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Abstract: The all-weather high-resolution air temperature data is crucial for understanding the urban
thermal conditions with their spatio-temporal characteristics, driving factors, socio-economic and
environmental consequences. In this study, we developed a novel 5-layer Deep Belief Network (DBN)
deep learning model to fuse multi-source data and then generated air temperature data with 3H
characteristics: High resolution, High spatio-temporal continuity (spatially seamless and temporally
continuous), and High accuracy simultaneously. The DBN model was developed and applied for
two different urban regions: Wuhan Metropolitan Area (WMA) in China, and Austin, Texas, USA.
The model has a excellent ability to fit the complex nonlinear relationship between temperature
and different predictive variables. After various adjustments to the model structure and different
combinations of input variables, the daily 500-m air temperature in Wuhan Metropolitan Area (WMA)
was initially generated by fusing remote sensing, reanalysis and in situ measurement products. The
ten-fold cross-validation results indicated that the DBN model achieved promising results with the
RMSE of 1.086 ◦C, MAE of 0.839 ◦C, and R2 of 0.986. Compared with conventional data fusion
algorithms, the DBN model also exhibited better performance. In addition, the detailed evaluation of
the model on spatial and temporal scales proved the advantages of using DBN model to generate
3H temperature data. The spatial transferability of the model was tested by conducting a validation
experiment for Austin, USA. In general, the results and fine-scale analyses show that the employed
framework is effective to generate 3H temperature, which is valuable for urban climate and urban
heat island research.
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1. Introduction

Temperature is an essential variable in most biological and physical processes, which
acts as an important parameter in various Earth system models [1]. Global warming has
resulted in drastic changes in the global environment [2–4], leading to frequent occurrence
of extreme weather and climate events, which have significant impacts on human living
and economic development. With the acceleration of urbanization, the urban heat island
(UHI) has been discovered, where temperatures in urban areas is generally higher than
rural areas [5–7]. In order to understand UHI, high spatio-temporal resolution tempera-
ture data sets are needed investigate urban thermal conditions and their spatio-temporal
characteristics [8–10]. Therefore, it is critical to obtain air temperature data with high
temporal resolution and wide temporal coverage [11,12]. However, the sparse distribution
of in situ stations makes it difficult to analyze the UHI in continuous space, thus many
UHI effects can only be studied by land surface temperature (LST) measurements from
remote sensors (e.g., MODIS) [13]. While the commonly used MODIS data is not ade-
quate for finer urban analysis [14]. Considering the above issue, the establishment of an
all-weather high-resolution temperature dataset is important for understanding the urban
thermal conditions in urban areas with the spatio-temporal characteristics, driving factors,
socio-economic, and environmental consequences.

Temperature data is usually measured by the meteorological stations 2 m above
the ground. Worldwide meteorological stations have provided long-term, stable and
accurate temperature data [15]. Due to the heterogeneity of spatial distribution of air
temperature and the sparse distribution of meteorological stations, the application of
station measured air temperature is limited in regional or global earth science research.
Another way to obtain temperature data is from the large-scale assimilated products which
can provide global coverage data, such as the Japanese 55-year Reanalysis Project (JRA-55),
the Global Land Data Assimilation System (GLDAS), the NCEP/DOE Reanalysis 2 Project
(NNRP-2) and ERA-5 reanalysis products [16–18]. However, the spatial resolutions of
these reanalysis products are still coarse for detailed urban heat analysis. In addition,
reanalysis data products generally have systematic bias (high or low) compared with
ground measurements [19,20]. Therefore, it is urgently required to explore downscaling and
fusion techniques to obtain air temperature data with 3H characteristics: High resolution,
High spatio-temporal continuity (i.e., spatially seamless and temporally continuous) and
High accuracy simultaneously [21,22].

Current studies have mainly proposed dynamical downscaling and statistical down-
scaling methods to generate 3H air temperature data [23,24]. Dynamical downscaling
captures high-resolution climate data by simulating physical processes. Statistical down-
scaling method establishes statistical relationships between temperature and other relevant
climate or geographic variables, ranging from simple linear regression models to complex
models, such as neural networks, random forests, support vector machines and super-
resolution deep residual network [24–26]. For example, Xu et al. [27] used MODIS data,
Shuttle Radar Topography Mission (SRTM) digital Elevation Model (DEM) data and some
topographic index data to extract 11 variables, and compared the monthly air temperature
estimation from 10 machine learning algorithms on the Tibetan Plateau. The results showed
that the machine learning algorithm had great potential in air temperature estimation. Ma-
chine learning algorithms have the ability to deal with nonlinear relationships, but they still
have some limitations in downscaling air temperature data to generate 3H air temperature
data [28]. This is due to the pre-defined relationships or features in the modeling process,
which rarely make full use of their temporal and spatial dependences [29]. Moreover, some
commonly used remote sensing variables (such as LST and NDVI) are not always spatially
seamless and temporally continuous due to the influence of atmospheric conditions.

As a common statistical downscaling method, multi-source data fusion is often used
to generate temperature, precipitation and snow depth data with high spatial and temporal
resolution [30–32]. It integrates remote sensing data and reanalysis data with different
spatial and temporal resolutions to make up for the shortcomings of low spatial or temporal
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resolution or low precision of single data source. Furthermore, the existing research usually
takes the ground site data for final surface result verification and lacks the method of direct
fusion of them [27,33]. As the ground observation is recognized as the most accurate data,
it should be a good choice to generate 3H air temperature data by fusing multi-source point-
surface monitoring data based on deep learning approach. For example, Shen et al. [34]
constructed a 5-layer deep belief network (DBN) to establish the relationship between in
situ air temperature data, remote sensing data, socioeconomic data, and assimilation data.
R. Li et al. [21] proposed a temperature downscaling framework based on point–surface
data fusion to generate 3H air temperature data with a resolution of 1 km in the Yangtze
River Basin in 2019. However, for urban agglomerations with more significant spatial
heterogeneity, there is still a lack of satellite-ground data fusion method to obtain 3H air
temperature data.

Aiming to solve the above problems, we intended to design a downscaling method by
integrating multi-source data for two different urban locales: Wuhan Metropolitan Area
(WMA), China and Austin, Texas, USA. Remote sensing data, reanalysis data and in situ
ground station data are fused by this method to generate daily, 500 m 3H air temperature
data. In this analysis, the generated 3H air temperature product will help the detailed
understanding of urban climate assessment, solutions, and urban heat island effect.

2. Study Area and Data
2.1. Study Area

This study initially develops the modeling framework using WMA as the research
area, as shown in Figure 1. WMA is centered on Wuhan city and covers eight cities around
it, namely Huangshi city, Ezhou City, Xiantao City, Xianning City, Xiaogan City, Huanggang
City, Qianjiang City and Tianmen City. It is located in the central and eastern part of Hubei
Province, with 29◦1′~31◦51′ north and 112◦29′~116◦8′ East. It has the advantages of north-
south and east-west transportation. WMA officially became the “two-oriented society”
pilot area approved by The State Council since December 2007. It is the core development
area of Hubei province, China and plays an strategic role in promoting the rise of central
China. The permanent resident population in this region is 30,871,000, accounting for
53.1% of the total population of the Hubei province. GDP reached CNY 1726.5 billions,
accounting for 63.1% of the total GDP of Hubei province [35,36]. It is the most intensive
and dynamic area of industry and production in Hubei province. The WMA belongs
to the north subtropical monsoon climate, with 15~17 ◦C annual average temperature.
There are various landforms, including mountains, hills, and plains. Due to the impact
of topography and global warming, floods and droughts often occurred in this region.
Chen et al. [37] concluded that both the occurrence frequency and severity of droughts
under global warming of 1.5 ◦C and floods under global warming of 2 ◦C indicated upward
trends. In 2015, the total built-up area of Wuhan urban agglomeration was 479 411.61 hm2,
which increased by 384 947.81 hm2 compared with 2005. WMA experienced drastic urban
expansion in the past 10 years [38]. K. Wang et al. [39] considered one of the environmental
consequences of urbanization is the UHI effect. Furthermore, Shen et al. [40] conducted a
long-term and fine-scale analysis of summer UHI in Wuhan over 26 years and found that
urbanization caused the UHI to continue to increase but the trend gradually slowed down.
Therefore, it is important to investigate detail variations of air temperature in WMA.

The model development over Wuhan region is then transferred over a different geo-
graphical urban domain in Austin, Texas. Similar to WMA, Austin has been witnessing
dramatic urban growth and development. As a result, the city managers, and the commu-
nity groups are actively looking for developing urban heat mapping and heat mitigation
strategies.
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2.2. Data

In this study, we choose three kinds of data to generate 3H air temperature data,
including remotely sensed products, reanalysis products and in situ measurements, as
shown in Table 1.

Table 1. Detailed information of three categories of datasets used in this study.

Category Product Variable Spatial
Resolution

Temporal
Resolution

Temporal
Span

Remotely Sensed
Products

MOD13Q1
NDVI

250 m 16 DaysEVI

SRTM DEM 30 m -

Reanalysis
Products

ERA5-Land

2 m
Temperature 0.1◦ Hourly 2019

Soil moisture

Wind Speed

Albedo

TRIMS LST LST 1 km Daily

In Situ
Measurements

In Situ
Station

Mean
Temperature - Daily

2.2.1. Remotely Sensed Product

The Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua
is a major instrument used by the Earth Observing System (EOS) program to observe
biological and physical processes around the world. In this study, we selected NDVI
and EVI as the predictors for the satellite–ground data fusion model [41,42]. Vegetation
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indicators are used to monitor global vegetation environmental conditions and display
land cover changes [43,44]. The MODIS VEGETATION index product (MOD13Q1) used
in this study is derived from Application for Extracting and Exploring Analysis Ready
Samples (AppEEARS) published by LP DAAC. Based on this application, MODIS data are
captured, processed and analyzed online. MOD13Q1 data is a 3-level grid data product
using Sinusoidal projection. The vegetation index value provided by MOD13Q1 has a
spatial resolution of 250-m and temporal resolution of 16 days. Additionally, we also
collected global resampled Shuttle Radar Topography Mission (SRTM) digital elevation
product [45] with 30 m spatial resolution.

2.2.2. Reanalysis Products

We also selected ERA5-Land reanalysis product to provide 2 m model-based air
temperature, albedo, wind speed and soil moisture [46–48]. ERA5-land is a 0.1◦ spatial
resolution dataset produced by the ECMWF ERA5 climate reanalysis, making it more
accurate for all types of land applications [49].

It is well established that there is an energy exchange between the surface and near-
surface atmosphere. In other words, there is a strong physical link between land surface
temperature (LST) and near-surface air temperature [50]. In recent years, satellite LST
products with high spatial and temporal resolution have been widely used to estimate air
temperature, and thus we chose LST as the variable to generate 3H air temperature. We
adopted 1-km all-weather Thermal and Reanalysis Integrating Moderate-resolution Spatial-
seamless (TRIMS) LST product [51,52], which covers China mainland and its neighboring
areas. It uses a multi-scale Kalman filter to fuse the land surface temperature obtained
by remote sensing inversion and downscaling with MODIS land surface temperature to
generate a 1 km seamless land surface temperature dataset.

2.2.3. In Situ Measurement

The meteorological air temperature observations used in initially developing the model
were primarily obtained from the China Meteorological Data Service Center (CMDC). As
shown in Figure 1, a total of 36 meteorological stations were distributed in WMA evenly.
After removing some missing data, 13,131 lines of daily mean temperature and the day
of year (DOY) for 2019 obtained from these sites were used for the study. (Details for the
Austin region data are provided ahead).

3. Methods

The proposed high resolution spatially seamless and temporally continuous temper-
ature downscaling framework is shown in Figure 2. Generally, the methodology can be
divided into three parts: (1) data collection and preprocessing; (2) deep learning based
3H air temperature generating; (3) fine-scale spatiotemporal analysis. Firstly, a series of
preprocessing methods, such as resampling, clipping and grid computing were carried
out for remote sensing products and reanalysis products to made sure they all had 500 m
and daily resolutions. The pre-processing of remote sensing data and reanalysis data, such
as resampling, is the initial downscaling. Reanalysis data with high temporal resolution
but coarse spatial resolution can be used to obtain high spatial resolution input data after
grid calculation and resampling-processing. However, its inherited deviation has not been
corrected at this time [53]. Therefore, remote sensing data with high spatial resolution but
low temporal resolution is introduced into the model. The values of the ground stations
where they are located were also extracted as input variables for improving the accuracy
of 3H air temperature. Then, input variables were input into DBN model for training and
generated a 3H temperature. Finally, the newly generated 3H air temperature was analyzed
at a fine scale.
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Figure 2. The 3H urban temperature mapping methodology of this study.

We employed the 5-layer DBN model by fusing in situ ground observations with
remotely sensed data and reanalysis data. The model has one input layer, one output
layer and three hidden layers. After experimental comparison, the number of neurons
in each hidden layer was determined to be 25, 15 and 10, respectively. A total of eight
variables were used as the predictors for the DBN model including ERA5-Land temperature,
surface soil moisture (SW), wind speed, albedo, LST, NDVI, EVI, DEM and a time variable
(i.e., DOY). The structure of the model can be given:

3H Temperature = f (ERA5 T, SW, Wind, Albedo, LST, NDVI, EVI, DEM, DOY) (1)

where f (·) is the model. The study period was selected as the whole year of 2019 and there
was a total of 36 meteorological stations in the study area.

3.1. Deep Belief Network Model

Deep learning as a new generation of machine learning methods has been proved to
be very promising in many research fields. With the advent of the era of big data, deep
learning with its powerful non-linear simulation ability has a great influence in many
fields but its application in the field of climate, hydrology and earth systems science is
still in its infancy [54]. In this study, DBN, as a Bayesian probability generation model
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was used to generate 3H air temperature by fusing multi-source data. The classic DBN
consists of multiple restricted Boltzmann machines (RBM) layers and one back-propagation
(BP) layer. The Figure 3 shows the complete structures of DBN model with input layer,
output layer and hidden layer. The training procedure of DBN can be treated as an efficient
unsupervised layer-wise fashion. Each RBM is a two-layers neural network, which consists
of one hidden layer to input data and one visible layer to extract features. The neurons
between the two layers of RBM are fully connected, but there are no connections inside
each layer.
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Then the equation of energy function of RBM can be given as follows:

E(v, h/θ) = −∑m
i=1 aivi −∑n

j=1 bjhj −∑m
i=1 ∑n

j=1 viWijhj (2)

v and h represent the state of the visible and hidden layers, respectively. vi and hi represent
the ith neuron of the corresponding layers, respectively. Where θ =

{
Wij, ai, bj

}
means

the parameters to be estimated. To be specific, W represents the weight matrix, while a
and b denote the bias of visible neurons and hidden neurons, respectively. The process
of the DBN model can be summarized as pre-training, fine-tuning and prediction [33],
as shown in Figure 2. All variables are first entered into the model as the visible layer of
the first RBM for pre-training. Then feature optimization algorithm is used to extract the
temperature-related features from the input data layer by layer from top to bottom without
supervision until the last RBM parameter of the hidden layer approaches the ideal value.
Then, BP algorithm is used to fine-tune the ownership value parameters of the DBN model
until the estimation error is small enough to obtain acceptable prediction result. Besides
that, we adopted ten-fold cross-validation to ensure accuracy of results. Based on this
method, the 3H air temperature was successfully generated by the trained model.
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3.2. Model Validation

To better evaluate the performance of each model, the ten-fold cross-validation [55]
approach was conducted to test the model predictive ability and overfitting problems. The
dataset was divided into 10 parts, nine of which were used as training data and one as test
data in turn, and the experiment was conducted. The Pearson correlation coefficient (PCC)
was calculated to verify the correlation between input variables and in situ observation
data. The coefficient of multiple determination (R2), mean absolute error (MAE), root mean
square error (RMSE) and bias were calculated, and the estimation results were compared
with the corresponding observation data to evaluate the accuracy of the model. Table 2 lists
the calculation methods of these five indicators.

Table 2. The equations and detailed information of PCC, R2, RMSE, BIAS, and MAE. Pi and Mi

represent the ith fusion value and ground measurement, respectively. P and M indicate the average
values of fusion temperature and in situ measurements. n is the number of the sample.

Metric Equation Unit

PCC PCC =
∑n

i=1(Pi−P)(Mi−M)√
∑n

i=1 (Pi−P)2
(Mi−M)

2
-

R2 R2 = 1− ∑n
i=1(Pi−Mi)

2

∑n
i=1(Mi−M)

2
-

RMSE RMSE =

√
∑n

i=1 (Pi−Mi)
2

n
◦C

MAE MAE = 1
n

n
∑

i=1
|Pi −Mi|

◦C

BIAS BIAS = 1
n

n
∑

i=1
(Pi −Mi)

◦C

4. Results
4.1. Correlation Analysis of Input Variables

The PCC was adopted to investigate the linear or non-linear relationship between
each variable and average air temperature of in situ stations. The results of R values are
presented in Figure 4. It can be observed that the in-situ air temperature has a strong corre-
lation with Temperature_2 m from ERA5-Land and land surface temperature (R > 0.95). It
can be inferred that the inputs of LST and ERA5-Land temperature are beneficial to the im-
provement of accuracy for the multi-source data fusion. The NDVI and EVI have relatively
strong and positive relationships with in-situ air temperature (0.6 < R < 0.9). Moreover,
in-situ temperature also showed moderate negative correlations with SW (R = −0.323).
Those absolute R values below 0.3 indicate that Elevation, wind speed, Albedo and DOY
have relatively weak correlations with in-situ air temperature.
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4.2. Evaluation of Multi-Source Data Fusion Algorithm
4.2.1. Evaluation of the Overall Accuracy of the DBN Model

The variables mentioned above were input into the model to generate the 3H air
temperature in WMA. The overall performance of DBN versus other three comparative
models is shown in Figure 5. In general, all these methods achieved acceptable results to
generate air temperature data. The points of the four models are concentrated near the black
dotted line in this figure. Among these four models, the lowest accuracy were achieved by
multiple linear regression (MLR) and back propagation artificial neural network (BPNN)
with R2 of 0.983. The MLR model has the sparsest distribution of points, indicating that
using the linear model to derive air temperature produced larger errors in this condition
due to the complex relationships between various variables and air temperature. Unlike
MLR, traditional BPNN is based on non-linear fitting, but the result is not better than
MLR due to the relatively simple structure of the model. In addition, compared with RBM
model, parameters are initialized before training, traditional BPNN random initialization
makes the model easy to fall into trouble, such as local optimization and long training time.
Support vector regression (SVR), as a machine learning model, improves the generalization
ability of learning machine, so as to achieve good statistical laws in the case of small
statistical sample size. The SVR model performed better than MLR and BPNN, with a
denser distribution of points. Especially, owing to the best capabilities of fitting nonlinear
relationships, deep learning method achieved the most accurate estimations with most of
the scatter dots close to the black dotted line than MLR, BPNN and SVR.
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Figure 5. The density scatter plots of the in-situ temperature and 3H air temperature for the cross-
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The x and y axes represent in-situ ground measurements and fusion temperature, respectively. The
red color represents dense concentration of scatters.

A more comprehensive analysis was conducted by comparing each model with the
evaluation index results obtained by ten-fold cross-validation. As a whole, all these models
have good performance with RMSE from 1.086 ◦C to 1.198 ◦C, MAE from 0.839 ◦C to
0.917 ◦C, and R2 from 0.983 to 0.986. The best performance is achieved in DBN model with
the highest R2 value and the lowest RMSE and MAE, followed by the SVR. By contrast, the
worst performance derived from the BPNN with the RMSE increased by 0.112 ◦C (from
1.086 ◦C to 1.198 ◦C), MAE increases by 0.078 ◦C (from 0.839 ◦C to 0.917 ◦C) and R2 is
reduced by 0.003 (from 0.986 to 0.983). It confirms that DBN model has great potential
capabilities in generating 3H air temperature data. This is because DBN model can better
analyze the characteristics of variables that are only weakly correlated with air temperature
than traditional algorithms, such as MLR, BPNN and SVR. Overall, the comparative
analysis further confirms the superior performance of DBN model in generating 3H air
temperature data.

4.2.2. Spatial Evaluation of Model Performance

In this study, the entire sample set was divided into a training set, validation set
and test set as a 7:2:1 ratio. Four weather stations were randomly selected to verify the
performance of the model. To evaluate the predictive power of DBN model in generating
3H air temperature data, we plotted the density scatter plots for these four validation
sites, as shown in Figure 6. In general, the scattered points of all verification points are
concentrated near the 1:1 line, indicating fusion temperature has a high consistency with
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the in situ ground measurements. Specifically, the fusion temperature exhibited strong
correlation with in situ ground observations with R2 values generally higher than 0.975 for
all validation stations while RMSE was ranging from 0.971 ◦C to 1.357 ◦C. The average
R2, RMSE, MAE and bias for these validation sites achieved 0.984, 1.146 ◦C, 0.880 ◦C
and −0.129 ◦C, respectively. Results demonstrated that DBN model showed excellent
performance in downscaling temperature with 500 m spatial resolution.
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The red color represents dense concentration of scatters.

It can be observed that there are still differences in the density scatter distribution
and performance accuracy of each station. To further investigate the spatial patterns of the
statistical metrics and downscaling accuracy in all meteorological stations, the distributions
of four metrics are presented in Figure 7. Prominent spatial variations of these statistical
metrics can be clearly observed. For R2, RMSE and MAE, the stations located in the middle
and west of WMA exhibited significantly higher R2 values and lower RMSE and MAE than
that of south area. The station 57489 located in the middle of Wuhan has the highest R2

(0.991) and the lowest RMSE (0.904 ◦C) and MAE (0.707 ◦C). The central and southern part
of Wuhan is dominated by the alluvial plain of Yangtze River and Han River, with flat and
open terrain. Stations with high accuracy are also distributed in Wuhan and its surrounding
area at low elevation (9~21 m). However, station 57596 located in the south of Xianning
has the lowest R2 (0.974) and the highest RMSE (1.450 ◦C) and MAE (1.117 ◦C). The south
area of Xianning is a steep-sloped, dome-shaped, folded and faulted mountain composed
of granite and metamorphic rocks, which is obviously more complex than Wuhan and its
surrounding flat areas. Previous studies have found that the accuracy of some existing
temperature products is low in areas with large elevation differences, such as mountains
and hills, which is consistent with our research results (Dutra et al., 2020).
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4.2.3. Temporal Evaluation of Model Performance

To examine the capability of the fusion temperature in capturing the temporal dynam-
ics of ground measurements, a total of four validation stations were randomly selected.
The temporal variations of fusion air temperature were represented by orange dots, in
situ observations represented by black dots and ERA5-Land temperature represented by
blue lines at these stations, as shown in Figure 8. In general, the fusion air temperature
and ERA5-Land temperature are highly consistent with the in situ ground observations.
However, ERA5-Land temperature fluctuates more than fusion temperature with more
overestimations and underestimations, as clearly observed in station 57595 and 58501. It is
mainly attributed to the fact that the spatial scale heterogeneity between ground measure-
ment and satellited data existed. Although some errors also existed in fusion temperature
at some time, the overall trend of temperature variations could be well reconstructed and
captured by applying DBN model. These results further demonstrate the effectiveness of
the framework for generating high quality temperature data.
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We mapped the spatial distributions of average fusion air temperature in each month
in 2019 to evaluate the performance of this model at monthly scale, as shown in Figure 9.
We also calculated the annual mean temperature and elevation of WMA in 2019 in Table 3.
The overall temperature ranged from 0 to 35 ◦C in 2019. The temperature shows a spatially
downward trend from the center to the sub-urban area. In Huanggang and Xianning the
annual average temperature is relatively low with high average elevation. The lowest
temperature was found in the northeast of Huanggang, and the area with the highest
elevation only has 13.8 ◦C annual average temperature. Due to the small span of the study
area, there is not much difference in the regional distribution of monthly mean temperature.
Figure 10 shows the temporal variation of fusion temperature in each month. Average
temperature was significantly higher in summer (June to August) and lower in winter
(December to February). Temporally, the average temperature in summer is significantly
higher than that in winter, while the average temperature in spring and autumn is similar,
which accords with the seasonal variation law of WMA.

Table 3. Elevation and annual mean temperature statistics for WMA cities.

City
Max

Elevation
(m)

Mean
Elevation

(m)

Min
Temperature

(◦C)

Max
Temperature

(◦C)

Mean
Temperature

(◦C)

Wuhan 726 37.00 16.40 18.24 17.42
Huangshi 776 108.98 16.40 17.88 17.10

Ezhou 445 31.41 16.92 18.18 17.48
Xiaogan 818 75.37 15.59 17.84 16.81

Huanggang 1674 174.69 13.82 18.05 16.65
Xianning 1555 189.72 15.62 17.94 16.79
Xiantao 83 26.26 16.83 17.84 17.41

Qianjiang 127 28.09 14.28 17.52 17.13
Tianmen 144 31.19 15.04 17.53 16.95Remote Sens. 2022, 14, 3536 15 of 24 
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Figure 10. The temporal variation of fusion temperature in each month 2019, The black dots represent
outliers.

Moreover, we compared the spatial distribution of fusion temperature data with that
of ERA5-Land temperature, as shown in Figure 11. It is clear that the spatial distribution
of temperature data generated by DBN model is basically the same as that of ERA5-Land
temperature. Meanwhile, DBN model successfully captured the overall spatial variation
trend of temperature in WMA and showed more subtle spatial details. For example,
the spatial variation of fusion temperature data in the northeast and central parts of
WMA is more detailed than that of ERA5-Land temperature products, as we can see in
the red rectangles. We compared the actual temperature at the station 57485 and 57595
on October 1st with these two temperature values. The actual temperature of station
57485 was 25.4 ◦C. The fusion temperature and ERA5-Land temperature were 26.1 ◦C
and 27.3 ◦C, respectively. The actual temperature of station 57595 was 26.3 ◦C. The fusion
temperature and ERA5-Land temperature were 25.9 ◦C and 26.8 ◦C, respectively. The
fusion temperature is obviously closer to the actual value than the ERA5-Land temperature.
In summary, the temperature fusion framework in this study successfully generated 500-m
3H air temperature by applying point–surface data fusion method and DBN model.
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5. Discussion
5.1. DBN Structure Comparison

To find the best DBN model structure, the hidden layers of DBN and the number of
neurons in each layer were adjusted and compared as shown in Table 4. As the number of
DBN layers and neurons increase, the accuracy of the model increases obviously. When the
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hidden layer of DBN reaches 4, the model performance tends to be stable. In addition, when
there are three hidden layers, the structure with 25, 15 and 10 neurons have better accuracy
than the structure with 25, 20 and 15 neurons. This result suggests that more neurons in the
hidden layer is not always better. Moreover, as the number of hidden layers and neurons
increase, so does the time of model calculations. Therefore, in this study, we employed a
5-layer DBN model, including three hidden layers, one input layer and one output layer,
and the number of neurons in each hidden layer was 25, 15 and 10, respectively.

Table 4. DBN model performance for different layers and neurons.

DBN Hidden Layer Hidden Layer Neurons RMSE (◦C) MAE (◦C) R2

2 25, 20 1.117 0.864 0.985
3 25, 15, 10 1.086 0.839 0.986
3 25, 20, 15 1.087 0.844 0.986
4 25, 20, 15, 10 1.085 0.839 0.986

5.2. DBN Performance with Different Variables

Because different types of data were selected during model training, some variables
only had weak linear correlations or even no linear relationships with air temperature
values. To better find the optimal combination of variables to maximize the fitting ability
of DBN model, we evaluated the performance of the proposed model under different
combinations of variables. The accuracy evaluation indexes of each combination are shown
in Table 5. When only ERA5-Land data was used as input variables of the model, RMSE
was 1.219 ◦C, MAE was 0.922 ◦C, and R2 was 0.982, respectively. By contrast, as more
variables were used in the model, the accuracy increased. After LST was added, RMSE
and MAE increased to 1.244 ◦C and 0.941 ◦C but the gap was small. For remotely sensed
data, the RMSE and MAE decreased to 1.124 ◦C and 0.876 ◦C, respectively. In addition, the
accuracy of the model was significantly improved after time parameters were input into
the model. However, the linear correlation between temporal parameters and in situ air
temperature were not that high, as shown in Section 4.1. This result shows that DBN model
has superior ability to simulate a nonlinear relationship between in situ air temperature
and prediction variables. Overall, the combination of different input variables confirms
that they are meaningful in generating 3H air temperature.

Table 5. Model accuracy for different combinations of datasets. E: ERA5-Land data; L: TRIMS LST; R:
Remotely Sensed Products; T: Temporal parameters.

Dataset Combinations RMSE (◦C) MAE (◦C) R2

E 1.219 0.922 0.982
E + L 1.244 0.941 0.982
E + R 1.124 0.876 0.985
E + R + T 1.106 0.858 0.986
E + L + R 1.134 0.875 0.985
E + L + R + T 1.086 0.839 0.986

5.3. Spatio-Temporal Evaluation of the Fusion Accuracy

To investigate the performance of fusion model in different months, Figure 12 presents
the variations of statistical metrics for all validation sites at monthly scale. Generally,
the variations of model accuracy also represented distinct differences in different months.
Specifically, fusion temperature in summer (July to August) and autumn (September to
November) showed lower errors rather than that in spring and winter. Results for July
and August have the best performances with average RMSE of 0.824 ◦C and 0.843 ◦C,
respectively. Results in January and April indicated relatively low accuracy with the
highest error with average RMSE of 1.195 ◦C and 1.437 ◦C, respectively. Notably, the model
has better precision performance in months with higher average temperature, which is
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inconsistent with our expectations. Because relevant studies show that the correlation
coefficient between LST and temperature in these months is lower than that in other
months [56,57]. Overall, the above findings highlight the necessity of considering temporal
factors in air temperature fusion model.
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Figure 12. The temporal variations of R2, RMSE, MAE and BIAS in each month. The black dots
represent outliers.

Previous studies have shown that land cover type affects the correlation between LST
and air temperature [58]. Hence, we also examined the model accuracy in diverse land
cover types, including grassland, water, forest, farmland and buildings. As shown in the
left part of Figure 13, radar maps show the average accuracy of all sites with different land
cover types. It can be observed that the performance of DBN model is different under
different land cover types, and the model has high precision in these types. More precisely,
the DBN model has relatively poor performances in grassland and forest with an RMSE of
1.15 ◦C and 1.19 ◦C, respectively. For the stations near buildings, water and farmland, the
performance of the model is relatively good with an RMSE down to 1.13 ◦C, 0.90 ◦C and
1.04 ◦C, respectively. In addition to study the impact of land cover types on the model, we
also evaluated the accuracy performance of the model at different elevation ranges. The
figure on the right of Figure 13 classifies the elevation into four levels. The statistical metrics
varied in different ranges of elevation. Generally, the performance of DBN worsened with
the increase of elevation.
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5.4. Role of Point-Surface Fusion in Generating 3H Temperature Data

In this study, we applied point–surface data fusion to generate 3H air temperature,
because the air temperature data observed from ground is the most accurate, which is
higher than remote sensing data or reanalysis data. Some previous studies used remotely
sensed or reanalysis products as model outputs [59], which failed to take fully advantages
of in situ ground observations. To determine and evaluate the role of point–surface data
fusion in improving the model accuracy, we set a comparative experiment by applying
surface–surface fusion method in temperature downscaling. In this case, the output of
the DBN model was ERA5-Land temperature instead of in situ measurements. The scat-
ter density plots for 32 validation stations are presented in Figure 14. Compared to the
downscaled temperature using model-based temperature as output, the accuracy of the
fusion temperature by adopting ground observations as output was substantially improved.
The average R2 increased from 0.973 to 0.986 while the RMSE, MAE rose from 1.479 ◦C,
1.146 ◦C to 1.086 ◦C and 0.839 ◦C, which decreased about 26.57% and 26.79%, respectively.
Although fusion temperature in the case of surface–surface fusion still maintained high cor-
relation with in-situ measurements, it is mostly attributed to the originally high correlation
between ERA5-Land temperature and ground observations. In summary, the application of
point–surface data fusion was proved to enhance the overall performance of DBN model in
generating 3H temperature.
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5.5. Spatial Transferability of the Model

To verify the spatial transferability of temperature fusion framework proposed in this
study, a comparative experiment was conducted at Austin, TX, USA. Austin is in south-
central Texas, at the same latitude as WMA, and has a subtropical climate. However, it is in
the Western hemisphere and close to the Gulf of Mexico, while WMA is inland. Therefore,
using the Austin area as a comparative area reflects the geographical heterogeneity and
could test the spatial transferability. We selected 17 ground-based monitoring sites in
Austin to capture its average daily temperature for 2019. After processing a series of remote
sensing data and reanalysis data of Austin, including ERA5-Land temperature, Surface
Soil Moisture (SW), Wind speed, Albedo, LST, NDVI and DEM. The performance of the
modelis shown in the Figure 15. It was found the proposed method also showed good
performance at Austin area with the RMSE of 1.173 ◦C, MAE of 0.851 ◦C and R2 of 0.981.
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Figure 15. The density scatter plots of the 3H air temperature for the Austin, Texas area for the
cross-validation results.

It is known that Austin’s summer is long and hot while winter is short, cold and windy.
There is variable weather pattern throughout the year. During the experimental year, the
temperature varied between 6 ◦C and 36 ◦C, rarely falling below −1 ◦C or above 39 ◦C.
The hottest month in Austin is August, with an average high temperature of 35 ◦C and an
average low temperature of 24 ◦C. We developed the map of Austin’s average temperature
in August 2019, as shown in Figure 16. In August, the maximum temperature of 42 ◦C with
an average temperature of 29.6 ◦C was recorded, consistent with previous studies [60].

In summary, the temperature fusion framework in this study can be applied to other
urban agglomerations to generate 3H air temperature.
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6. Conclusions

In this study, we employed a 5-layers DBN model to generate 3H air temperature. The
daily air temperature at 500 m resolution taking WMA as an example was successfully gen-
erated by integrating remote sensing products, reanalysis products and in situ temperature
measurements. Compared to the conventional data fusion algorithms (e.g., MLR, BPNN),
deep learning method exhibited excellent performance in generating air temperature and
could better consider non-linear relationship and achieved the best performance with the
RMSE of 1.086 ◦C, MAE of 0.839 ◦C and R2 of 0.986. In addition, the detailed evaluation
of the model on spatial and temporal scales proved the feasibility of using DBN model to
generate 3H air temperature. The performance of DBN model was verified by adjusting
different combinations of variables, and the results showed that the model performed
better with more effective variables. Spatio-temporal air temperature by the proposed
method showed more detailed spatial variations than reanalysis temperature data. The
comparison between point–surface fusion and surface–surface fusion also indicated that
the combination of station-based data could greatly improve the model accuracy, which
decreased the RMSE and MAE by about 26.57% and 26.79%. The method is proven to
have spatial transferability by validating it at Austin, US, with the RMSE of 1.173 ◦C,
MAE of 0.851 ◦C and R2 of 0.981. The results and comparative analysis confirmed that the
multi-source data fusion model had the potential to generate 3H temperature data. This
has important implications for urban climate assessment and urban heat island mapping
and management.
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T.H., Y.S. and S.H.; Validation, W.-H.N., J.Z. and D.N.; formal analysis, X.Z. and T.H.; investigation,
X.Z., T.H. and Y.S.; resources, X.Z. and X.G.; data curation, T.H. and Y.S.; writing—original draft
preparation, X.Z. and T.H.; writing—review and editing, W.-H.N., X.G., J.Z., S.H., N.C., A.G. and
D.N.; visualization, X.Z. and T.H.; supervision, X.Z.; project administration, X.Z. All authors have
read and agreed to the published version of the manuscript.
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