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Abstract: Solar-induced chlorophyll fluorescence (SIF) has great advantages in the remote sensing
detection of crop stress. However, under stripe rust stress, the effects of canopy structure and leaf
physiology on the variations in canopy SIF are unclear, and these influencing factors are entangled
during the development of disease, resulting in an unclear coupling relationship between SIFcanopy

and the severity level (SL) of disease, which affects the remote sensing detection accuracy of wheat
stripe rust. In this study, the observed canopy SIF was decomposed into NIRVP, which can character-
ize the canopy structure, and SIFtot, which can sensitively reflect the physiological status of crops.
Additionally, the main factors driving the variations in canopy SIF under different disease severities
were analyzed, and the response characteristics of SIFcanopy, NIRVP, and SIFtot to SL under stripe
rust stress were studied. The results showed that when the severity level (SL) of disease was lower
than 20%, NIRVP was more sensitive to variation in SIFcanopy than SIFtot, and the correlation between
SIFtot and SL was 6.6% higher than that of SIFcanopy. Using the decomposed SIFtot component allows
one to detect the stress state of plants before variations in vegetation canopy structure and leaf area
index and can realize the early diagnosis of crop diseases. When the severity level (SL) of disease was
in the state of moderate incidence (20% < SL ≤ 45%), the variation in SIFcanopy was affected by both
NIRVP and SIFtot, and the detection accuracy of SIFcanopy for wheat stripe rust was better than that of
the NIRVP and SIFtot components. When the severity level (SL) of disease reached a severe level (SL
> 45%), SIFtot was more sensitive to the variation in SIFcanopy, and NIRVP reached a highly significant
level with SL, which could better realize the remote sensing detection of wheat stripe rust disease
severity. The research results showed that analyzing variations in SIFcanopy by using the decomposed
canopy structure and physiological response signals can effectively capture additional information
about plant physiology, detect crop pathological variations caused by disease stress earlier and more
accurately, and promote crop disease monitoring and research progress.

Keywords: the canopy solar-induced chlorophyll fluorescence (SIFcanopy); canopy structure;
physiology signals; wheat stripe rust; response characteristics

1. Introduction

Solar-induced chlorophyll fluorescence (SIF) is a light signal generated by the re-
emission of photons from excited chlorophyll molecules back to ground state after absorp-
tion of photons in the 650–800 nm wavelength range [1], which can reflect the effects of
vegetation photosynthesis [2]. It is considered to be a “probe” for detecting vegetation pho-
tosynthesis [3–5], and has good application potential in the remote sensing detection of early
stress of crop diseases [6–9]. At present, studies have proved that using SIF data to evaluate
the impact of environmental stresses (such as drought and heat stress) on crop growth has
higher accuracy and sensitivity. For example, Song et al. [10] used satellite SIF to study
the response of Indian wheat to heat stress, which revealed the physiological basis of heat

Remote Sens. 2022, 14, 3427. https://doi.org/10.3390/rs14143427 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14143427
https://doi.org/10.3390/rs14143427
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14143427
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14143427?type=check_update&version=2


Remote Sens. 2022, 14, 3427 2 of 19

stress affecting wheat yield, and SIF, as an effective substitute for photosynthetic activity,
would improve the understanding of the effect of heat stress on wheat yield. Xian et al. [11]
examined the potential of SIF to capture the influence of heat wave impacts on wheat
in the NCP by comparing satellite remote sensing data of SIF and NDVI and validated
ground-based yield data. The results showed that SIF can better capture the variations in
wheat yield and the decline in yield due to heat waves. Furthermore, Sun et al. [12] found
that satellite SIF is sensitive to both structural and physiological/biochemical variations of
vegetation, and has excellent potential for dynamic drought monitoring. Shan et al. [13]
found increased sensitivity of SIF to drought in a potato crop, relative to greenness-based
Vegetation Indices, suggesting that diurnal variation in SIF is driven by photosynthetic and
structural dynamics.

However, the canopy directional SIF detected by the sensor is the fluorescence signal
of the “escape” canopy part in the observation direction, which is the result of the combined
effect of three processes: the absorption of incident PAR by chlorophylls [14], emission of
fluorescence by photosystems [15], and scattering and re-absorption of emitted fluores-
cence [16]. In the process of radiative transmission of fluorescent photons “escaping” from
leaves and the canopy, some photons are reabsorbed and scattered due to the influence
of plant biochemical components and canopy geometry [17] so that the total fluorescence
intensity emitted by the leaves is inconsistent with the directional fluorescence intensity of
the canopy received by the sensor [18], which hinders the direct linkage between apparent
canopy SIF and emitted SIF from leaves [19].

This variable proportion between SIF at the leaf and canopy scales can be quantified
by the directional or hemispherical photon escape ratio (fesc) of a canopy at a certain sun–
sensor geometry [20]. At the canopy scale, the biophysical processes of SIFcanopy can be
represented using a simple equation:

SIFcanopy = APARgreen ×ΦF × fesc (1)

where APARgreen is the photosynthetically active radiation (PAR) absorbed by green leaves,
which is decomposed into the product of the fraction of absorbed incident radiation
(fAPARgreen) and incident PAR (APARgreen = fAPARgreen × PAR); ΦF is the physiolog-
ical SIF emission yield of the whole canopy [21]; fesc is the probability that an emitted
photon will escape the canopy in the direction of the sensor, i.e., the escape probability [20];
APARgreen × ΦF is the total SIF emitted by leaves (SIFtot), which represents the contribution
of crop physiological information to the SIF signal; APARgreen × fesc represents the effect of
canopy structure (NIRVP) on canopy SIF variations [22].

It can be seen from Equation (1) that the SIFcanopy information is affected by the
combination of physiological variations and canopy structure effects, and it is difficult
to distinguish physiological variations in the raw SIF signal from variations in SIFcanopy
caused by radiative transfer processes [20]. That is, the variations in SIFcanopy detected
by the sensor cannot be directly interpreted as variations in plant physiological state
or canopy structure. If physiological information and the effects of canopy structure
on sensor-detected canopy SIF are not studied separately, co-variation of fesc with the
spatial, temporal, and observed geometry of the entire biome may bias the understanding
of variations in SIFcanopy information [23]. To better understand the effects of stress on
crop growth and yield, it is necessary to distinguish the effects of structural factors and
physiological information on SIFcanopy, and to analyze the response characteristics of the
two under stress conditions.
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Wheat stripe rust is a wheat disease that spreads by air, with the characteristics of a
fast transmission rate and strong damage which seriously affect the yield and quality of
wheat [24]. The intensity of physiological variations and the degree of manifestation of
symptoms are different in different infection stages of the disease [6], and the effects of
physiological information and canopy structure on variations in canopy SIF signals are
also different. In the early stage of crops under disease stress, it mainly occurs through the
adjustment of physiological mechanisms to quickly adapt to changes in external stress [7,25].
When crops are subjected to continuous disease stress. Not only do their cell activity and
biochemical components vary, but so do their leaf morphology, leaf inclination distribution,
and canopy structure [26]. However, studies usually directly use sensor-detected SIFcanopy
to monitor crop disease stress information, and do not consider the effects of canopy
structure and leaf physiological signals on sensor-detected canopy SIF under different
disease severities, nor quantify the relative contributions of leaf physiological and canopy
structure effects to SL and how the physiological and structural components of SIFcanopy
relate to the severity of wheat stripe rust at different disease stages. This leads to a lack
of clarity of the effects of leaf physiology and canopy structure effects on the variations
in SIFcanopy under stripe rust stress, and of the relationship between the physiological
information and structural components of SIFcanopy and disease severity, which greatly
affect the remote sensing detection accuracy of wheat stripe rust and the understanding of
the SIFcanopy detection mechanism of wheat stripe rust.

Therefore, in this paper, the canopy SIF received by the sensor was decomposed
into NIRVP (APARgreen × fesc), which can characterize the canopy structure, and SIFtot
(APARgreen × ΦF), which can sensitively reflect the physiological status of crops. We
aimed to (1) investigate the relative importance of NIRVP and SIFtot in SIFcanopy variation at
different developmental stages of wheat stripe rust and to elucidate the main factors driving
SIFcanopy variation under different disease severities, and (2) explore the relationship
between SIFcanopy and SL of wheat stripe rust and the response characteristics of leaf
physiology (SIFtot) and canopy structure (NIRVP) to SL under different disease severities.
We hope the research results are of great significance for clarifying the effects of NIRVP
and SIFtot on the variations in SIFcanopy information under stripe rust stress, for clarifying
the SIFcanopy detection mechanism of wheat stripe rust, and for improving the detection
accuracy of wheat stripe rust.

2. Materials and Methods
2.1. Field Experimental Areas

The natural disease under study was located in Qishan County, Baoji City, Shaanxi
Province (34◦26′52′′N, 107◦37′42′′E), with high terrain in the north and south and low in the
middle. Forests are distributed in the north and south mountainous areas, and the central
part is cultivated land. The climate is a warm, temperate, continental monsoon, semi-
humid climate. The wheat variety was “Xinong 822”, for which the wheat sowing time and
management practices of the different farmers differ. In the natural infection investigation
area, there were 104 slightly diseased samples, 99 moderately diseased samples, and
29 severely diseased samples, which were selected as test samples. Canopy spectral
observations of all samples were obtained in a 40 cm × 40 cm wheat quadrat. On 16, 17, 28,
29, and 30 April and 12 and 13 May 2021, the severity of wheat stripe rust was investigated,
and the canopy reflectance spectrum was simultaneously measured. Overview of the study
area is shown in Figure 1.
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Figure 1. Overview map of the study area.

2.2. Data Acquisition
2.2.1. Canopy Spectral Measurements

In this experiment, the crowns of wheat stripe rust under different disease indices were
measured by an Ocean Optics QE-pro spectrometer. The Ocean Optics QE-pro spectrometer
has a spectral resolution of 0.3 nm with a sampling interval of 0.15 nm in 640–800 nm.
During the measurement, the height of the probe was 0.9 m away from the wheat canopy,
and canopy spectrum data were measured between 11:00 and 15:00 Beijing time. Each
sample was continuously observed 10 times, and the average was taken as the spectral
data. The standard BaSO4 reference board was used to correct the radiance data before and
after each sampling.

2.2.2. Severity Level Survey

The survey of canopy disease severity adopts a five-point sampling method, that is, five
symmetrical points are selected in each quadrat (40 × 40 cm); each point is approximately
1 m2, four wheat plants are randomly selected from each point, and a total of 20 plants are
selected for each quadrat. All of the sample leaves were inspected by the National Standard
for the Investigation and Forecasting of Crop Disease (GB/T 15795) [27]. The severity level
(SL) of disease (i.e., percentage of diseased spot area on the diseased leaf to the total leaf
area) on wheat leaf was divided into 8 levels (1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%).
The SL can be calculated by Equation (2) [28]:

SL =
∑(i× li)

L
(2)

where i is the gradient value, li is the number of diseased leaves corresponding to each
gradient value, and L is the number of leaves investigated.

2.2.3. SIFcanopy Retrieval Method

The 3FLD fluorescence prediction algorithm considers that the chlorophyll fluores-
cence and reflectance spectra vary linearly around the absorption line band and use the
weighted average of one band to the left and right of the absorption line instead of a
single band value in the standard FLD algorithm. This reduces, to some extent, the errors
associated with the assumption of constant fluorescence and reflectance in the standard
FLD method and improves the prediction accuracy of SIFcanopy [29]. Moreover, studies
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have shown that the 3FLD algorithm is the most robust algorithm for estimating SIF [30,31];
therefore, we estimated SIF at the canopy level with the 3FLD algorithm.

SIFcanopy =

(
Ileftωleft + Irightωright

)
Lin − Iin

(
Lleftωleft + Lrightωright

)
(

Ileftωleft + Irightωright

)
− Iin

(3)

ωleft =
λright − λin

λright − λleft
(4)

ωright =
λin − λleft

λright − λleft
(5)

where λleft, λright, and λin are the wavelengths of bands to the left, right, and inside of the
absorption band, respectively; ωleft and ωright are the weights of the left and right reference
bands of the absorption line, respectively; Ileft and Iright are the solar irradiance spectral
intensities on the left and right side of the absorption line, respectively; Lleft and Lright refer
to the vegetation canopy reflected radiance spectral intensity on the left and right side of
the absorption line, respectively.

2.2.4. Estimation of NIRVP and SIFtot

We calculated the NDVI and NIR reflectance of vegetation (NIRv) from the spectral
irradiance and radiance data as follows:

NDVI =
(R 800 − R670)

(R 800+R670)
(6)

NIRV= NDVI × RNIR (7)

where R670 and R800 are canopy reflectance at 670 nm and 800 nm, respectively. Then, with
the calculations, we used a mean reflectance of spectral ranges, 770–780 nm for NIR bands.

Accurate measurement of the fraction of absorbed photosynthetically active radiation
by green leaves (fAPARgreen) is a critical step in the estimation of fesc, a wide dynamic
range vegetation index (WDRVI) that has been proven to be linearly correlated with
fAPARgreen [32,33]. The WDRVI is defined as:

fAPARgreen= 0.85 × WDRVI + 0.16 (8)

WDRVI =
(αR NIR − RRed)

(αR NIR+RRed)
(9)

where RNIR and RRed are the reflectance of near infrared and red band, respectively, and α

is a weighting coefficient whose value is less than 1. Here, the value is 0.5 [34].
The escaping probability (fesc) is a parameter related to the optical properties of the

canopy, which accounts for the fraction of SIF photons escaping from the leaf level to the
canopy level. It is determined by the canopy structure and chlorophyll content, and can be
calculated as:

fesc ≈
NIRV

fAPARgreen
(10)

We then followed a framework to obtain the total emitted SIF (SIFtot) and canopy
structure (NIRVP) using SIFcanopy, fesc, PAR, and NIRv data, which disaggregated SIFcanopy
into non-physiological and physiological signals.

SIFtot is the product of APARgreen and ΦF, which represents the total emitted SIF and
includes the signals emitted from the leaf adaxial and abaxial parts, and is therefore a
mixture of the canopy radiation absorption and the physiological emission efficiency [22].
ΦF, as a portion of information embedded in SIF, is insensitive to canopy structural charac-
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teristics but purely related to plant physiological mechanisms; therefore, it could possibly
indicate plant physiological responses in our experiment [35].

NIRVP is the product of APARgreen and fesc, which represents a combined canopy
structure and radiation factor and includes both absorption and scattering aspects of
the canopy structure. “Canopy structure” refers to the combined effects of canopy light
absorptance and scattering captured by the product fAPARgreen × fesc, and “radiation”
refers to PAR [22]. NIRv was used to eliminate the impact from the fraction of green leaf
APAR (fAPARgreen) and the escaping probability (fesc) from SIF [35]. Finally, we calculated
SIFtot as shown in Equation (11), and then NIRVP as in Equation (12):

SIFtot= SIFcanopy/ fesc (11)

NIRVP = NIRV × PAR (12)

3. Results and Analysis
3.1. Effects of NIRVP and SIFtot on the Variations in SIFcanopy under Different Disease Severities

The SIFcanopy received by the sensor is simultaneously affected by the vegetation
canopy structure and the physiological state of the crop. The variations in the SIFcanopy
cannot be directly explained as the variation in the physiological state of the plant or the
variation in the canopy structure [36]. Based on this, according to the disease index, this
paper first divided the severity of wheat stripe rust into mild disease (0% < SL ≤ 20%),
moderate disease (20% < SL ≤ 45%), and severe disease (SL > 45%) [37]. Afterward, we
decomposed the SIFcanopy detected by the sensor into NIRVP (which can characterize the
canopy structure) and SIFtot (which can sensitively reflect the physiological status of crops)
to analyze the contribution of NIRVP and SIFtot to the variations in SIFcanopy under different
disease severities of wheat stripe rust (Figures 2–4).
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One hundred and four points were used as samples to assess the relationship between
the two components of SIFtot and NIRVP with SIFcanopy in the mild state of wheat stripe
rust, as illustrated in Figure 2. In the mild disease state, the variations in SIFcanopy were
simultaneously affected by wheat physiological status and canopy structure factors. The
correlation between the NIRVP component representing canopy structure and SIFcanopy
was better than that of the SIFtot component, reflecting crop physiological status. At this
time, leaf physiology had not significantly varied, the effect of physiology on SIFcanopy
was weak, and the responses of qL and NPQ in different layers at the top of the canopy
canceled each other out [38]. This is consistent with previous studies that, in the absence
of strong external factors (such as disease stress and environmental conditions), SIFcanopy
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variations are mainly driven by NIRVP rather than SIFtot. Therefore, if we do not isolate the
effects of the NIRVP component (which characterizes the canopy structure) and the SIFtot
component (which reflects crop physiology) on variations in SIFcanopy, and the variations
in SIFcanopy are directly attributed to the influence of stripe rust stress, the remote sensing
detection accuracy of wheat stripe rust may be greatly affected.

It can be seen that 99 points were used as samples to assess the relationship between the
two components of SIFtot and NIRVP with the SIFcanopy under a moderate incidence of wheat
stripe rust (Figure 3) that, despite the moderate disease state, the SIFcanopy detected by the
sensor was still influenced by a combination of both canopy structure and leaf physiology.
Moreover, the contributions of the two components SIFtot and NIRVP to the variations in
SIFcanopy were more variable than those in the mild disease state. The contribution of the SIFtot
component, which characterizes leaf physiology, to the variations in SIFcanopy was significantly
better than that of the NIRVP component, which reflects the canopy geometry. The coefficient
of determination between the SIFtot component and the SIFcanopy was 0.821, 148% higher than
that of the NIRVP component. The physiological information of crops under a severe disease
state explains the main part of the variation in SIFcanopy.

Twenty-nine points were used as samples to assess the relationship between the two
components of SIFtot and NIRVP with SIFcanopy under severe incidence of wheat stripe
rust, as shown in Figure 4. Under severe disease, the canopy structure and leaf physiology
jointly affected the variations in SIFcanopy. The correlation between the canopy structure
component NIRVP and SIFcanopy was 37% higher than that in the moderate disease state.
Comparing the effects of NIRVP and SIFtot on SIFcanopy variability during the severe disease
onset phase shows that the SIFtot component, which reflects leaf physiological information,
better explains SIFcanopy variability, with an R2 between the two reaching 0.9588, consistent
with mid-onset, and the physiological signal of SIFcanopy explaining a major part of the
SIFcanopy variability.

The contribution of the NIRVP and SIFtot components to the variations in SIFcanopy
varied by severity of disease. The NIRVP component had a more significant effect on the
variations in SIFcanopy than the SIFtot component in the mild disease state, while the SIFtot
component had a greater impact on the SIFcanopy variations in the moderate-to-severe
disease states. Different forms of cumulative symptoms can be separated by the grading
of different disease severities, and the impact of the SIFtot and NIRVP components on
SIFcanopy can be quantified. Variations in the correlations between SIFcanopy, NIRVP, and
SIFtot may be unavoidable due to the cumulative effects of persistent disease, indicating
that canopy structural variation and canopy physiological variation occur simultaneously
with the accumulation of physiological stress.

3.2. The Relationships between SIFcanopy, NIRVP, SIFtot, and SL of Different Disease Severities

After crops are infected by pathogens, the leaf pigment and water content, photo-
synthetic physiological state, and canopy geometry all change [39], and the intensity of
change and degree of symptom manifestation are different in different infection stages of
the disease [26]. To reveal whether the driver of SIFcanopy by canopy structure and leaf
physiological signals affects the accuracy of monitoring disease severity at different devel-
opmental stages of wheat stripe rust, as well as to assess whether the SIFcanopy-derived
canopy structure component (NIRVP) and leaf physiological component (SIFtot) improve
the quantification of crop response to disease stress, we assessed the impact of variation in
NIRVP and SIFtot on the SIFcanopy–SL relationship and compared the correlation between
the SIFcanopy received by the sensor and its derived canopy structure and leaf physiological
signals and the disease index in different states of wheat stripe rust incidence.

Figure 5 shows the relationship between the SIFcanopy, NIRVP, and SIFtot components
and wheat stripe rust SL in 104 sample sites under mild disease state. There was a highly
significant negative correlation between SIFcanopy, SIFtot, and wheat stripe rust severity
(p < 0.001), while the negative correlation between the NIRVP component representing
canopy structure and the severity of wheat stripe rust only reached a significant correlation
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(p < 0.05). The correlation between the SIFtot component, which can sensitively reflect
physiological stress, and the severity of wheat stripe rust was 6.6%, 128.5% higher than
that of the SIFcanopy and NIRVP components, respectively. This is because the effect of the
disease on the spectrum depends on the intensity of physiological variations, the stage
of disease development, and the degree of symptom manifestation [39]. No significant
variations in canopy geometry during the early stages of disease were observed [40]. Plants
respond to disease stress mainly by adjusting their photosynthetic rate and initiating
their photoprotection mechanism to consume excess light energy by emitting chlorophyll
fluorescence and non-photochemical quenching [41]. When the SIF was downscaled from
the canopy level to the leaf level, the SIFtot component mainly reflected the physiological
response of crops to disease stress, independent of canopy structural variations, so the
sensitivity to the disease index was higher than SIFcanopy detected by the sensor. This clearly
shows that in the mild incidence stage of wheat stripe rust, the SIFtot component, which
characterizes leaf physiological signals, can more sensitively reflect the stress information
of stripe rust disease.

Figure 5. Overview of the relationships between the severity level (SL) of disease and SIFcanopy-
related variables at a mild stage of disease onset (n = 104). Where ** indicates extremely significance
at p < 0.001 level, * indicates extremely significance at p < 0.05 level.

It can be seen that 99 points were used as samples to assess the relationships between
SIFcanopy, NIRVP, SIFtot, and SL in the moderate incidence stage of wheat stripe rust
(Figure 6). When the severity of wheat stripe rust disease was in the state of moderate
incidence (20% < SL≤ 45%), the correlation between SIFcanopy and wheat stripe rust severity
was 21.2% higher than SIFtot and 92.8% higher than NIRVP. At this time, the variation in
SIFcanopy was more complicated, affected by both canopy structure and leaf physiological
signals. On the one hand, SIFcanopy varies with the physiological regulation of energy
dissipation pathways and, on the other hand, it is also affected by biochemical and physical
parameters such as phytopigment composition, leaf area, and leaf inclination angle [26].
This is because, in the moderate disease state, after the wheat is infected by stripe rust, the
cell tissue structure of its leaves is damaged, and long strips of bright yellow rust spots are
formed on the surface of the wheat leaves, resulting in the rupture of the leaf epidermis
and even tilting of the leaves [42], meaning the canopy structure has undergone certain
variation. At the same time, due to the penetration and diffusion of pathogen hyphae
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in host cells, the chlorophyll content of rust-infected wheat is reduced, resulting in the
destruction of the crop photosynthetic system and causing internal physiological changes
in the leaves [43]. Both the leaf physiology and canopy structure parameters varied with the
severity of stripe rust, and the two had a superimposed effect on the variations in SIFcanopy.
By decoupling the contributions of leaf physiology and canopy structure to SIFcanopy, it
was shown that the correlation between SIFcanopy and the severity of wheat stripe rust in a
moderate disease state was better than that of its derivatives—NIRVP and SIFtot.

Figure 6. Overview of the relationships between the severity level (SL) and SIFcanopy-related variables
at a moderate stage of disease onset (n = 99). Where ** indicates extremely significance at p < 0.001
level, * indicates extremely significance at p < 0.05 level.

It can be seen that 29 points were used as samples to assess the relationships between
SIFcanopy, NIRVP, SIFtot, and SL in the severe incidence stage of wheat stripe rust (Figure 7).
The correlation between the NIRVP component, which characterizes the canopy structure,
and wheat stripe rust SL was 135.5% and 123.7% higher than that of the SIFtot component and
SIFcanopy, which reflect physiological stress, respectively. This is because in the severe disease
state, with the strengthening of the infection of a plant by the pathogen, some organs of the
plant begin to show obvious symptoms and round-to-oval black–brown spore piles appear on
the leaf sheath, emitting bright yellow powder [44]. The continuous proliferation of wheat
stripe rust mycelium accelerated the rupture of leaf epidermis and cuticle, and symptoms of
wilting and necrosis even appeared [45], leading to major variations in the canopy structure.
The NIRVP component captures quantified non-physiological signals at this time and shows
its superiority in disease stress detection with higher sensitivity than SIFcanopy.
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Figure 7. Overview of the relationships between the severity level (SL) and SIFcanopy-related variables
at a severe stage of disease onset (n = 29). Where ** indicates extremely significance at p < 0.001 level.

3.3. Model Accuracy Test

In order to determine the suitable models for remote sensing monitoring of wheat
stripe rust under different disease states, especially the early remote sensing detection
model of wheat stripe rust, we divided wheat stripe rust into three disease levels according
to the severity of the disease, namely mild, moderate, and severe. On this basis, we
compared and analyzed the accuracy of SIF and its derived characteristic factors that can
characterize canopy structure and leaf physiological signals to monitor the severity of
wheat stripe rust.

Take SIFcanopy, SIFtot, and NIRVP as independent variables, and SL as the dependent
variable. Overall, 72, 69, and 20 points were used as training samples to construct remote
sensing estimation models of wheat stripe rust with different severity (Table 1). The
determination coefficient (R2) and Root Mean Square Error (RMSE) between the predicted
value and the measured value are selected as the model accuracy evaluation indicators.

Table 1. Model accuracy test under different disease severity.

Variable
Name

Mild Condition
(n = 72)

Moderate Condition
(n = 69)

Severe Condition
(n = 20)

R2 RMSE R2 RMSE R2 RMSE

SIFcanopy 0.50 0.037 0.46 * 0.046 0.34 0.101
SIFtot 0.53 * 0.036 0.31 0.051 0.28 0.109

NIRVP 0.28 0.044 0.23 0.055 0.59 * 0.068
Note: * indicate significance levels of p < 0.001 level.

It can be seen from Table 1 that, in the training sample data under mild disease, the R2

between predicted SL and measured SL built by the model with SIFtot as the independent
variable is increased by 6% and 89.3%, respectively, while RMSE is decreased by 2.7% and
18.2%, respectively, compared with SIFcanopy and NIRvP. In the training sample data under
moderate disease, the R2 between predicted SL and measured SL of the model constructed
with SIFcanopy as the independent variable is increased by 48.4% and 100%, respectively,
and the RMSE is decreased by 9.8% and 16.4%, respectively, compared with SIFtot and
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NIRvP. Compared with SIFcanopy and SIFtot, the R2 between the predicted SL and measured
SL values of the model with NIRvP as the independent variable is increased by 73.5%
and 73.5%, respectively, while RMSE is decreased by 32.7% and 37.6%, respectively, in the
training sample data with severe morbidity.

In order to ensure the stability and reliability of the evaluation results and reduce the
impact of a random grouping of sample data on the accuracy of the model, this paper used
the remaining 32, 30, and 11 points of modeling as validation samples to test the accuracy
of the prediction model for the severity of wheat stripe rust with extremely significant
correlation (Figure 8).
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Figure 8. Optimal monitoring model of wheat stripe rust under different disease severity. (a) Mild
disease stage with SIFtot as independent variable, (b) intermediate disease stage with SIFcanopy as an
independent variable, and (c) severe disease stage with NIRVP as independent variable. Solid line
represents 1:1 and dotted line represents the regression line between measured and predicted SL.

According to the remote sensing monitoring model of wheat stripe rust under mild
conditions Figure 8a, the model constructed with SIFtot, which is closely related to physi-
ological information, as the independent variable which has the highest accuracy and is
more suitable for the early detection of the severity of wheat stripe rust. It can be seen
from the remote sensing monitoring model of wheat stripe rust under moderate conditions
in Figure 8b that the prediction accuracy of the model constructed by SIFcanopy is better
than that of NIRVP and SIFtot derived from SIFcanopy. According to Figure 8c, the remote
sensing monitoring model of wheat stripe rust under severe conditions, it can be seen that
the estimation accuracy of the wheat stripe rust detection model constructed with NIRVP,
which is closely related to the canopy structure, has the highest estimation accuracy, and is
more suitable for the monitoring of wheat stripe rust under severe conditions.

According to Table 1 and Figure 8, the optimal variables of wheat stripe rust detection
model under mild, moderate, and severe disease severity are SIFtot, SIFcanopy, and NIRvP,
respectively, and the predicted and the measured disease severity is extremely significant.
It is consistent with the results of analysis in Section 3.2.

4. Discussion
4.1. Response Characteristics between SIFcanopy and APARgreen under Stripe Rust Stress

In the early stage of crops under disease stress, it is mainly through the adjustment
of physiological mechanisms that plants quickly adapt to variations in external stress [7].
SIFcanopy can sensitively reflect the changes in crop photosynthetic physiology and realize
the early detection of crop diseases [39]. However, in the case of mixed canopy structure
and leaf physiological information, SIFcanopy and NIRv may have similar or opposite
trends in the stress response to ΦF [19]. Therefore, this study used the SIFtot and NIRVP
components associated with APARgreen to represent the leaf physiological and canopy
structure effects, respectively, to investigate their contributions to SIFcanopy and to further
detect wheat stripe rust accuracy.
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The canopy structure effect (NIRVP) was estimated as:

NIRVP = APARgreen × fesc (13)

Additionally, the total emitted SIF (SIFtot) was estimated as:

SIFtot = APARgreen ×ΦF (14)

SIF emission is closely related to APAR (more specifically, PAR absorbed by green
leaves (APARgreen)), which can be calculated by the product of the incident photosyntheti-
cally active radiation (PAR) reaching the vegetation canopy and the fraction of APARgreen
(fAPARgreen). Herein, the incident photosynthetically active radiation (PAR) was calculated
using the radiance reflected from a white reference panel measured by a spectrometer [18].
Consequently, the APARgreen can be calculated as:

APARgreen= fAPARgreen × PAR (15)

The SIFcanopy was highly correlated with the APARgreen [46–48]; the canopy structure
not only directly affects the diurnal dynamics of SIF via APARgreen, but also has a strong
diurnal effect on photochemical and non-photochemical intra-canopy responses, in addition
to SIFcanopy [38]. In order to better analyze the main factors driving SIFcanopy variations
under stripe rust stress and the correlation between SIFcanopy and its derived variables
and SL, this paper further investigated the response characteristics between SIFcanopy and
APARgreen under stripe rust stress (Figure 9).
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Figure 9. The relationship between SIFcanopy and APARgreen at different stages of onset of wheat
stripe rust. (a) Mild disease stage (n = 104), (b) intermediate disease stage (n = 99), and (c) severe
disease stage (n = 29).

Figure 9 shows the positive linear relationship between SIFcanopy and APARgreen under
the mild, moderate, and severe incidence states of stripe rust, and the correlation between
SIFcanopy and APARgreen diminished as the severity of the disease increased. In the severe
and moderate disease states, the correlation between SIFcanopy and APARgreen was 49.1%
and 50.1% lower than that in the mild disease state, respectively. This is because the actual
area of the leaves for photosynthesis was reduced by the lesions, and the epidermis was
ruptured by the spore pile after the infection, which unbalanced the water metabolism of the
remaining healthy parts and increased the movement resistance of CO2, thus affecting the
photosynthesis of the remaining healthy parts [49]. When crops are subjected to continuous
disease stress, their physiological and biochemical parameters and surface morphology
vary, the photosynthetic pigments existing in the photosystem are damaged by stress
factors, the light absorption efficiency of photosystem PSI and photosystem PSII decreases,
and the photosynthetic capacity reduces [50]. Pathogen infection reduces the green leaf
area or damages mesophyll cells, resulting in a significant reduction in the photosynthetic
rate and in a reduced correlation of APARgreen with SIFcanopy.
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4.2. Analysis of the Influence of Uncertainty Factors on SIFcanopy and fAPARgreen

SIFcanopy signaling is not only controlled by photosynthesis status but is also related
to plant physiological processes [51–53]. It is also influenced by environmental factors
such as canopy geometry, light intensity, and the geometry of the sun–ground–sensor
relationship [54]. Variations in light intensity, direct and diffuse radiation of the canopy, and
bidirectional reflectance distribution function (BRDF) properties all affect the inversion of
SIFcanopy. The different absorption depths of the oxygen absorption band that absorb direct
and diffuse radiation may lead to overestimating or underestimating the SIFcanopy value
under certain observation geometries [55]. Canopy structure may introduce uncertainty in
estimated irradiance due to differences in diffuse and direct irradiance components, leading
to errors in the inversion [56]. Therefore, the influence of light intensity and the geometric
relationship between the sun–surface–sensor on the canopy SIF should be considered in
follow-up research.

In this study, the indirect estimation data of fAPARgreen was used to estimate the
canopy escape rate fesc of SIFcanopy. Overestimation or underestimation of fAPARgreen
would affect the fesc value, thus introducing uncertainty into the subsequent estimation of
SIFtot. The WDRVI vegetation index was calculated based on the reflectance of the near-
infrared and red bands of the Multispectral Instrument (MSI) on the Sentinel-2 satellite
system based on the Moderate Resolution Imaging Spectrometer (MERIS), which confirmed
that the relationship between fAPARgreen and WDRVI is not species-specific, with R2 = 0.92
(p < 0.001) and RMSE = 0.069 [34]. Therefore, the accuracy of the fAPARgreen measurements
can be considered reliable.

4.3. Responses of SIFcanopy and SL to Canopy Structure and Plant Physiological Indicators under
Disease Stress

Variations in SIFcanopy under disease stress are jointly driven by a combination of
canopy structure and physiological factors; there is overlap between structural and physi-
ological responses, and physiological differences risk being misinterpreted as structural
differences. Furthermore, as different disease severities have different effects on variations
in canopy structure and leaf physiology which, in turn, can affect changes in the relation-
ships between NIRVP, SIFtot, and SIFcanopy; SL and SIFcanopy; and NIRVP, SIFtot, and SL,
the effects of canopy structure and leaf physiology on SIFcanopy variations and SL during
disease progression need to be discussed in stages.

The analysis in this study showed that both the NIRVP and SIFtot components con-
tribute to variations in SIFcanopy under mild disease (Figure 2), and NIRVP can better
detect said variations in SIFcanopy, due to the fact that in the early stage of wheat stripe
rust disease, most early infection hyphae do not form haustorial mother cells and tend to
grow between the mesophyll and the adaxial epidermis rather than ramify through the
mesophyll tissue [57]. However, NIRVP’s response to SL is not advantageous. It can be
seen from Figure 5 that in the early stage of disease stress, after eliminating the influence of
canopy structure, the detection of SL by physiological signals was more sensitive than that
of SIFcanopy, and the relationship between NIRVP and SL was only significantly correlated
(p < 0.05), while the SIFtot–SL relationship was extremely significant (p < 0.001). The corre-
lation between SIFtot and SL was better than that of SIFcanopy and NIRVP, which is more
conducive to detecting stripe rust stress information. This is due to the damage to the leaf
and the reduction in chlorophyll content caused by the development of mycelium inside
the leaf [45]; disruption of chloroplasts or other organelles alters the rate of photosynthesis,
causing variations in SIFtot that characterize the component of physiological information. In
the early stage of disease stress, although the damage caused by bacteria was not obvious,
there was no significant disease on the leaves [58]. However, the parasitic relationship
established between the pathogen and the host caused certain variations in the metabolism
of the parasitic site and had a significant impact on the internal cells and pigment content,
moisture, and the intercellular spaces of the host [59]. Thus, the SIFtot component can detect
variations in crop photosynthesis in time and sensitively reflect disease stress information.
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The contribution of SIFtot to SIFcanopy variation became progressively greater with
increasing disease severity, and although the main factor driving SIFcanopy variation in the
mild disease state was the canopy structure of the crop, the correlation between SIFtot and
SIFcanopy also reached a highly significant correlation at this point (p < 0.001), confirming
the contribution of physiological signals to SIFcanopy. In the moderate disease state, due
to the accumulation of physiological variations over time, many branching hyphae were
produced during the infection of stripe rust; as the mycelium developed, a pustule bed
became established from which a uredinium developed [45], and the growth of spores broke
through the epidermis and destroyed a large amount of chlorophyll, causing symptoms
such as chlorosis and yellowing of wheat leaves [60]. At the same time, the crop canopy
structure varied to a certain extent, and the concentration information of plant biochemical
components and the photosynthetic physiological state underwent obvious variations. The
crop physiological state coupled with the canopy structure to a large extent [61], Causing
NIRVP contribution to SIFcanopy variation to be attenuated relative to mild period. The
variation in SIFcanopy at this stage was mainly due to the variation in leaf physiology, but
for the disease, the detection accuracy of SIFcanopy for wheat stripe rust was better than that
of the NIRVP and SIFtot components. This is because physiological information and canopy
structure affect the variations in SIFcanopy at the same time in a moderate disease state, and
the variations in canopy structure and leaf physiological signals are coupled with SIFcanopy
and SL under disease stress. Therefore, the correlation of SIFcanopy–SL was better than that
between NIRVP and SL and between SIFtot and SL.

In the severe disease state, the continuous proliferation of the hyphae of wheat stripe
rust accelerated the rupture of the leaf epidermis and cuticle, and the outbreak of stripe
rust changed the characteristics of the wheat. At this time, the internal tissue of the wheat
leaves was damaged, and the severely infected plants showed wilting symptoms in the
later stage [45,62]. Finally, the biochemical components and external color of the leaves
varied; the leaves infected by wheat stripe rust basically turned yellow, and the internal
structure of the leaves was seriously damaged. Therefore, in the severe disease state, the
variation in SIFcanopy mainly comes from the variation in leaf physiology. In addition, the
contribution of NIRVP to the variation in SIFcanopy was stronger than that in the moderate
period, because when the crops were subjected to continuous disease stress, not only did
their cell activities and biochemical components vary, but so did the leaf morphology, leaf
inclination angle distribution, and canopy structure. However, in the severe incidence
stage of wheat stripe rust, SIFtot is not as accurate as SIFcanopy and NIRVP in detecting the
disease. This is because stripe rust uses the water and nutrients of the host plant to weaken
the plant. Depending on the resistance level and temperature of the plant, there will be
varying degrees of yellowing or necrosis [61]. By this time, necrotic streaks had formed on
the leaves and the SIFtot response to SL was no longer dominant. At the same time, as the
disease broke out, the growth of the canopy varied dramatically, and so did the NIRVP–
SL correlation. The disease stress caused constant variations in canopy structure and
chlorophyll content, which affected the multiple scattering and reabsorption of SIFcanopy
received by the sensor within the canopy, increasing the NIRVP–SIFcanopy correlation.

In this study, we quantified SIFcanopy-derived SIFtot and NIRVP, demonstrating their
capability in crop disease monitoring studies. Our results addressed the unique contribu-
tion of SIFcanopy to the remote sensing of crops and showed the potential of SIFtot for early
stress quantification in wheat stripe rust.

In the early stage of wheat infection by stripe rust fungi, although it is difficult to
be directly detected by the naked eye [63], pathogenic bacteria have a significant impact
on the host internal cells and pigment content, water, and intercellular space [40]. When
encountering a suitable temperature and humidity, the disease rapidly multiplies and
spreads, resulting in serious loss of wheat yield. If the disease information can be detected
in the early stage of wheat infection by stripe rust and timely drug control can be initiated,
a widespread epidemic of the disease can be effectively avoided, and the yield and quality
of wheat can be improved.
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By comparing the responses of SIFcanopy and SL to canopy structure and plant physiolog-
ical indicators under mild-to-moderate wheat stripe rust infection, we found that the SIFtot
component, which characterizes the physiological effects of leaves, is more sensitive to early
information of wheat stripe rust and has a great advantage in detecting early disease.

5. Conclusions

In this study, the SIFcanopy detected by the sensor was decomposed into NIRVP, which
can characterize the canopy structure, and SIFtot, which can sensitively reflect the physi-
ological status of crops, and the main factors of the variation in SIFcanopy under different
disease severities was analyzed. Additionally, the response characteristics of SIFcanopy,
NIRVP, and SIFtot to SL under stripe rust stress were clarified, and how canopy structural
factors and leaf physiological signals affect the response of SIFcanopy to disease stress in
wheat crops was investigated.

The results showed that the SIFcanopy was mainly affected by variations in the canopy
structure when the incidence of wheat stripe rust was mild (0% < SL ≤ 20%). After
the influence of canopy structure was eliminated, the SIFtot signal, a component of leaf
physiological signals, was more sensitive to early stress of stripe rust. This is because wheat
stripe rust will cause leaf damage and reduce chlorophyll content in the early stage of its
onset. The destruction of chloroplasts or other organelles changes the photosynthetic rate,
which can be detected by SIFtot in time.

When the disease severity of wheat stripe rust was in a moderate state (20% < SL ≤ 45%),
the variations of canopy SIF were mainly driven by the physiological signals of leaves.
The leaves infected by wheat stripe rust are basically withered and yellow, and the inter-
nal structure of leaves has been seriously damaged. SIFtot and NIRVP simultaneously
affect the variations of SIFcanopy, coupling the relationship between SIFcanopy-SL and
making the SIFcanopy more advantageous in detecting wheat stripe rust under moderate
disease conditions.

In the severe disease state (SL ≥ 45%), disease stress leads to the continuous change
of canopy structure and chlorophyll content, which affects the multiple scattering and
reabsorption of SIF received by the sensor in the canopy and improves the correlation
between NIRVP and SL. Therefore, NIRVP, the component characterizing the canopy
structure can better monitor the change trend of wheat under severe disease stress.

The results of this study demonstrated that variations in SIFcanopy under different
disease severities are driven by different factors, and the sensitivity of canopy structure
and leaf physiological components to the disease is also different. By decomposing the
canopy structure and physiological response signals to analyze the variations in SIFcanopy,
additional information about plant physiology can be effectively obtained. This approach
will allow for earlier and more accurate detection of crop pathological changes caused by
disease stress and facilitate research advances in crop disease monitoring.
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