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Abstract: Ecosystem respiration (RE) plays a critical role in terrestrial carbon cycles, and quantifi-
cation of RE is important for understanding the interaction between climate change and carbon
dynamics. We used a multi-level attention network, Geoman, to identify the relative importance of
environmental factors and to simulate spatiotemporal changes in RE in northern China’s grasslands
during 2001–2015, based on 18 flux sites and multi-source spatial data. Results indicate that Geoman
performed well (R2 = 0.87, RMSE = 0.39 g C m−2 d−1, MAE = 0.28 g C m−2 d−1), and that grassland
type and soil texture are the two most important environmental variables for RE estimation. RE in
alpine grasslands showed a decreasing gradient from southeast to northwest, and that of temperate
grasslands showed a decreasing gradient from northeast to southwest. This can be explained by
the enhanced vegetation index (EVI), and soil factors including soil organic carbon density and soil
texture. RE in northern China’s grasslands showed a significant increase (1.81 g C m−2 yr−1) during
2001–2015. The increase rate of RE in alpine grassland (2.36 g C m−2 yr−1) was greater than that
in temperate grassland (1.28 g C m−2 yr−1). Temperature and EVI contributed to the interannual
change of RE in alpine grassland, and precipitation and EVI were the main contributors in temperate
grassland. This study provides a key reference for the application of advanced deep learning models
in carbon cycle simulation, to reduce uncertainties and improve understanding of the effects of biotic
and climatic factors on spatiotemporal changes in RE.

Keywords: ecosystem respiration; spatiotemporal changes; deep learning model; environment
control; alpine grasslands; temperate grasslands

1. Introduction

Ecosystem respiration (RE) is the second-largest terrestrial carbon flux after photosyn-
thesis, and plays an important role in the interaction between climate change and carbon
dynamics [1,2]. Minor fluctuations in RE caused by natural or human activity can result
in significant changes in atmospheric CO2 concentrations [2–5]. Although studies have
described the global RE pattern and associated temporal changes [6–8], there remains
considerable uncertainty around the spatiotemporal changes in RE at the regional and
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biome scales [9], hindering the identification of carbon sinks and source functions in key
areas.

Efforts have been made to understand how climate change affects spatiotemporal
changes in RE, but complex interactions among the physical, chemical, and biological
processes of RE present a considerable challenge for researchers [10,11]. Seasonal changes in
grassland RE can be attributed to temperature (Ta) and moisture [2,12,13]. Spatial changes in
respiration can be attributed to vegetation status, plant productivity, or moisture [12,14,15].
However, there have been few analyses of long-term interannual changes in RE. Most of
these prior studies have focused on climatic and vegetation factors. Soil factors remain
relatively unexplored, including soil organic carbon (SOC) and soil texture (SoilTex). This
is because their functions remain poorly understood in the context of complex respiration
processes [16–18]. However, soil factors are important for carbon flux estimation, and soil
respiration accounts for a high proportion of ecosystem respiration [19–24]. Therefore, the
important influence of soil factors in the RE estimation model cannot be excluded.

To accurately quantify RE, many empirical models [2,14,25–27], semi-empirical mod-
els [1,28], and process models [16,29] have been developed using data at different temporal
and spatial scales. Machine learning (ML) models show promise for solving complex
data patterns, owing to their powerful nonlinear regression and classification abilities [30].
ML has been successfully applied in many fields of ecology, including carbon–water
flux [2,31–35], energy flux [6,36,37], and vegetation state [38–40]. However, the interpre-
tation of the modeling results is often difficult, as the impact of inputs on the output
cannot easily be understood through networks in comparison with process-based mod-
els [30,41–43]. In recent years, the attention mechanism has become one of the main focuses
in ML research. Its core principle is to assign greater weight to important information to
achieve the purpose of selecting the key information, which improves the interpretability
of the results [42,44,45]. Combined with powerful neural network models, such as long
short-term memory networks (LSTM), the attention mechanism has achieved great success
in time series prediction [44,46,47]. ML models with a high prediction accuracy provide
promising tools for monitoring regional RE.

Grasslands play an important role in the terrestrial ecosystem carbon cycle, especially
grassland ecosystems in alpine regions and in arid and semi-arid regions, where fragile
ecological environments are more likely to be affected by climate change [14,48]. Grassland
is the dominant landscape in China, accounting for 40% of the national land area [2], and
is mainly distributed in the Tibetan Plateau (TP) and the Inner Mongolian Plateau (IM)
(Figure 1). China’s grasslands account for approximately 10% of the global grassland area
and form 9–16% of the global grassland carbon pool [49].
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In this study, we applied the geo-sensory multi-level attention network (Geoman)
model developed by Liang et al. [44] to estimate the RE in northern China’s grasslands
from 2001–2015, at a spatial resolution of 1 km. We aimed to evaluate the performance
of the deep learning model based on the attention mechanism, for estimating the RE of
grassland ecosystems in northern China. Based on the effects of multiple environmental
factors, including soil, meteorology, and biology, we explored long-term spatiotemporal
changes of RE in northern China’s grasslands, and analyzed the driving mechanisms and
effects of these environmental factors on spatial patterns and interannual and seasonal
dynamics of RE.

2. Materials and Methods
2.1. Study Area

Located in an alpine climate zone, the TP is characterized by lengthy sunshine duration,
strong solar radiation, low temperature, and low precipitation (PRE). The average altitude
of the TP is more than 4000 m, the mean annual air temperature is in the range of −5.75 to
2.57 ◦C, and the mean annual precipitation varies from 200 to 600 mm. The terrain of the TP
slopes from northwest to southeast. Alpine grasslands cover more than 60% of the surface
of the TP and are a unique grassland ecosystem among the world’s alpine regions [12]. IM
is in an arid and semi-arid zone, and the average altitude is approximately 1000 m, with a
terrain that is high in the south and low in the north. The mean annual air temperature
in the IM ranges between 3 and 6 ◦C, and the mean annual precipitation ranges from 200
to 350 mm. Temperate grasslands are the main grassland type in the IM, and are a typical
vegetation type (VT) in a temperate continental climate.

According to the Atlas of Grassland Resources of China (1:1,000,000) [50], alpine
grasslands are divided into four subcategories, namely alpine Kobresia meadow (KO),
alpine shrub meadow (SH), alpine swamp meadow (SW), and alpine meadow steppe (AS).
Temperate grasslands are divided into three subcategories, namely meadow steppe (MS),
typical steppe (TS), and desert steppe (DS) (Figure 1).

2.2. Data
2.2.1. Flux and Meteorological Data

Flux and meteorological data were collected from the ChinaFLUX [51], Coordinated
Observations and Integrated Research over Arid and Semi-arid China (COIRAS) [52], and
the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) [53]. A total
of 52 site-year observation data points collected from 18 flux sites during 2003–2014 were
used in this study (Figure 1, Table 1). Among them, nine sites were distributed in the TP
alpine grasslands and included 34 site-year observation data points. Another nine sites
were distributed in the IM temperate grasslands and included 18 site-year observation data
points. These flux sites represent the most extensive grassland ecosystem types, with a
wide range of spatial, ecological, and climatic conditions.

The carbon flux data were processed through triple coordinate rotation, the Webb–
Pearman–Leuning (WPL) correction, and abnormal data rejection [51]. To match the
eight-day compositing interval of the MODIS products, the half-hour observed RE, Ta and
photosynthetically active radiation (PAR) data were averaged and the PRE was summed
over eight days. At the site scale, these meteorological data were synchronously observed
using the eddy covariance system, and were gap-filled following the method proposed by
Schwalm et al. [54]. Finally, we obtained a total of 1923 items of site observation data with
an eight-day temporal resolution. At the wider spatial scale, Ta, PRE, and PAR data from
2001 to 2015 with 1 km spatial resolution were produced using ANUSPLIN software to
spatialize the observation data from Chinese meteorological stations. The regional-scale
Ta, PRE, and PAR data were then cross-validated based on the site observation data. The
validation results showed that the interpolation products were consistent with the site
observation data [55,56]. In line with the RE data, the regional Ta and PAR data were
averaged and the PRE was summed for eight days.
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Table 1. Main characteristics of the 18 flux sites in northern China’s grasslands [34].

Zone Grassland Type Site Location Elevation (m) Operation Period

TP 1

KO 3
AR 38.04◦N,

100.46◦E 3033 2014

GL 34.35◦N,
100.56◦E 3980 2007, 2010–2011,

2013

HBKO 37.61◦N,
101.31◦E 3148 2003–2004

SH 4 HBSH 37.67◦N,
101.33◦E 3293 2003–2012

SW 5 DXSW 30.47◦N,
91.06◦E 4286 2009–2010

HBSW 37.61◦N,
101.33◦E 3160 2004–2008,

2010–2012

AS 6
DXST 30.5◦N,

91.06◦E 4333 2004–2005, 2007,
2009–2010

NMC 30.77◦N,
90.96◦E 4730 2009

ZF 28.36◦N,
86.95◦E 4293 2009

IM 2

MS 7 HLBE 49.06◦N,
119.4◦E 628 2012

TY 44.57◦N,
122.92◦E 151 2008–2009

TS 8

DL 42.05◦N,
116.28◦E 1324 2010–2011

NMG 43.53◦N,
116.28◦E 1200 2004, 2007–2008,

2010–2011

XLHT 44.13◦N,
116.32◦E 1187 2010–2011

YZ 35.95◦N,
104.13◦E 1968 2008–2009

DS 9
DS 44.09◦N,

113.57◦E 990 2008–2009

SZWQ 41.8◦N,
111.9◦E 1438 2012

XLS 35.77◦N,
104.05◦E 2481 2008

1 Tibetan Plateau, 2 Inner Mongolian Plateau. 3 Alpine Kobresia Meadow, 4 Alpine Shrub Meadow, 5 Alpine
Swamp Meadow, 6 Alpine Meadow Steppe, 7 Meadow Steppe, 8 Typical Steppe, 9 Desert Steppe.

2.2.2. Remote Sensing Data

According to Equation (1), the EVI was generated using the eight-day MODIS land
surface reflectance datasets (MOD09A1, Level 3, Collection 5) for 2001–2015, which were
downloaded from the NASA Land Processes Distributed Active Archive Center (https:
//lpdaac.usgs.gov/, accessed on 12 October 2021).

EVI = G
ρNIR − ρred

ρNIR + C1 × ρred − C2 × ρblue + L
(1)

where ρNIR, ρred and ρblue are the surface reflectance for the near-infrared, red, and blue
bands, respectively. The coefficients G, C1, C2 and L used in the EVI algorithm were 2.5, 6,
7.5, and 1, respectively [57].

The original spatial resolution of the EVI was 500 m; it was resampled to 1 km for ease
of computation. To further reduce the effects of cloud and to capture the seasonality of the

https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
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EVI, a data smoothing tool providing a double logistic curve fit in the TIMESAT software
was used to smooth the original time series [58].

Digital elevation model (DEM) data was obtained from the Shuttle Radar Topographic
Mission (https://srtm.csi.cgiar.org/srtmdata/, accessed on 10 November 2021) and the
original data were resampled with a spatial resolution of 90 m to 1 km.

2.2.3. Soil Data

The SoilTex of the surface soil layer (0–30 cm) was retrieved from the Harmonized
World Soil Database (http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-
database/, accessed on 16 November 2021), including the clay content (wt%), silt content
(wt%), and sand content (wt%). The soil organic carbon density (SOCD, kg C m−2) was
calculated using the organic carbon content (wt%), gravel content (vol%), layer thickness
(m), and bulk density (kg m−3), according to the method described by Carvalhais et al. [59].
Due to limited data availability, we only obtained one issue of SOCD and SoilTex data. We
used the mean values of the SoilTex, SOCD, and EVI subsets of 3 × 3 km pixels centered on
each flux tower, to better represent the eddy covariance footprint area and to reduce the
effects of geolocation errors [34].

2.3. Model
2.3.1. Deep Learning Model: Geoman

In this study, we used a deep learning model including a multi-level attention mech-
anism, known as Geoman. It was originally developed to perform geographic sensor
time-series predictions, such as for air quality and water quality [44]. The structure was
modified from the original Geoman framework and is shown in Figure 2. Geoman combines
the advantages of the attention mechanism and LSTM by distinguishing the importance
of multiple time-series data to preserve key spatiotemporal information. The attention
module in Geoman consists of spatial and temporal attention. The spatial attention includes
two sub-modules, namely global spatial attention that expresses the inter-site correlations,
and local spatial attention that expresses the intra-site correlations. The temporal attention
in the decoder stage captures the time dependencies. LSTM learns interactions at mul-
tiple timescales and can be extended to encoder and decoder modules [60]. Limited by
the availability of ecological data, and also by differences in the spatial density between
ecological observation sites and other geographic monitoring sites, including loop detector
systems and urban groundwater monitoring systems, we only used local spatial attention
to describe the dynamic correlation between each local feature and the target series. For sim-
plicity, in this paper the term ‘Geoman’ refers to the model without global spatial attention.
The local spatial attention mechanism can be expressed simply by Equations (2) and (3).

ek
t = vT

l tanh
(

Wl [ht−1; st−1] + Ul xk + bl

)
(2)

αk
t =

exp
(

ek
t

)
∑Nl

j=1 exp
(

ej
t

) (3)

where [; ] represents concentration operation. vl , bl ∈ RT , Wl ∈ RT×2m and Ul ∈ RT×T

are learnable parameters and are determined by the back-propagation algorithm during
the training process. The superscript T is the time window of input data. ht−1 ∈ Rm and
st−1 ∈ Rm are the hidden state and cell state at time t − 1, constituting the short-term
memory and long-term memory in the LSTM encoder, respectively. The superscript m is
the number of hidden neurons in LSTM. Nl denotes the number of feature variables. xk is
the k-th local feature, namely the environmental variables (VT, Ta, PAR, EVI, PRE, SOCD,
or SoilTex) of the flux sites. ek

t is the correlation score between the k-th local feature and
the target series (i.e., RE). Its size is determined by the local input feature xk and historical
state information (ht−1 and st−1). αk

t is the attention weight calculated by normalizing the

https://srtm.csi.cgiar.org/srtmdata/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/
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score of the k-th feature using a softmax function, and represents the relative importance
of the k-th feature to the target series. After training, αk

t was obtained from the trained
Geoman prediction process. The external factor fusion module can fuse other relevant
features affecting the RE, such as elevation and weather forecasts. The weather forecasts
used in this study refer to Ta and PRE at the time stamp of the predicted RE, and provide
time-related factors to further improve the prediction accuracy.
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2.3.2. Model Training and Evaluation

The hyperparameters of Geoman were optimized and determined using the grid
search method [61]. All data from the 18 sites were fed into the model for training, without
considering the interactions between sites. The performance of Geoman was evaluated
using a sample-based 10-fold cross-validation strategy in which the observation data were
randomly assigned 10 folds. Each fold contained approximately 10% of the data and was
used consecutively for model training, validation, and testing to ensure independence of the
three datasets [60]. According to this partition principle, the entire data were divided into
non-overlapping training, validation, and test data at a ratio of 8:1:1. The cross-validation
process was repeated 10 times. The estimated RE from all 10 folds were compared with the
observed RE.

Three frequently used statistical indicators, i.e., the coefficient of determination (R2),
root-mean-square error (RMSE), and mean absolute error (MAE) were selected as evaluation
metrics to analyze the performance of the model. These metrics were calculated as follows:

R2 =

 ∑n
i=1(yi − y)

(
y′i − y′

)
√

∑n
i=1(yi − y)2

√
∑n

i=1

(
y′i − y′

)2


2

(4)
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RMSE =

√
1
n

n

∑
i=1

(
yi − y′i

)2 (5)

MAE =
1
n

n

∑
i=1

∣∣yi − y′i
∣∣ (6)

where yi and y′i are the observed and estimated RE, respectively. y and y′ are the means of
yi and y

′
i, and n is the number of observed samples.

When all parameters were optimized, the trained Geoman model was applied to
predict eight-day RE at all spatial grids, using environmental data with l km spatial
resolution and eight-day temporal resolution. The grid numbers for each grassland subtype
are shown in Table 2. The DEM, SOCD, and SoilTex data were set unchanged at all time
steps due to their limited availability.

Table 2. The grid numbers for all grassland subtypes and their proportions in the total grid.

Grassland Type KO SH SW AS MS TS DS Total

Grid number 471,226 79,952 104,752 65,294 147,111 368,673 239,440 1,476,448
Percentage 31.92% 5.42% 7.09% 4.42% 9.96% 24.97% 16.22% 100%

3. Results
3.1. The Performance of Geoman at the Site Scale
3.1.1. Model Evaluation

According to the results of the 10-fold cross-validation, the predicted RE was in line
with the observed RE (Figure 3). Most of the scattered points occurred approximately at
the 1:1 line (R2 = 0.87, RMSE = 0.39 g C m−2 d−1, MAE = 0.28 g C m−2 d−1), indicating that
Geoman can accurately estimate the RE value for northern China’s grasslands.
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Figure 3. The predicted RE vs. the observed RE at the site scale.

We further evaluated the model simulation for the seasonal dynamics of RE at the site
scale. Results showed that Geoman can accurately capture the seasonal dynamics of RE in
the seven grassland subtypes (Figure S1). The best agreement between the predicted and
observed RE was for typical steppe and meadow steppe (R2 = 0.97 and 0.95, respectively),
followed by the alpine shrub meadow (R2 = 0.91), alpine Kobresia meadow (R2 = 0.89),
desert steppe (R2 = 0.88), alpine swamp meadow (R2 = 0.86), and alpine meadow steppe
(R2 = 0.86).

The seasonal variation in the RE at all sites formed a unimodal curve, peaking in July
or August. The model continued to perform well during the high value period (from July
to August), the growing season (from May to September), and the low value period (from
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December to January) in the non-growing season. Across the seven grassland subtypes,
the alpine Kobresia meadow, the alpine shrub meadow, and the meadow steppe had higher
RE peaks, reaching 4–6 g C m−2 d−1 (Figure S1a,b,f), while the alpine meadow steppe and
desert steppe had relatively low RE peaks of 0.5–2 g C m−2 d−1 (Figure S1d,f).

3.1.2. Relative Importance of Environmental Factors

In this study, we quantified the relative importance of each environmental variable
for predicting the RE, using the dynamic attention weights. We analyzed the differences
between seven grassland subtypes during the growing season and non-growing season
(Figure 4, Table 3). Results demonstrate that vegetation type and soil texture are the two
most important environmental factors for RE estimation in northern China’s grasslands.
The importance of other environmental variables also represents spatiotemporal charac-
teristics with ecological significance. In the growing season, temperature was found to be
more important than precipitation in alpine grasslands, whereas the opposite was true for
temperate grasslands. This indicates that restrictive climatic conditions have a considerable
effect on accurate estimation of RE. In the non-growing season, SOCD was more important
than climatic variables for RE estimation. However, temperature was more important than
SOCD in alpine meadows, which may be associated with the low temperature limit of the
RE in the area.
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Figure 4. Relative importance of the environmental variables for predicting RE in the growing season
(left) and non-growing season (right). KO: alpine Kobresia meadow. SH: alpine shrub meadow. SW:
alpine swamp meadow. AS: alpine meadow steppe. MS: meadow steppe. TS: typical steppe. DS:
desert steppe.

Evaluation of the relative importance of the environmental variables indicates that
the importance of SOCD in the non-growing season exceeded that of the climatic factors.
Therefore, we further evaluated the accuracy of the RE estimation for the low value period
from December to January in the non-growing season. It was found that adding SOCD to
the model could improve interpretability by 44% compared with removing this variable
(Figure S2a,b). When the soil texture was removed from the model, the results appeared to
have been overestimated during the low value period in the non-growing season (Figure
S2c). Therefore, it is necessary to integrate soil texture into RE models because this can to a
certain extent solve the problem of overestimation of low RE values.
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Table 3. Relative importance statistics for the environmental variables. All the notations in the
grassland subtypes column are consistent with those in Figure 4.

The Growing Season

Grassland
Subtypes SOCD EVI PAR PRE Ta SoilTex VT

TP

KO 0.080 0.095 0.110 0.111 0.156 0.188 0.261
SH 0.093 0.102 0.102 0.115 0.157 0.181 0.250
SW 0.065 0.094 0.121 0.117 0.147 0.194 0.263
AS 0.040 0.051 0.146 0.117 0.165 0.205 0.276

IM
MS 0.050 0.128 0.096 0.169 0.117 0.182 0.258
TS 0.038 0.083 0.125 0.184 0.120 0.188 0.263
DS 0.034 0.042 0.152 0.155 0.110 0.200 0.306

The Non-Growing Season

Grassland
subtypes SOCD EVI PAR PRE Ta SoilTex VT

TP

KO 0.122 0.075 0.110 0.097 0.084 0.216 0.296
SH 0.139 0.079 0.105 0.101 0.088 0.207 0.281
SW 0.106 0.074 0.103 0.092 0.085 0.231 0.308
AS 0.070 0.069 0.083 0.088 0.135 0.238 0.317

IM
MS 0.116 0.085 0.080 0.086 0.085 0.226 0.322
TS 0.121 0.077 0.092 0.083 0.069 0.233 0.324
DS 0.113 0.066 0.061 0.077 0.100 0.228 0.354

3.2. Spatiotemporal Changes in RE in Northern China’s Grasslands
3.2.1. Spatial Patterns of RE in Northern China’s Grasslands

The mean annual RE for northern China’s grasslands from 2001 to 2015 was
366.53 g C m−2 yr−1, showing clear spatial heterogeneity. However, the spatial pat-
terns for RE over the 15 years did not change significantly (Figure 5a). Regarding the
alpine grasslands on the TP, the mean annual RE was 467.44 g C m−2 yr−1, exhibiting
a clear decreasing gradient from southeast to northwest (Figure 5b). The alpine shrub
meadow had the largest RE (573.64 g C m−2 yr−1), followed by the alpine Kobresia meadow
(515.28 g C m−2 yr−1), the alpine swamp meadow (380.94 g C m−2 yr−1), and the alpine
meadow steppe (129.29 g C m−2 yr−1). Regarding the temperate grasslands in IM, the
mean annual RE was 270.43 g C m−2 yr−1, exhibiting a clear decreasing gradient from
northeast to southwest (Figure 5b). The highest RE value occurred in the meadow steppe
(534.28 g C m−2 yr−1) in the northeast, and the lowest value for RE was recorded in the
desert steppe in the southwest (88.15 g C m−2 yr−1). The mean annual RE in the typical
steppe was 283.15 g C m−2 yr−1. Statistics indicated that the RE for the alpine Kobresia
meadow and typical steppe accounted for more than 60% of the total RE in northern China’s
grasslands (Figure 5c).
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3.2.2. Temporal Variation for RE in Northern China’s Grasslands

Seasonal variation in RE at the regional scale formed a unimodal curve peaking
during summer (Figure 6a), which is consistent with the site-scale verification results
(Figure S1). The RE for alpine grasslands in the TP was always higher than that of
the temperate grasslands in the IM. The RE peak value for the TP was in the range of
2.5–3.0 g C m−2 day−1, and its trough value was around 0.5 g C m−2 day−1. The IM had a
lower peak value of 2.0–2.5 g C m−2 day−1, and its trough value was significantly lower
than 0.5 g C m−2 day−1. We analyzed seasonal dynamics for the mean 15-year seasonal RE
in the seven grassland subtypes and found that vegetation heterogeneity had a significant
impact on RE (Figure 6b). The seasonal change curves for RE in the alpine meadow steppe
and desert steppe were relatively flat, and the differences in RE between the growing
season and non-growing season were relatively small, which may have resulted from
hydrothermal condition limitations. Compared with these two grassland subtypes, the
other grassland subtypes had a higher RE peak value during the growing season.

From 2001 to 2015, the RE of northern China’s grasslands increased at a rate of
1.81 g C m−2 yr−1 (Figure 6c). The alpine grassland RE in TP increased at a rate of
2.36 g C m−2 yr−1, which was faster than the increase rate of 1.28 g C m−2 yr−1 in the
IM temperate grasslands (Figure 6c). We further analyzed the increase rate of RE in the
seven grassland subtypes from 2001 to 2015 and found that the maximum rate of increase
occurred in the alpine shrub meadow, while the minimum increase rate was in the desert
steppe (Figure 6d). The rate of increase for RE in the TP is greater than that of the IM, which
shows that the TP has a stronger feedback response under the background of global climate
change.
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3.3. Environmental Effects on RE Spatiotemporal Variation
3.3.1. Environment Effects on RE Seasonal Dynamics

The relationship between RE and Ta in northern China’s grasslands at an eight-day
timescale showed an explicit exponential form (R2 = 0.97; Figure 7a). The sensitivity of
RE to temperature in the TP alpine region was greater than that of the IM temperate
region. This temperature-sensitive heterogeneity can be attributed to the regional climatic
conditions and the vegetation types. There was a clear positive correlation between RE
and PRE throughout northern China’s grasslands, and the R2 between the two was 0.90
(Figure 7b). We also found that the RE reached a certain saturation point with the increase
in PRE. When the PRE reacheds a specific threshold, the RE no longer increased and even
tended to decline (Figure 7b). The saturation thresholds for RE to PRE differed in different
climatic regions. In the temperate grasslands, RE began to decrease after the PRE exceeded
35 mm, while PRE at this intensity retained a continuous positive stimulus for RE in alpine
grasslands. This may be associated with the different moisture requirements of the different
grassland types. A significant linear positive correlation (R2 = 0.93) between the RE and the
EVI was observed in the northern grasslands of China (Figure 7c). Similar to Ta, PAR and
RE showed an exponential positive correlation (R2 = 0.69, Figure 7d). However, under the
same radiation intensity, the sensitivity of RE to PAR was higher in the alpine grasslands
than in the temperate grasslands.
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Figure 7. Seasonal dynamic correlation between RE and (a) Ta, (b) PRE, (c) EVI, and (d) PAR at
eight-day timescale from 2001–2015 in the northern China’s grasslands overall, alpine grasslands,
and temperate grasslands, respectively.

We further analyzed the relationship between RE and environmental variables on a
seasonal scale in the seven grassland subtypes (Table 4). It was found that Ta could best
explain the RE seasonal dynamics compared with other variables, in five of the seven
grassland subtypes. Ta was also the secondary environmental factor explaining the RE
seasonal dynamics in the remaining two grassland subtypes. To summarize, Ta was found
to dominate the seasonal dynamics of RE in northern China’s grasslands.

Table 4. The seasonal dynamic correlation (R2) between RE and environmental variables in each
grassland subtype.

Grassland
Subtypes EVI PAR PRE Ta

TP

KO 0.927 0.528 0.801 0.931
SH 0.938 0.515 0.807 0.929
SW 0.925 0.674 0.826 0.951
AS 0.624 0.697 0.564 0.834

IM
MS 0.892 0.773 0.736 0.956
TS 0.853 0.822 0.771 0.928
DS 0.748 0.689 0.672 0.727
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3.3.2. Environment Effects on RE Interannual Dynamics

With respect to each grassland type, we analyzed the interannual dynamic relationship
between RE and environmental variables (Figure 8, Table 5). In the four alpine grassland
subtypes, the R2 between the annual RE and annual average Ta was 0.73–0.91 (Figure 8a).
The R2 between the annual RE and annual average EVI, excluding the alpine meadow
steppe, was 0.44–0.63 (Figure 8c). There was no significant correlation between the annual
RE and the annual total PRE or PAR (Figure 8b,d). In the three temperate grassland
subtypes, the R2 between the annual RE and the annual total PRE was 0.2–0.64 (Figure 8b).
The R2 between the annual RE and the annual average EVI was 0.28–0.63 (Figure 8c),
but there was no significant correlation with the annual average Ta or the annual PAR
(Figure 8a,d). In contrast to the positive promotion effect of PAR on RE at the seasonal scale
(Figure 7d), the effect of annual total PAR on annual RE was not significant (Figure 8d).
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Figure 8. Interannual dynamic correlation between annual RE and (a) annual average Ta, (b) annual
total PRE, (c) annual average EVI, and (d) annual total PAR from 2001–2015 in alpine and temperate
grasslands. The dark cyan fitted lines refer to the fit lines for the alpine grassland subtypes, and the
orange lines refer to the fit lines for the temperate grassland subtypes. The red lines refer to the fit
lines across all seven grassland subtypes.
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Table 5. The mean annual values for the environmental variables and the interannual dynamic
correlation (R2) between RE and the environmental variables in each grassland subtype.

Mean Annual Value R2

Grassland
Subtypes EVI PAR (mol m−2 yr−1) PRE (mm) Ta (°C) EVI PAR PRE Ta

TP

KO 0.15 2723.14 628.23 0.10 0.44 0.00 0.07 0.91
SH 0.17 2649.46 692.66 1.35 0.63 0.01 0.11 0.88
SW 0.15 2673.11 508.06 −0.21 0.48 0.00 0.00 0.80
AS 0.10 2975.61 433.30 −0.62 0.01 0.44 0.51 0.73

IM
MS 0.18 2182.35 431.45 3.48 0.28 0.08 0.20 0.17
TS 0.14 2412.42 340.07 4.69 0.63 0.02 0.62 0.05
DS 0.08 2728.92 275.18 2.13 0.62 0.03 0.64 0.12

We found that when the mean annual PRE exceeded 400 mm, which was the case
in all the alpine grasslands and in MS among the temperate grasslands (Table 5), annual
average Ta always provided a positive stimulus for annual RE (Figure 8a). This suggests
that in grasslands with adequate moisture availability, the interannual dynamics of RE were
controlled by factors other than PRE. Compared with the significant positive correlation
between annual average RE and annual total PRE in temperate grasslands, the correlation
for these in alpine grasslands was negative or close to zero (Figure 8b). When temperature
was restricted, the annual total PRE had almost no stimulating effect on the annual RE in
the same grassland type. In summary, the interannual change in RE in alpine grassland is
mainly attributed to the annual average Ta and annual average EVI, and the interannual
change in RE in temperate grassland is attributed to the annual total PRE and annual
average EVI.

3.3.3. Environment Effects on RE Spatial Variation

The red fitting line in Figure 8 shows that annual RE was correlated with the annual av-
erage EVI across the seven grassland subtypes, and the R2 reached 0.91. This indicates that
EVI can best explain the spatial variation in RE in northern China’s grasslands, compared
with other environmental factors. In alpine grasslands, including AS, SW, KO, and SH, the
mean 15-year EVI showed an increasing trend, and RE also showed an increasing trend
(Figure 8c, Table 5). In temperate grasslands, EVI and RE also increased simultaneously
from DS and TS to MS. These results highlight that RE and EVI changed synchronously in
the same spatial direction in the same climate zone.

In the temperate grasslands, including DS, TS, and MS, the mean annual RE increased
synchronously with an increase in the mean annual PRE (Figure 8b). Within AS, SW, KO,
and SH in the alpine grasslands, the mean annual PRE and the mean annual RE also
increased simultaneously. However, simultaneous variation in the PRE and the RE was
only observed in the same climate zone. Across grassland types in the same climate zone,
the mean annual PRE controlled the magnitude of the mean annual RE.

There was no significant correlation (R2 = 0.004, p = 0.52) between annual RE and
annual average Ta throughout northern China’s grasslands (Figure 8a). In the alpine
grasslands, including AS, SW, KO, and SH, the annual RE increased with an increase in
the annual average Ta. However, in the temperate grasslands, there no synchronization
phenomenon was observed. These results indicate that the dependence of annual RE on
the annual average Ta tends to be stronger in regions with more moisture. The influence
of Ta on RE in grassland ecosystems is regulated by moisture, and the regulation strength
varies with different vegetation types.

Across the seven grassland subtypes, the SOCD, clay, and silt content had positive
effects on the mean annual RE, whereas sand content had a negative effect (Figure 9),
which is consistent with previous research [27]. Within AS, SW, KO, and SH in the alpine
grasslands and DS, TS and MS in the temperate grasslands, RE increased simultaneously
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with the increase in SOCD and clay content. The R2 between the RE and the SOCD, clay,
silt, and sand content were 0.80, 0.68, 0.45, and 0.81, respectively, implying that soil factors
also affect the spatial variation of RE.
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EVI and soil factors are critical environmental factors that determine the spatial varia-
tions in RE in northern China’s grasslands. Their dominant roles illustrate the importance
of grassland type and soil factors in regulating the spatial pattern of RE.

4. Discussion
4.1. Model Comparison

Accuracy comparison between Geoman and the previous models in estimating RE in
northern China’s grasslands is displayed in Table 6. Geoman performed best, with the best
explanation and minimum bias, when compared with seven previous models, including
two semi-empirical models, one satellite-based model, three traditional machine-learning
models, and one deep-learning model. Compared with semi-empirical models, deep-
learning models can automatically extract the complex nonlinear dependence relationship
between the target variable and the explaining variable, without excessive restriction from
predetermined theoretical assumptions about complicated respiration processes. Based on
similar methods, carbon flux estimations such as gross primary productivity (GPP) have
been used as benchmarks and are widely employed in the evaluation and improvement
of process models [62–64]. The combination of LSTM and the attention mechanism in
the encoder and decoder stages further improves the predictive ability of the Geoman
model (see Section 3.1.1). The LSTM in Geoman can adapt to time-varying behaviors and
use dynamic data to update the parameters to improve the predictions. The local spatial
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attention module provides a means of distinguishing the importance of different input
variables. The time attention module gains insight into past patterns of encoder outputs for
different environment variables, and decoder outputs for the target variables. However,
this insight can be difficult to model using traditional ML models.

Table 6. The accuracy performance of different models.

Model R2 RMSE References

T&P 0.68 1.23 [1]
RECO 0.63 0.97 [16]

Satellite-Based Model 0.75–0.79 0.60–0.77 [12]
BP_ANN 0.84 0.51 [34]

SVR 0.85 0.49 [34]
RF 0.84 0.50 [34]

SAE 0.86 0.47 [34]
Geoman 0.87 0.39 This study

Despite the many challenges in adopting DL in ecology, DL can provide predictions
with unparalleled precision without prior hypotheses. Geoman has been designed to make
time-series predictions by understanding the impact of multiple explanatory variables on
the target variables. However, the interpretation of the prediction results from the DL
model structure is often insufficient, because the impact of the inputs on the outputs cannot
be easily understood through neural networks [30]. In this study, an attempt was made
to use the attention mechanism to explain the impact of environmental variables on RE,
ecologically meaningful results were generated (see Section 3.1.2). The integration of DL
models and ecological-process-based models represents a promising development in the
domain of ecological study, and should substantially improve the interpretability of the DL
models [65].

4.2. Climatic and Biotic Control over RE

Climatic conditions regulate the spatiotemporal patterns and variation in RE [1,66].
Temperature is the main factor affecting the RE rate in the absence of other environmental
stresses [67]. This is because respiration requires the catalysis of enzymes, and temperature
is a necessary condition for enzyme decomposition [68]. According to our results (see
Section 3.3.2), warming promoted an increase in RE in alpine grasslands across the four
alpine grassland subtypes as well as within the same subtype. It did not lead to an increase
in RE in temperate grasslands, and even led to a decrease in RE in TS and DS (Figure 8a).
Warming had no effect on RE, which may be related to the limited precipitation in temperate
grasslands (Figure S3b) that restricts plant production and microbial activity [69]. This
also indicates that warming can increase the RE under favorable environmental conditions
when moisture availability is not a restrictive factor.

PRE provides the necessary water for vegetation growth, affecting canopy structure
and plant production [70], and ultimately improves autotrophic respiration. PRE changes
the soil microenvironment, affecting the dissolution and diffusion of organic solutes, gases,
and enzymes [67,71]. This promotes microbial activity [72], and improves heterotrophic
respiration. However, a saturation phenomenon affects RE under conditions of high
precipitation (Figure 7b), which has been reported in previous studies [13,27]. This may be
because precipitation in excess of the saturated soil moisture reduces the oxygen content in
the soil [27,68]. It also inhibits the activity of plant roots and aerobic microorganisms, and
reduces RE in grasslands. The different levels of saturated PRE for RE in alpine grasslands
and temperate grasslands may reflect differences in the water requirements for different
vegetation types.

The increase in the annual total PRE, and not the annual average Ta, had a positive
effect on the annual RE within the same temperate grassland subtype (Figure 8a,b). This
may be associated with the greater increase in precipitation than in temperature from
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2001–2015 (Figure S3a,b). The annual average Ta had a greater stimulating effect on
the increase in annual RE in the same alpine grassland subtype (Figure 8a), which was
associated with the increase in the annual average Ta (Figure S3a). These results illustrate
that PRE and Ta were the dominant climatic factors for interannual changes in RE in
temperate grasslands and alpine grasslands, respectively. IM temperate grasslands are
mainly distributed in arid and semi-arid zones, and limited moisture strongly restricts
vegetation growth and microbial activity, which each affect RE changes [34]. Although
plants that grow in alpine regions have adapted to the low temperature environment, their
production and respiration processes are comparatively restricted. A minor temperature
rise can contribute to an increase in RE by prompting the grassland to turn green, and
increasing the biomass, the microbial activity, and litter decomposition [73–75].

The promoting effect of PAR on RE at the seasonal scale can be attributed to the effect of
the seasonal PAR cycle on photosynthesis. Stronger photosynthesis tends to mean stronger
respiration. However, at the interannual scale, the influence of annual PAR on annual
RE changes was not significant in the alpine grasslands nor in the temperate grasslands
(Figure 8d), which may be related to the long-term stability of solar radiation (Figure S3d).

This study indicates that EVI is the most important environmental factor affecting the
spatial pattern of RE in northern China’s grasslands (Figure 8c), which is in accordance with
previously reported results [12,16]. As a vegetation index commonly used for estimation
of vegetation productivity, EVI is strongly associated with GPP in space and time [76,77].
GPP is the main supply for autotrophic respiration, and determines its intensity [24]. De-
composition of organic matter by microorganisms, including heterotrophic soil respiration,
is also supported by photosynthesis. As shown in Figure S3c, the rate of increase for EVI in
temperate grasslands from 2001 to 2015 was substantially greater than that in the alpine
grasslands. This illustrates the faster increase in productivity of temperate grasslands,
although the rate of increase for RE in temperate grasslands over 15 years was slower than
that in the alpine grasslands (Figure 6c). This may be due to the greater uptrend of carbon
sequestration in temperate grasslands [78].

The soil carbon substrate supplies various components of the RE, and determines the
distribution of nutrients in aboveground and underground plant tissues, as well as the
phenological patterns of vegetation growth [67]. Soil organic carbon (SOC) is one of the
main forms of soil carbon that affects spatiotemporal patterns of respiration [1,79]. With
a relatively large soil carbon pool and gradually melting permafrost, alpine grasslands
on the TP have the potential to release significant amounts of CO2 [80]. Our results also
demonstrate that the RE and its rate of increase on the TP are larger than those in the IM
(Figure 6c). SoilTex indirectly influences RE, primarily by controlling water and nutrient
availability [81,82]. Clay and silt soils have higher soil water-holding capacities and longer
water-holding times [83]. This provides more available water for vegetation growth,
microbial decomposition, and respiration. Soils with higher clay and silt content can also
store more SOC and nutrients for respiration processes [14,27]. The negative impacts of
sand content on respiration could be attributed to larger soil porosity, resulting in lower soil
water availability. This may constrain microbial activity and vegetation growth, leading to
reduced respiration.

The effects of biotic and climatic factors on RE are strongly interlinked. Adequate
hydrothermal conditions increase vegetation growth and autotrophic respiration [84].
These hydrothermal and vegetation conditions further regulate the SOC and affect the soil
heterotrophic respiration [85]. Biotic and climatic factors synergistically stimulate RE, but
at different spatial and temporal scales, and one of these variables may be particularly
significant.

4.3. Limitations and Prospects

The carbon, water, and energy flux estimations for the regional scale based on the ML
models represent a process of upscaling ecological knowledge of the carbon cycle from
the site scale. Therefore, it is essential to evaluate the spatial representativeness of the
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flux observation sites [86,87]. Most of the current flux observation sites were established
gradually over the previous few decades, with their locations often having been determined
by expert experience and consideration of accessibility, including traffic, logistics, and
topographic factors. Site density and uniformity substantially vary in different regions,
owing to the lack of a systematic design. The 18 flux sites used in this study exhibited a non-
uniform spatial distribution (Figure 1). In situ observations representing a few surrounding
kilometers cannot fully represent the climate, environment, and flux in remote regions [88].
This increases the level of uncertainty in regional-scale carbon-flux estimations [89,90].
It has been reported that the current network of flux towers in northwestern Tibet lacks
representativeness, and that adding flux towers could considerably improve the ability of
the existing flux network to represent local environmental conditions [91]. It is expected
that the ecological environment will receive more public attention, and the rapid expansion
of big data in ecological systems engineering will establish an increasing number of flux
sites, so their representativeness will become more credible.

The time range of carbon flux data employed in this study was concentrated in the
period 2003–2014 (Table 1). This approximately coincides with the long-term regional
estimation of RE. However, we obtained only one-year flux data for the AR, NMC, ZF,
HLBE, SZWQ, and XLS sites. The small amount of observation data not only means these
sites were under-represented, but may also make it impossible for the Geoman model to
learn adequately the features of these flux data during model training. The estimated RE in
this study is based on time-series environmental data with an eight-day resolution. These
environmental variables cannot fully reflect various extreme climatic events that occurred
during the eight-day interval [92], such as extreme heat waves or rainfall in summer and
extreme cold in winter. The limited availability and considerable uncertainty of SOC and
soil texture data restrict their effective application in estimating the RE at the regional
scale [17,59,93]. The continuous sharing of ecological data, and the development of data
augmentation and digital soil mapping technologies will provide reliable solutions to these
problems.

5. Conclusions

Compared with several previous semi-empirical models and traditional ML models,
Geoman performed better (R2 = 0.87, RMSE = 0.39 g C m−2 yr−1, MAE = 0.28 g C m−2 d−1)
when estimating RE in northern China’s grasslands. We found that soil factors have a
significant effect on the estimation of RE in the low-value period in the non-growing
season, thereby suggesting that RE models should not exclude the role of soil, especially in
grassland ecosystems. Our results revealed the occurrence of substantial spatiotemporal
changes in RE in northern China’s grasslands. On the spatial scale, the RE of alpine
grassland showed a decreasing trend from southeast to northwest in the TP, and that
of temperate grassland showed a decreasing trend from northeast to southwest in the
IM. On the temporal scale, the RE of grasslands in northern China showed a significant
increasing trend (1.81 g C m−2 yr−1) from 2001 to 2015. The rapid increase in RE in alpine
grasslands indicates greater response to climate change than in temperate grasslands. Biotic
and climatic control over RE varied at the temporal and spatial scales. Ta was the main
factor that influenced the seasonal dynamics of RE in grassland ecosystems. Ta and EVI
controlled the interannual dynamics of RE in alpine grasslands, whereas PRE and EVI were
the main controlling factors in temperate grasslands. EVI and soil factors were found to
control the spatial changes in RE in grassland ecosystems. This study highlights the high
accuracy of DL in simulating spatiotemporal changes in the carbon cycle, and enhances
our understanding of the interactions between RE and climate change.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14153563/s1, Figure S1: Eight-day time series plots for observed
and predicted RE at all sites; Figure S2: Predicted RE vs. observed RE in the low value period in the
non-growing season; Figure S3: Interannual dynamics of annual average Ta, annual total PRE, annual
average EVI, and annual total PAR from 2001–2015 at the regional scale.
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