Land was produced by replaying the land component
of the European Centre for Medium-Range Weather Forecasts ERA5 climate reanalysis [38].
Relative humidity was collected from ERA5 with 0.25 × 0.25 horizontal resolution.

2.4. Digital Elevation Model

The Japan Aerospace Exploration Agency (JAXA) provides a worldwide digital sur-
face model with a horizontal resolution of ~30 m by the Panchromatic Remote-sensing
Instrument for Stereo Mapping (PRISM), which was carried on the Advanced Land
Observing Satellite “ALOS” [39]. Data were accessed on the 8 March 2021 from https:
//www.eorc.jaxa.jp/ALOS/.

2.5. Normalised Difference Vegetation Index

MODIS Terra satellite provides a monthly normalised difference vegetation index
(NDVI) product called MOD13A3 [40]. It has 1 km spatial resolution, and it quantifies
vegetation presence with values ranging between −1 and 1. NDVI is commonly expressed
as shown in Equation (1):

NDVI =
NIR − Red
NIR + Red

(1)

where NIR and Red are spectral reflectance values in the near-infrared and red wavelengths.

2.6. Land Cover

Land cover data were extracted from the 2018 CORINE Land Cover (CLC) inventory
that was built based on ortho-rectified satellite images having a spatial resolution ranging
from 5 m to 60 m and were aggregated into 100 m. We grouped the original 44 CLC classes
into seven level 1 classes defined as: agricultural areas, artificial areas, continues urban
areas, discontinues urban areas, forests, industrial areas, and water surfaces. Then, we
calculated the percentage of each class in every 1 × 1 km2 grid cell.

2.7. Population Data

Population data was extracted from the Visible Infrared Imaging Radiometer Suite
(VIIRS) night-time lights (NTL) data by averaging the monthly data of the year 2019.

3. Methodology
3.1. Data Pre-Processing

All data were reprojected to the European Terrestrial Reference System 1989 (EPSG:3035)
that uses metres as measuring units. This system is used for statistical mapping and other
purposes which requires a true area representation, using a 1 km grid cell with bilinear
interpolation method for ECMWF data and the cubic convolution for the ALOS elevation
model. In addition, we calculated WS based on the two wind U and V components.

https://www.eorc.jaxa.jp/ALOS/
https://www.eorc.jaxa.jp/ALOS/
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A spatio-temporal dataset was created by extracting the information from all input
data at the locations of PM2.5 stations. The Julian day, month, and year were added as the
temporal information; longitude and latitude were added as the spatial information. The
generated dataset was used to train and test the model.

3.2. Model Development

We first analysed the linear relationship between the primary independent variables
and PM2.5 values. PBLH was negatively correlated to PM2.5 with Pearson correlation of
r = −0.24. Most of the meteorological variables were also negatively related to PM2.5 with
r = −0.2 for WS, r = −0.15 for T2m, r = −0.13 for RH, and r = −0.1 for TP. AOD and
evaporation had the highest positive correlation with PM2.5 r = 0.14. Based on this initial
data exploratory analysis, we excluded some primary inputs that had high correlation with
other inputs such as skin temperature, which was correlated to T2m with r = 0.93. We
tested linear models to estimate PM2.5. These models suffered from underfitting issues and
failed to describe the relationship between the independent variables and PM2.5. Therefore,
we used a more complex algorithm called Extremely Randomised Trees (ET).

ET is a very similar decision tree-based ensemble method to the widely used Random
Forest (RF). Both algorithms are composed of large number of trees, where the final decision
is obtained from the prediction of every tree by majority vote in classification problems and
arithmetic average in regression problems. Both algorithms have the same growing tree
procedure and selecting the partition of each node. Additionally, both algorithms randomly
choose a subset of input features.

ET, on the other hand, strongly randomises the selection of both attribute and cut point
while splitting a tree node using the whole learning sample to grow the trees which adds
randomisation, making it a more robust algorithm against overfitting. From computational
point of view, the complexity of the tree growing procedure is on the order of N log N
with respect to learning sample size [41]. The main parameters in the ET splitting process
are the number of attributes that are randomly selected at each node and the minimum
sample size for splitting a node. For further information on how the ET algorithm operates
refer to Table 1 in [41]. In addition to accuracy, the ET algorithm has higher computational
efficiency than the RF algorithm since it chooses the splits randomly and does not look
for the optimum split as the latter one [41]. The number of estimators (number of trees in
the forest), the maximum depth of the trees, the number of samples required to split an
internal node, and the minimum number of samples required to be at a leaf node were the
main parameters while tuning our model.

Table 1. The dependent and independent variables used to build the ET model.

Name of the Variable Unit Minimum Maximum Mean STD

PM2.5 µg/m3 2 80 11.81 9.26
Aerosol optical depth - 0.01 3.12 0.13 0.08

PBLH m 73.90 3420.17 933.39 463.59
WS m/s 0.23 18.12 3.88 2.13
T2m K 249.86 314.15 287.03 8.17

Relative Humidity % 0.04 110.82 68.53 22.93
Total precipitation mm 0 8 0.1 0.3

Total Column Water
Vapour Kg/m2 0.95 50.61 16.76 7.88

NDVI - −0.3 0.73 0.25 0.12
Evaporation mm −0.744 0.065 −0.164 0.109

Elevation m −3.88 914.26 151.66 156.01

To reduce model complexity due to the large number of independent variables we
excluded the input variables based on the feature importance in the ET algorithm. Besides
the spatio-temporal information, we used PM2.5 with the independent variables that are
shown in Table 1 to develop our model.
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3.3. Model Validation
3.3.1. Sample-Based Cross Validation

Cross validation (CV) is a common method to analyse the model performance and
detect potential overfitting problems where the model achieves high accuracy on the
training set and performs badly on new data or the test set. We applied a 10-fold CV
where all samples in the training dataset were randomly divided into 10 equal subsets.
Then, in each round, 9 subsets were used to fit the model, and the remaining subset
was used for testing the model performance [42]. This approach is used widely in PM
studies [20,21,43–45].

3.3.2. Spatial and Temporal 10-Fold Cross Validation

In this validation, we divided the samples based on two factors. For the spatial 10-fold
cross validation we splatted the data based on the location of the stations, the stations were
divided randomly into 10 folds. In each fold, the model was trained on the samples from
90% of the stations and the samples from the remaining 10% for testing. For the temporal
10-fold cross validation, we divided the samples into 10 folds based on the Julian day and
applied the cross validation in a similar way to the previously mentioned one.

4. Results

The results of sample-based, spatial, and temporal 10-fold cross validation are shown
in Table 2. The density scatter plot for the sample-based cross validation is shown in
Figure 3.

Table 2. R2, RMSE, and MAE of the sample-based 10-CV, spatial 10-CV, and the temporal 10-CV.

10-CV R2 RMSE MAE

Sample-based 0.69 5.0 3.3
Spatial 0.69 4.9 3.2

Temporal 0.53 6.1 4.1
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It must be noted that PM2.5 levels in general are low in Europe when compared to more
polluted areas and this is reflected by the low RMSE we obtained in our study when com-
pared to some studies outside Europe with higher R2 values [44,45]. Our model proved its
efficiency in predicting PM2.5 when our results (out-of-sample R2 = 0.69, RMSE = 5 µg/m3)
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were comparable with results obtained from a recent study over a smaller geographic area
in Europe (Great Britain; out-of-sample R2 = 0.77, RMSE = 4 µg/m3) [20]. It is also noted
that the model underestimates high PM2.5 values (>40 µg/m3) since such values are not
abundant over our study area.

To justify the difference in the model performance spatially and temporally, we applied
site-based cross validation where we used samples from one station as the test set, and the
samples from all remaining stations were used to train the model. We applied this method
to analyse the model performance spatially, since the standard 10-CV may not be able to
detect potential spatial overfitting [18].

The results are shown in Figure 4. The model performs well in most of the locations
in Central Europe with an average R2~0.7. A total of 63% of all stations in Europe have
R2 > 0.6. The accuracy of the model is lower in the northern and southern parts of Europe.
However, the RMSE and MAE are relatively small even in the northern and southern parts.
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5. Creating PM2.5 Maps

Daily PM2.5 maps during MODIS satellite overpassing were created for the period
2018–2020 over Europe. Figure 5 shows the average PM2.5 for the year 2018, 2019, and 2020.
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A significant decline in PM2.5 levels has occurred over Europe throughout the study
period. Poland had the highest PM2.5 average level in the year 2018 with an average
level~19.5 µg/m3, in 2019 Romania had the highest average~16.5 µg/m3 whereas Serbia
had the highest average in 2020 with an average~15.8 µg/m3. Finland had the lowest PM2.5
average level in all three years with 7.1 in 2018, 6.3 in 2019, and 5.8 in 2020. Comparing the
results of the average PM2.5 levels for the years 2018, 2019, and 2020 were highly compatible
with the reports of the European Environment Agency (EEA). According to EEA the highest
PM2.5 concentrations were found in central and eastern Europe and northern Italy. For
the central and western parts, the main reason for high PM2.5 is the usage of solid fuels
with older vehicle compared to other parts of Europe [46], besides using the solid fuels
for heating as was found in Poland [47]. For the northern part of Italy, the high levels
of PM2.5 are due to the combination of a high density of anthropogenic emissions and
meteorological conditions [46,48]. Furthermore, Milan, the largest city in the north of Italy
previously reported levels of PM2.5 exceeding the safety limit set by the EU [49].

As an application, we used the proposed machine learning-based prediction approach
in PM2.5 levels analysis to study the effect of the COVID-19 lockdown (March to June of the
year 2020) on air quality over Europe. As an attempt to verify the influence of the lockdown
on air quality, we compared the average PM2.5 of the previous 4 months (November to
December in 2019 and January to February 2020) and the following 4 months (July to
October 2020) to the 4 months of the lockdown by calculating the relative percentage
difference (RPD). By doing so, we masked the general improvement trend in air quality
over Europe. RPD calculated using Equation (2).

RPD =
PM2.5 (lockdown)− PM2.5 avg(before lockdown, after lockdown)

PM2.5 avg(before lockdown, after lockdown)
× 100 (2)

We found a significant improvement in air quality over Europe except for UK, Ireland,
north of France, and south of Italy as shown in Figure 6. Our results are in agreement
with another study over Poland (Eastern Europe), where the air quality represented by
PM2.5 has significantly improved in the months of March to April in 2020 when the authors
compared to the same months from the previous two years [50]. Interestingly, the unusual
increase in PM2.5 levels in the UK was consistent with what was reported in [51] as the
authors justified such increase by unusual meteorological conditions. The latter conditions
may also justify the increase in PM2.5 over northern France. In Italy, where people were
spending most of their time at home, the increased house heating during the lockdown
period limited the decrease in PM2.5 levels besides the effects of the agriculture sector that
kept performing during the lockdown [52].
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6. Discussion

In this study, we proposed the first machine learning-based scheme to estimate PM2.5
levels over Europe with high spatial resolution of 1 km. We trained an extra trees model
using observed PM2.5 from 848 stations as the target variable. AOD, different meteorological
variables, land variables, and NDVI as the independent variables.

The sample-based 10-fold CV showed that our model underestimates high PM2.5
values (>40 µg/m3) which may limit the model ability to detect hazard situations. This
underestimation occurred since high PM2.5 values were not common over our study area
as shown in Figure 2. The spatial cross validation showed that the model estimates PM2.5
with a higher R2 in the areas with high ground stations density the compared to the areas
with a lower density. The occurred spatial overfitting is expected to happen due to spatially
unbalanced data.

In Central Europe (Czech Republic, Poland, Slovakia, and surrounding areas), the
model performed with a higher R2 compared to the northern and southern parts of Eu-
rope. However, the RMSE in Central Europe was comparably higher than the ones in
the previously mentioned parts. This is due to the fact that the average PM2.5 value in
Central Europe is higher and have more variations than the northern and southern parts.
The highest RMSE in Central Europe can be found in three stations in the Czech Republic.
These stations are located near mining areas with higher PM2.5 values compared to other
stations that are mostly located in urban areas. This issue can be potentially solved by
including a detailed land cover data with an appropriate classification for each station
which is usually difficult to achieve on a large scale such as in our study.

Having unbalanced spatial-temporal data made the modelling more complex than
other studies which focused on smaller areas with well-balanced data and with similar
instruments in measuring PM2.5 values. However, by tuning the parameters in the model,
we were able to achieve acceptable results for most parts of our study area. The effect of
the chosen independent variables in estimating PM2.5 differs across the study area. We
analysed the spatial potential relationships of the independent variables in estimating
PM2.5 by calculating feature importance in four parts of Europe: north-west (latitude > 50
and longitude < 10), north-east (latitude > 50 and longitude > 10), south-west (latitude < 50
and longitude < 10), and south-east (latitude < 50 and longitude > 10). AOD and PBLH
had the most feature importance in all parts of Europe with an average of 10.4% and 14.1%,
respectively. WS and temperature had more effect in estimating PM2.5 in the south of
Europe compared to the north. Rh had more importance in estimating PM2.5 in the western
part of Europe compared to the eastern part.

Table 3 shows the effects of AOD and the most important meteorological variables
on PM2.5 estimates. We tried to train multiple models based on the area. However, this
approach did not improve the overall performance over the whole study area.

Table 3. The effects (%) of AOD and the most important meteorological variables on PM2.5 estimations
in the four chosen parts of our study area.

Independent
Variable North-West North-East South-West South-East

AOD 13.25 8.81 10.43 9.11
BLH 15.89 15.22 14.98 10.41
T2m 8.62 6.25 10.13 10.71
Rh 6.41 3.99 5.82 4.71
E 3.58 5.99 3.44 7.96

WS 5.18 4.25 7.32 5.82
TCWV 4.469 3.63 4.55 4.07

7. Conclusions

In this study, we developed a spatio-temporal machine learning model to estimate
daily PM2.5 levels for the years 2018–2020 with 1 km spatial resolution over Europe using
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open data from multiple sources such as remote sensing satellite-based products, meteoro-
logical reanalysis datasets, and other land variables.

The developed model was used to estimate PM2.5 values over 5,450,009 land cells
(1 km2) for a 3-year period (1096 days) totalling more than 5.973 billion estimations with a
good sample-based CV coefficient of 0.69, RMSE of 5 µg/m3, and MAE of 3.3 µg/m3.

We calculated the yearly average of PM2.5 levels, and we found that PM2.5 values have
dropped in almost all parts of Europe during the study period.

The full coverage dataset of PM2.5 that we produced can be used to investigate air
quality over Europe with higher spatial resolution compared to the available products
which may provide better understanding in time series analysis in this field.
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