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Abstract: In order to study and forecast extreme weather, a comprehensive and systematic analysis
of the spatial and temporal relationship between Precipitable Water Vapor (PWV), predicted by
Numerical Weather Predication (NWP) data, and precipitation, is necessary. The goal of this paper
was to study the temporal and spatial relationship between PWV and precipitation during the so-
called ‘July 20’ (18–21 July 2021) heavy rainstorm in Zhengzhou. Firstly, the PWV data provided
by 120 radiosonde stations uniformly distributed throughout the world, and two IGS stations in
China, in 2020, was used to evaluate the accuracy of PWV estimation by ERA5 and MERRA-2 data,
and the factors affecting the accuracy of NWP PWV were explored. Secondly, ERA5 PWV and the
precipitation data of six meteorological stations were used to qualitatively analyze the relationship
between PWV and precipitation during the ‘July 20’ heavy rainstorm in Zhengzhou. Finally, a
quantitative study was conducted by an eigenvalue matching method. The main experimental results
were as follows. Compared with MERRA-2 PWV, the accuracy of ERA5 PWV was slightly higher.
Latitude, altitude and season were the influencing factors of the NWP PWV estimation accuracy.
The change trend of ERA5 PWV was consistent with both 24 h cumulative precipitation and surface
precipitation during the ‘July 20’ heavy rainstorm in Zhengzhou. The average optimal matching
degree and optimal matching time between NWP PWV and surface precipitation during the ‘July 20’
heavy rainstorm in Zhengzhou was 56.6% and 3.68 h, respectively. The maximum optimal matching
degree was 80.3%. The spatial–temporal relationship between NWP PWV and surface precipitation
was strong.

Keywords: PWV; MERRA-2; ERA5; ‘July 20’ heavy rainstorm in Zhengzhou; eigenvalue matching method

1. Introduction

The troposphere, as the atmosphere layer most closely related to human activities,
contains almost all water vapor and 75% of the air quality of the whole atmosphere, which
is an important part of global space. Although the water vapor content in the atmosphere
is only 0–4%, its change has a direct impact on surface temperature, humidity and surface
precipitation [1–3]. In addition, water vapor is an important greenhouse gas, and about 60%
of greenhouse gases that cause climate change are affected by water vapor [4]. At present,
global climate change is irregular: drought, flood disasters and extreme weather occur
frequently, which is having a serious impact on human production and life. Accurately and
systematically monitoring the distribution of atmospheric water vapor, and exploring its
change rule, play an important role in studying the evolutionary processes of varieties of
complex weather, and providing early warning of natural disasters [5].

Precipitable Water Vapor (PWV) is the most commonly used indicator to express
the water vapor content in the atmosphere, which refers to the total water vapor content
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contained in the air column of a unit cross-sectional area from the surface to the top
of the troposphere [6]. Traditional PWV observation methods include radiosonde (RS),
microwave radiometer and satellite remote sensing [7,8]. Of the traditional methods, RS is
one of the most accurate PWV detection methods at present, but its time resolution is low,
the site distribution is sparse, and the detection cost is high, which cannot meet the needs
of small-scale and medium-scale meteorological research [9]. Microwave radiometer and
satellite remote sensing are mainly based on thermal infrared and near-infrared bands, to
detect meteorological parameters in the atmosphere, which have high accuracy and large
detection range. However, correction is required before use. The detection accuracy is
easily affected by weather conditions, and the vertical profile of the water vapor cannot
be obtained, which restricts its application in weather forecasting and meteorological
research [10,11]. With the development of the Global Navigation Satellite System (GNSS),
the concept of GNSS meteorology was first proposed in the 1990s [12]; the PWV monitoring
method based on GNSS technology has been widely used since then. This method has the
merits of high resolution, low cost, continuous operation and high precision. However, due
to the uneven distribution of GNSS stations, it is difficult to obtain sufficient GNSS PWV
data for areas with few GNSS stations, which limits the application of GNSS technology
to invert PWV in climate research. With the increasing accuracy of reanalysis data, the
estimation of PWV using Numerical Weather Prediction (NWP) forecasts or reanalysis data,
and the study of the relationship between PWV and extreme weather, have become current
hot topics [13].

At present, organizations including the European Centre for Medium-Range Weather
Forecasts (ECMWF), the National Centers for Environmental Prediction (NCEP), the Na-
tional Aeronautics and Space Administration (NASA), and the China Meteorological
Administration (CMA), provide their users with the latest global atmospheric numeri-
cal prediction reanalysis information and forecast information. The provision, by these
organizations, of accurate assessment of PWV predicted by the NWP data, is necessary.
Bock, et al. [14], compared PWV calculations from 120 IGS stations worldwide with PWV
calculated from ERA-Interim reanalysis data provided by ECMWF: the results showed
that the daily standard deviation of PWV was usually less than 2 mm. Zhang, et al. [15],
used GNSS PWV to evaluate the accuracy of PWV estimations retrieved from ERA5 and
ERA-interim reanalysis data provided by ECMWF in China: the RMS values of PWV re-
trieved from ERA5 and ERA-interim were 1.8 mm and 2.1 mm, respectively. Vey, et al. [16],
showed good consistency between GNSS PWV and PWV estimations retrieved from NCEP
reanalysis data; however, in the Antarctic and tropical regions, PWV retrieved from NCEP
reanalysis data were smaller than those retrieved from GNSS PWV. Chen, et al. [17], used
the GNSS PWV to evaluate PWV retrieved from the Climate Forecast System Reanalysis
(CFSR) dataset provided by NCEP, with an RMS value of 4.13 mm. Huang, et al. [18],
used GNSS PWV to evaluate the accuracy of ERA5 PWV provided by ECMWF, and
MERRA-2 PWV provided by NASA, on the Tibetan Plateau, with RMS values of 1.77 mm
and 2.12 mm, respectively. The CRA40 reanalysis data, released by the CMA, showed a
temporal resolution of 3 h, a spatial resolution of 43 km, and data starting time of 1979 [19].
There is scant literature evaluating the accuracy of the estimation of PWV from CRA40
reanalysis data.

Many scholars have studied the relationship between PWV and extreme weather. The
occurrence of rainfall requires sufficient water vapor content in the atmosphere, and there
is constant condensation of water vapor in the atmosphere a few hours, or sometimes even
more, before rainfall occurs, resulting in a sustained growth trend in PWV values [20].
Duc, et al. [21], used the extended fractions skill score method to evaluate the performance
of MF10 km and MF2 km ensemble forecast data for predicting rainfall. Experiments
showed that MF2 km was more reliable than MF10 km in predicting moderate rainfall and
rainstorms. In contrast, the MF10 km data was superior to the MF2 km data in predicting
small rainfall. Champollion, et al. [22], studied the variation and distribution of PWV
during a rainstorm in southwest France on 9 September 2002: the results showed that
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small-scale variation of PWV can also cause deep convection phenomena. The necessary
condition for rainfall is the increase of PWV, but the increase of PWV does not necessarily
lead to rainfall events. Yao, et al. [23], pointed out that PWV surged 2–6 h before the
rainstorm. Heavy precipitation events occur after a steep rise in PWV [24]. Zhu, et al. [25],
studied the variation of PWV during three typhoons in Hong Kong from 2013 to 2014,
and the experiment showed that PWV near the surface (0~1.6 km) varied less during
the typhoon, while PWV between 1.6~8.5 km in height varied more during the typhoon.
Valjarevi, et al. [26], used cloud data from moderate resolution imaging spectroradiometer
satellite for 30 years (1989–2019), to analyze the relationship between cloud cover and
topography in Serbia. The results showed that the lower the cloud cover, the lower the
precipitation in the eastern mountainous areas of Serbia.

Henan Province is located in central China, and its capital is Zhengzhou city. The
terrain is high in the west and low in the east. The north, west, south are surrounded by
Taihang Mountain, Funiu Mountain, Tongbai Mountain and Dabie Mountain, respectively.
The central and eastern part is the Huang-Huai-Hai Plain. Affected by typhoon, topography
and atmospheric circulation, a rare continuous heavy rainfall occurred in Zhengzhou from
18 to 21 July 2021. The whole city generally suffered heavy and extraordinarily heavy rains,
and the cumulative average precipitation was 449 mm. This was the so-called ‘July 20’
heavy rainstorm in Zhengzhou. However, no research on PWV in the Zhengzhou rainstorm
has been published in English.

To sum up, MERRA-2 and ERA5 are the latest generation of NWP datasets, and a com-
prehensive evaluation of the accuracy of the PWV estimation of both datasets is necessary
for studying the PWV variation pattern [27,28]. On the other hand, the existing research on
the ‘July 20’ heavy rainstorm in Zhengzhou mainly focuses on the temporal relationship
between PWV and precipitation, and there are few studies on the temporal–spatial relation-
ship between PWV and precipitation, and the change process of precipitation trajectories.
A comprehensive and detailed study on the relationship between PWV and precipita-
tion during the rainstorm will be of great significance for improving the early-warning
ability of rainstorm prediction. Therefore, in this paper, the accuracy of PWV estima-
tion from MERRA-2 and ERA5 reanalysis data was evaluated by using PWV data from
120 radiosonde stations uniformly distributed throughout the world, GNSS PWV data
calculated by 2 IGS stations in China, and analysis of the influencing factors of PWV esti-
mation accuracy from reanalysis data. Taking the ‘July 20’ heavy rainstorm in Zhengzhou
in 2021 as an example, the change process of the precipitation trajectory during a rainstorm
was qualitatively studied, based on the precipitation data of meteorological stations and
ERA5 PWV, and the eigenvalue matching method was proposed, to quantitatively explore
the spatial–temporal relationship between NWP PWV and surface precipitation.

The experimental data, the PWV calculation method and the accuracy index are
described in the second section of this paper. The third section is the experimental results
and analysis, which mainly includes the evaluation of the accuracy of NWP-estimated
PWV, and the analysis of the spatial and temporal distribution relationship between PWV
and precipitation during the ‘July 20’ heavy rainstorm in Zhengzhou. The fourth section
summarizes the work of this paper.

2. Data and Methodology
2.1. Data Description

In order to analyze the accuracy and error distribution characteristics of PWV retrieved
from MERRA-2 reanalysis data and ERA5 reanalysis data in the global area, and to study the
spatial–temporal relationship between PWV and precipitation in Henan Province during
the ‘July 20’ heavy rainstorm in Zhengzhou in 2021, this paper collected the PWV data
from the RS, MERRA-2 reanalysis dataset, the ERA5 reanalysis dataset, the tropospheric
delay products of the International GNSS Service (IGS) and the precipitation data of six
meteorological stations around Zhengzhou city.
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2.1.1. MERRA-2 Data

MERRA-2 data is published by NASA, and started in 1980 [27,29]. This paper collected
the MERRA-2 M2I6NPANA dataset at UTC 12 every day from January 1 to 31 December
2020. The MERRA-2 reanalysis data type was griding, the time resolution was 6 h, the
horizontal resolution was 0.625◦ × 0.5◦, the vertical level was 42 layers, and the data
download address was https://disc.gsfc.nasa.gov (accessed on 5 December 2021).

2.1.2. ERA5 Data

The ERA5 pressure-level data and single-level data were derived from the ERA5
reanalysis data provided by the ECMWF [30]. The ERA5 pressure-level data at UTC 12
daily in 2020 was experimentally collected for PWV accuracy evaluation, and the surface
precipitation data was used to analyze the spatial–temporal relationship between PWV and
surface precipitation. Both the ERA5 pressure-level data and the surface precipitation data
were from the ERA5 dataset, and the horizontal resolution of this dataset was 0.625◦ × 0.5◦.
The ERA5 reanalysis data horizontal resolution was 0.25◦ × 0.25◦, the time resolution was
1 h, and the vertical resolution was divided into 37 layers. The data download address
was https://www.ecmwf.int (accessed on 26 November 2021). Table 1 shows the CRA40,
MERRA-2 and ERA5 reanalysis data information tables. It can be seen from Table 1 that
ERA5 had the highest maximum spatio–temporal resolution. As CRA40 data could not be
download freely, PWV estimated by MERAA-2 and ERA5 data was assessed.

Table 1. Reanalysis data information.

Dataset Agency Maximum Time
Resolution

Maximum Horizontal
Resolution

Vertical
Resolution

Assimilation
Method

CRA40 CMA 6 h 0.3125◦ × 0.3125◦ 47 4DVAR
MERRA-2 NASA 6 h 0.625◦ × 0.5◦ 42 GEOS-5

ERA5 ECMWF 1 h 0.25◦ × 0.25◦ 37 4DVAR

2.1.3. RS Data, GNSS ZTD Data and Precipitation Data

The RS station data was collected from the Integrated Global Radiosonde Archive
Version 2 (IGRA2) dataset generated by the National Climate Data Center. The location
distribution of the selected 120 stations is shown in Figure 1. The experiment used the
RS data of UTC 12 each day in 2020. The IGRA2 dataset included pressure, temperature,
relative humidity, potential height, wind speed and other data. The time resolution of the data
was 12 or 6 h. The data download address was ftp://ftp.ncdc.noaa.gov/pub/data/igra [31]
(accessed on 5 November 2021).
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In this paper, GNSS PWV estimations, recorded at UTC 12 every day between
1 January and 31 December, 2020, were used as a reference [32]. The selected IGS sta-
tion location is shown in Figure 1.

The precipitation data of the meteorological stations from July 2021 were provided by
the Meteorological Information Center of the China Meteorological Administration. The
time resolution of this data was 1 h.

2.2. Methodology

In this paper, the PWV data provided by the RS stations and GNSS PWV were regarded
as true values for evaluating the accuracy of NWP PWV. RMSE and Bias were used as
precision evaluation indexes.

2.2.1. NWP PWV Estimation Method

The PWV estimation formula, using NWP reanalysis data, was [15]:

q =
0.622e

p− 0.378e
(1)

PWV =
1
g

∫ ps

0
qdp ≈ 1

2g

n

∑
i=1

(qi + qi+1)·(pi − pi+1) (2)

where q was specific humidity, e was water vapor pressure, p was atmospheric pressure,
ps was surface pressure and g was a gravitational parameter. As the g values in different
regions were different, Equation (3) was used to calculate the gravitational parameter in
different regions in this paper. The formula was as follows (ϕ, H was the latitude and
geodetic height of the station [33]):

g(ϕ, H) = 9.80616
(

1− 2.59× 10−3 cos 2ϕ
)
·
(

1− 3.14× 10−7H
)

(3)

The elevation of MERRA-2 and ERA5 reanalysis data was geopotential height, the
elevation of RS data was orthometric height, and the elevation of IGS data was geodetic
height. In order to eliminate the elevation error caused by different elevation systems,
different elevations were converted to orthometric height. The geopotential height Hgeo
calculate formula, using geopotential, was:

Hgeo =
Geo

g
(4)

The Geo was geopotential and g was a gravitational parameter.
To resolve the problem that the plane position and the elevation of the NWP reanalysis

dataset grid points did not coincide with those of the IGRA2 RS stations, the PWV value of
four grid points around the sounding station was used to interpolate the PWV value at the
RS station. In order to weaken the errors caused by the multiple interpolations, this paper
first calculated the PWV value of the grid points at the same elevation as the site, and then
used the Kriging interpolation method for plane interpolation [34]. Since the reanalysis
dataset did not provide meteorological data at the surface, Formulas (5) and (6) were used,
in this paper, to extrapolate the pressure and other parameters [33], taking the pressure
calculation at station height H as an example:

PH = Plower exp
(
−H − Hlower

hP

)
(5)

hp =
Hupper − Hlower

ln
(

Plower/Pupper
) (6)
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where, Hupper, Hlower, Plower and Pupper were the upper and lower geopotential heights, and
Pressure, PH , was the pressure at height H.

2.2.2. GNSS PWV Calculation Method

The GNSS PWV calculation method was as follows: (1) the Zenith Hydrostatic Delay
(ZHD) was calculated using the Saastamoinen model [35]; (2) the Zenith Wet Delay (ZWD)
was stripped from ZTD provided by IGS using Equation (7); (3) the GNSS PWV was
calculated by ZWD, using Equation (8) [36].

ZWD = ZTD− ZHD = ZTD− 0.002277·P
1− 0.00266· cos(2ϕ)− 0.00028·H (7)

PWV =
106(

K′2 + K3/Tm
)
·RV ·ρ

·ZWD (8)

where H, P and ϕ were, respectively, the geodetic height, pressure and latitude at the
station; K

′
2, K3, and RV were constants, and their values were 16.48 K·hPa−1, (3.776± 0.014)

× 105 K2·hPa−1 and 461·J·(Kg·K)−1, respectively. ρ was the density of liquid water, and its
value was 103 Kg·m−3. Tm was the atmospheric weighted mean temperature, which was
obtained by the Bevis formula, Tm = 70.2 + 0.72T. T was the atmospheric temperature of
the station, in K. Research showed that the RMSE of Tm, calculated by the Bevis formula in
the middle latitude region, was 4.74 K [12]. P and T were provided by MERRA-2 or ERA5
reanalysis data.

2.2.3. Gross Error Detection of RS PWV

As the sounding balloon was easily affected by multiple factors in the measurement,
there were outliers in the measured values. As a consequence, the RS PWV estimation
needed to be pre-processed. In this paper, the Interquartile Range (IQR) method was used
to eliminate the deviation in the RS PWV data. The IQR criterion assumed that the detected
target sequence conformed to the standard normal distribution. If the target sequence was
arranged from small to large, the 25th percentile was called the lower quartile, and the 75th
percentile was called the upper quartile. The IQR value was the difference between the
upper quartile and the lower quartile. The anomaly detection interval based on the IQR
was [37]:

[Q1− 1.5·IQR, Q3 + 1.5·IQR] (9)

where, Q1 and Q3 denoted the lower quartile and the upper quartile, respectively, and the
IQR was IQR = Q3 − Q1.

The specific steps of the IQR gross error detection method were as follows: (1) the
periodic model of each station was established by Formula (10), and the coefficients of
the periodic model were fitted by RS PWV data; (2) the PWV model value was calculated
according to the periodic model, and the difference between the PWV model value and the
RS PWV was calculated to obtain the residual sequence of each station; (3) the RS PWV
that the residual offset out of the given gross error detection interval was removed, and
replaced by the model value [38].

PWV = A0 + A1 cos
(

doy
365.25 2π

)
+ B1 sin

(
doy

365.25 2π
)

+A2 cos
(

doy
365.25 4π

)
+ B2 sin

(
doy

365.25 4π
) (10)

where: A0 was the mean value of PWV; A1, A2, B1 and B2 were the required parameters;
doy was the Day of the Year.

2.2.4. Eigenvalue Matching Method

In order to quantitatively analyze the relationship between PWV and surface precip-
itation during rainstorms in Henan Province, an eigenvalue matching method based on
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the upper quartile algorithm was proposed. At present, there are many different ways
to determine the similarity level between spatial distribution images [37,39–41]. In this
paper, an eigenvalue matching method was used. In the IQR criterion, the value at the
75th percentile was called the ‘larger quartile’, also known as the upper quartile [37]. In
the proposed eigenvalue matching method, the upper quartile was used as the threshold
value, and PWV and surface precipitation values greater than their upper quartiles were
taken as eigenvalues. The selected experimental area was 110◦–117.5◦E and 30◦–38◦N,
which contained the Henan Province and surrounding areas. The flow chart of the eigen-
value matching method is shown in Figure 2. Firstly, taking the UTC 00 18 July as an
example, the PWV value of the selected area at this hour was calculated, and the PWV
value was arranged in descending order to determine the upper quartile value. The PWV
value greater than the upper quartile was used as the PWV eigenvalue of the selected area.
Secondly, as the rainfall mainly occurred within 2–6 h after PWV climbed [24], the surface
precipitation eigenvalue of the selected area at 2–6 h after UTC 00 was determined using
the same method. Thirdly, studies have shown that the greater the PWV, the greater the
rainfall intensity [20]. This indicated that PWV at this grid point was strongly correlated
with surface precipitation when the grid points of the PWV eigenvalue and the surface
precipitation eigenvalue were the same. In this step, the grid points with both the surface
precipitation eigenvalues at each hour and the PWV eigenvalues were selected, and were
named the matching grid points. These points expressed the spatial relationship between
PWV and surface precipitation. Fourthly, the matching degree at each hour was calculated
using Equation (11). The maximum matching degree at 2–6 h after UTC 00 was named as
the optimal matching degree (OMD) between PWV and surface precipitation, and the hour
with the OMD was called the optimal matching time (OMT). The surface precipitation at
the MOT had the strongest correlation with the current PWV, and this OMT expressed the
temporal relationship between PWV and surface precipitation.

MD =
CGP
GP
× 100% (11)

where CGP was the number of matched grid points, GP was the number of PVW eigenval-
ues at the selected hour, and MD was the matching degree.
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2.3. Precision Evaluation Index

Bias and RMSE values were introduced to evaluate the accuracy of PWV estimated
from the MERRA-2 and ERA5 reanalysis data. The expressions of Bias and RMSE were as
follows:

Bias =
∑N

i=1(Xre,i − Xr,i)

N
(12)

RMSE =

√
∑N

i=1(Xre,i − Xr,i)
2

N
(13)

where, N denoted the total number of samples, Xre,i was PWV calculated for reanalysis
data, and Xr,i was RS PWV or GNSS PWV.
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3. Results and Analysis
3.1. Accuracy Evaluation and Accuracy Affecting Factor Analysis of NWP PWV

In order to compare the accuracy of PWV inversed by the MERRA-2 and ERA5 data,
and to analyze the factors affecting the estimation accuracy of NWP PWV, MERRA-2
PWV and REA5 PWV from 1 January to 31 December 2020 were calculated, and the
PWV calculated by the 120 RS stations and 2 IGS stations was used as the reference. The
correlation between RS PWV and NWP PWV, Bias and RMSE of NWP PWV in the global
region, and the relationship between latitude, altitude, season and NWP PWV accuracy is
discussed in this section.

3.1.1. NWP PWV Accuracy Evaluation

Due to space limitation, this paper randomly selected an RS station to show its corre-
lation between MERRA-2 PWV and RS PWV, and between ERA5 PWV and RS PWV, as
shown in Figure 3. The selected station, CAM00071802, was located in the middle latitudes
of the northern hemisphere. It can be seen from this figure that the correlation coefficients
between MERRA-2 PWV and RS PWV, and between ERA5 PWV and RS PWV, were 0.9838
and 0.9891, respectively. Table 2 shows the correlation coefficient table of MERRA-2 PWV,
ERA5 PWV and RS PWV at portion stations selected randomly. It can be seen from Table 2
that the correlation of stations in Southeast Asia was lower than that in other regions.
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Figure 3. Correlation between MERRA-2 PWV/ERA5 PWV and RS PWV at CAM00071802 station:
(a) correlation between MERRA-2 PWV and RS PWV; (b) correlation between ERA5 PWV and RS
PWV.

Table 2. The correlation coefficient of MERRA-2 PWV, ERA5 PWV and RS PWV at portion stations.

Station Name Latitude Longitude Altitude (m) Coefficient between MERRA-2
PWV and RS PWV

Coefficient between
ERA5 PWV and RS PWV

GLM00004360 65.61◦N 37.63◦W 54.0 0.8451 0.9181
CAM00071802 47.51◦N 52.78◦W 112.4 0.9679 0.9784
CHM00058027 34.28◦N 117.15◦E 42.0 0.9751 0.9822
SAM00040430 24.55◦N 39.70◦E 654.0 0.7224 0.7326
IDM00097014 1.53◦N 124.91◦E 80.0 0.6434 0.7365
IDM00097072 0.68◦S 119.73◦E 6.0 0.5516 0.6223
IDM00097560 1.18◦S 136.11◦E 11.0 0.5820 0.6209
IDM00097180 5.06◦S 119.55◦E 14.0 0.4539 0.5477
ASM00094403 28.80◦S 114.69◦E 36.9 0.7354 0.7373
NZM00093844 46.41◦S 168.31◦E 2.0 0.7123 0.7428
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The annual average Bias distribution of MERRA-2 PWV and ERA5 PWV in 2020,
referred to RS PWV at 120 RS stations, is shown in Figure 4. From Figure 4, we can see
that the Bias of MERRA-2 PWV and ERA5 PWV ranged between −2 mm to 5 mm. The
average MERRA-2 PWV Bias of the 120 RS stations was 1.26 mm, which was 1.15 mm for
ERA PWV. The Bias of MERRA-2 PWV was similar to that of ERA5 PWV. The average
Bias of MERRA-2 PWV and ERA5 PWV in the northern hemisphere was 1.22 mm and
1.04 mm, respectively. The average Bias of MERRA-2 PWV and ERA5 PWV in the southern
hemisphere was 1.35 mm and 1.44 mm, respectively. The PWV accuracy of these two data
in the northern hemisphere was slightly higher than that in the southern hemisphere.
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Figure 4. Annual average Bias distribution of MERRA-2 PWV and ERA5 PWV referred to RS PWV at
120 RS stations.

The annual RMSE distribution of MERRA-2 PWV and ERA5 PWV in 2020, referred
to RS PWV at the 120 RS stations, is shown in Figure 5. It can be seen from Figure 5 that
the RMSE of PWV estimated from these two data was less than 4 mm, except for individ-
ual stations in the equatorial region of Southeast Asia. The average RMSE of MERRA-2
PWV and ERA5 PWV was 3.76 mm and 3.20 mm, respectively. The average RMSE of
MERRA-2 PWV in the northern hemisphere was 3.66 mm, and that of the southern hemi-
sphere was 4.04 mm. The average RMSE of the ERA5 PWV in the northern hemisphere
and the southern hemisphere was 3.07 mm and 3.53 mm, respectively. The RMSE of
MERRA-2 PWV was higher than that of ERA5 PWV in the southern and northern hemi-
spheres. In short, the accuracy of ERA5 PWV was slightly higher than that of
MERRA-2 PWV referred to RS PWV.
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Figure 5. Annual average RMSE distribution of MERRA-2 PWV and ERA5 PWV referred to RS PWV
at 120 RS stations.

It can be seen from Figures 4 and 5 that in the equatorial region of Southeast Asia, the
accuracy of PWV estimated from NWP reanalysis data was slightly lower. The equatorial
region of Southeast Asia is a tropical rainforest climate. Affected by typhoons and other
extreme weather, the atmospheric water vapor is abnormally active, resulting in low
accuracy of NWP data [42]. As the NWP reanalysis dataset assimilated data from different
data sources during its generation [43], there were more ground observation stations in
the northern hemisphere, and the data sources were richer than those in the southern
hemisphere (such as RS and surface meteorological station observations). Therefore, the
accuracy of PWV estimated from the two NWP reanalysis data in the northern hemisphere
was higher than that in the southern hemisphere.

In order to explore the accuracy of NWP PWV referred to GNSS PWV, PWV at the IGS
station of URUM and JFNG was retrieved from the reanalysis data of MERRA-2 and ERA5
in 2020. Taking the GNSS PWV from IGS as reference, the Bias distribution of MERRA-2
PWV and ERA5 PWV is shown in Figure 6. The average Bias and RMSE of MERRA-2
PWV and ERA5 PWV at URUM station were 1.3 mm and 0.54 mm, and 2.82 mm and
2.31 mm, respectively. The average Bias and RMSE of MERRA-2 PWV and ERA5 PWV
at JFNG station were 1.9 mm and 1.03 mm, and 3.79 mm and 2.43 mm respectively. The
accuracy of PWV calculated by ERA5 data was higher than that of MERRA-2 referred to
GNSS PWV. In addition, the PWV Bias in summer was higher than that in winter.
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3.1.2. NWP PWV Accuracy Affecting Factor Analysis

To investigate the factors affecting the accuracy of NWP PWV, the accuracy of NWP
PWV was studied from the aspects of latitude, altitude and season. The relationship
between the Bias/RMSE and the latitude of the 120 RS stations is shown in Figure 7. The
negative value of latitude represents the south latitude, and the positive value of latitude
represents the north latitude. It can be seen from the figure that the accuracy of PWV
estimation from the NWP reanalysis data showed a high correlation with latitude, and
its accuracy increased with the increase of latitude. In the equatorial and low latitude
regions, the accuracy of PWV was relatively low. The reason was that the atmospheric
water vapor content changed rapidly due to the complex meteorological conditions in low
latitude regions. In short, latitude was one of the main factors affecting the accuracy of
PWV estimation from NWP reanalysis data.
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The relationship between the PWV Bias/RMSE and the altitude of the 120 RS stations
is shown in Figure 8. In Figure 8, the horizontal axis represents height, and the vertical
axis represents Bias and RMSE, respectively. It can be seen from the figure that the PWV
Bias/RMSE reduced with the increase of the altitude of the station. At high altitude, the
water vapor content was relatively small, and the climatic conditions were stable. Therefore,
the accuracy of the NWP PWV at high altitude was better than that at low altitude. In short,
altitude was also one of the main factors affecting the accuracy of PWV estimation from
NWP reanalysis data.
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The correlation between the monthly mean Bias value (the red circle) of NWP PWV
and the seasons is shown in Figure 9. CAM00071802 station and NZM00093844 station are
located in the northern hemisphere and southern hemisphere, respectively. In summer, the
PWV estimation accuracy of the two reanalysis data was lower than in the other seasons.
This was related to the fact that the atmosphere in summer is more active than in other
seasons, and the distribution and variation of water vapor are more complex. The trends of
ERA5 PWV and MERRA-2 PWV were similar to one another. In short, ‘the season’ was one
of the factors affecting the accuracy of PWV estimated from reanalysis data.
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3.2. Spatial–Temporal Relationship between NWP PWV and Precipitation during the ‘July 20’
Heavy Rainstorm in Zhengzhou in 2021

A comprehensive and detailed study of the relationship between PWV and precip-
itation in the ‘July 20’ heavy rainstorm in Zhengzhou is of great significance to further
improving early-warning ability for extreme weather, and reducing the loss of people’s lives
and property. Therefore, this paper qualitatively and quantitatively analyzed the change
process of the precipitation trajectory, and the spatial–temporal relationship between PWV
and surface precipitation during the ‘July 20’ heavy rainstorm in Zhengzhou. Firstly, the
variation process of precipitation trajectories during rainstorms, and the relationship be-
tween PWV and precipitation were qualitatively analyzed, based on the PWV and hourly
precipitation of six meteorological stations (Figure 10) around Zhengzhou for each July
from 2019 to 2021. Secondly, an eigenvalue matching method was proposed, to quantita-
tively study the spatial–temporal distribution relationship between surface precipitation
and PWV during the ‘July 20’ heavy rainstorm in Zhengzhou in 2021. As the accuracy of
ERA5 PWV was slightly higher than that of MERRA-2 PWV, according to the previous
experiment, the ERA5 data was used for PWV calculation in subsequent experiments.
As the heavy rain is mainly concentrated in the central and northern regions of Henan
province, the meteorological stations of these regions were chosen. The distribution of the
six selected meteorological stations is shown in Figure 10. The red circle represents the
location of the meteorological station, and the blue line represents the river.
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3.2.1. Qualitative Analysis of the Spatial–Temporal Relationship between NWP PWV
and Precipitation

The average PWV of the six meteorological stations each July, from 2019 to 2021, is
shown in Table 3. The trends of PWV in July 2019 to 2021, and precipitation per hour in July
2021, are shown in Figure 11. From Table 3 and Figure 11, we can see that: (1) the average
PWV of the six meteorological stations in July 2021 was higher than that in 2020 and 2019;
(2) during the rainstorm period (18–21 July 2021), each day’s PWV of six meteorological
stations was higher than that in the previous three years; (3) precipitation was positively
correlated with PWV, and there was a stage of PWV cumulative growth before each rainfall
event (cyan ellipses, for instance).
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Table 3. Average PWV in July 2019 to 2021.

Meteorological
Station

2019
(mm)

2020
(mm)

2021
(mm)

PingDingShan Station 43.36 44.35 47.22
JiaoZuo Station 49.62 50.77 53.48

ZhengZhou Station 44.92 45.98 48.88
XuChang Station 48.72 50.17 52.67
KaiFeng Station 49.30 51.87 54.13
XinXiang Station 49.76 51.44 53.82
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tation greater than 50 mm. The World Meteorological Organization (WMO) divides pre-
cipitation with 1 h of precipitation greater than 10 mm into rainstorm grades. From Table 
4, we can see that the rainstorm first occurred in the western mountainous area (Ping-
dingshan and Jiaozuo Station, Pingdinghsan/Jiaozuo, China), and then the precipitation 
trajectory gradually moved to the central region of Henan province (Zhengzhou and 
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ern area (Kaifeng Station, Kaifeng, China) and the north area (Xinxiang Station, Xinxiang, 

Figure 11. The trends of PWV in July 2019–2021 and precipitation in July 2021. The red, green and
black real lines represent PWV curves in 2019, 2020 and 2021, respectively, and the two blue imaginary
lines represent 7.18 and 7.21, respectively. The (1) and (2) cyan ellipses represent two selected
rainfall events.

The 24 h cumulative precipitation of the meteorological stations during heavy rainfall
is shown in Table 4, and the surface precipitation distribution in Henan and the surrounding
areas at UTC 00, 06, 12 and18, from 18 to 21 July 2021, is shown in Figure 12. According to
the definition of ‘rainstorm’ by the CMA, ‘rainstorm’ refers to 24 h cumulative precipitation
greater than 50 mm. The World Meteorological Organization (WMO) divides precipitation
with 1 h of precipitation greater than 10 mm into rainstorm grades. From Table 4, we
can see that the rainstorm first occurred in the western mountainous area (Pingdingshan
and Jiaozuo Station, Pingdinghsan/Jiaozuo, China), and then the precipitation trajectory
gradually moved to the central region of Henan province (Zhengzhou and Xuchang Station,
Zhengzhou/Xuchang, China). Finally, the rainstorm moved to the eastern area (Kaifeng
Station, Kaifeng, China) and the north area (Xinxiang Station, Xinxiang, China). A similar
trend of surface precipitation can also be seen in Figure 12. Taking the second column as an
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example, at the beginning of the rainstorm, the surface precipitation in the western and
near-alpine regions was greater than that in other regions, and then gradually shifted from
south to north and from west to east. The PWV distribution in Henan and the surrounding
areas at UTC 00, 06, 12 and 18, from 18 to 21 July 2021, is shown in Figure 13. During the
rainstorm period, the orange patches in Figure 13 (PWV bigger than 65 mm) moved from
west to east and from south to north in Henan, and then dissipated after the rainstorm
ended. This trend of PWV was similar to that of the 24 h cumulative precipitation and
surface precipitation.

Table 4. 24 h cumulative precipitation during rainstorms (the red values represent values of daily
precipitation greater than 50 mm).

Meteorological
Station

18 July 2021
(mm)

19 July 2021
(mm)

20 July 2021
(mm)

21 July 2021
(mm)

PingDingShan Station 55.0 209.5 20.2 5.3
JiaoZuo Station 59.5 66.4 209.2 235.8

ZhengZhou Station 37.0 228.0 376.3 77.4
XuChang Station 3.6 166.2 175.2 27.9
KaiFeng Station 0.3 63.7 83.1 22.1
XinXiang Station 34.1 42.5 242.7 258.6
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3.2.2. Quantitative Analysis of the Relationship between NWP PWV and Precipitation by
Eigenvalue Matching Method

The OMT and OMD between PWV and surface precipitation during rainstorms was
calculated every 6 h, and saved in Table 5. Due to space limitation, the PWV eigenvalue grid
point at (a) UTC 12 on 19 July 2021 and (b) UTC 18 on 20 July 2021, and the corresponding
matching grid point distribution, are shown in Figure 14. From this table and figure, we
can see that the OMD between PWV and surface precipitation ranged between 31.0% and
80.3%, and the average OMD was 56.6%. Twelve groups of PWV and surface precipitation
had OMD greater than 50%. The average OMD values corresponding to the OMT values
of 2, 3, 4, 5 and 6 h were 46.8%, 58.3%, 65.0%, 63.9% and 58.0%, respectively. The OMT
ranged between 2 and 6 h after the time of PWV, and 2 h was the most frequent OMT.
The average OMT was about 3.68 h. The spatial–temporal relationship between PWV and
surface precipitation was strong.
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Table 5. Optimal matching degree and optimal matching time. TP refers to surface precipitation.

Time of PWV Time of TP OMT OMD Time of PWV Time of TP OMT OMD

18 July

00:00 02:00 2 h 31.0%
20

July

00:00 03:00 3 h 68.8%
06:00 08:00 2 h 36.1% 06:00 08:00 2 h 54.1%
12:00 18:00 6 h 56.0% 12:00 15:00 3 h 55.7%
18:00 23:00 5 h 47.5% 18:00 00:00 6 h 75.4%

19 July

00:00 02:00 2 h 59.0%
21

July

00:00 02:00 2 h 54.0%
06:00 10:00 4 h 65.6% 06:00 12:00 6 h 42.6%
12:00 17:00 5 h 80.3% 12:00 15:00 3 h 50.5%
18:00 22:00 4 h 60.6% 18:00 22:00 4 h 68.9%
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4. Discussion

Comprehensive and systematic monitoring of PWV changes is necessary for studying
and forecasting extreme weather. In this paper, the accuracy of MERRA-2 PWV and ERA5
PWV were assessed by using RS PWV and GNSS PWV. The experimental results showed
that, compared with RS PWV, the average RMSE of PWV estimated by MERRA-2 and
ERA5 was 3.76 mm and 3.20 mm, respectively. Compared with GNSS PWV, the average
RMSE was 3.305 mm and 2.37 mm, respectively. Consequently, the accuracy of the ERA5
PWV was slightly higher. This result was consistent with Huang’s research [18]. It can be
seen from Table 2, Figures 4 and 5 that NWP PWV had little correlation with RS PWV in the
equatorial region of Southeast Asia, and low accuracy. The equatorial region of Southeast
Asia is a tropical rainforest climate, and the atmospheric water vapor is extremely active,
resulting in the low accuracy of NWP data here [42].

From Table 3 and Figure 11, it can be seen that there was a continuous growth stage of
PWV before each rainfall. The more intense the PWV changes, the higher the probability of
heavy rainfall. This was consistent with Zhao’s research [20]. Figure 14 and Table 5 show
that the spatial distribution of PWV was consistent with the spatial distribution of precipi-
tation, and that the average OMD and OMT values between PWV and precipitation were
56.63% and 3.68 h, respectively. Barindelli’ s research showed that the spatial distribution
of PWV was correlated with the spatial distribution of rainfall [44]. Yao’s research showed
that rainfall lagged behind PWV by 2–6 h [23]. The experiment results of this paper are
similar to these research findings.

Based on Figures 10 and 13, the reasons for the high PWV during the whole rainfall in
western and southern Henan Province can be summarized. Firstly, the high PWV before
rainfall was due to the continuous convergence of water vapor caused by the blocking of



Remote Sens. 2022, 14, 3636 19 of 21

the western mountains. Secondly, the reason for the high PWV during rainfall was due to
the influence of typhoons and the western Pacific subtropical highs, and to the warm and
humid airflow from the southeast direction continuously recharging the water vapor in the
atmosphere of Henan Province, resulting in the PWV being at a high level in the process of
heavy rainfall. Thirdly, due to the precipitation in the eastern and northern regions, and
the fact that the atmospheric water vapor could not be supplemented in time, the PWV in
the eastern and northern regions was smaller than that in the western and southern regions
after rainfall.

In addition, in this paper, NWP PWV, GNSS PWV and eigenvalue calculations were
calculated by our own program. MATLAB software was used as statistical software. For
the illustrations, we used the m_map toolbox.

5. Conclusions

A comprehensive and detailed study of NWP PWV accuracy and the relationship
between PWV and precipitation is of great significance for improving early-warning ability
for extreme weather, and reducing the loss of people’s lives and property. Consequently, in
this paper, the accuracy of NWP PWV estimated from MERRA-2 and ERA5 reanalysis data,
and the affecting factors of NWP accuracy, were evaluated using PWV from 120 RS stations
uniformly distributed throughout the world, and 2 IGS stations in China. Furthermore, the
spatial–temporal relationship between NWP PWV and surface precipitation was analyzed
qualitatively and quantitatively by an eigenvalue matching method, using the ‘July 20’
heavy rainstorm in Zhengzhou for analysis. The following conclusions were drawn:

(1) The PWV of both the MERRA-2 data and the ERA5 data had good consistency with
RS PWV and GNSS PWV. Compared with MERRA-2 PWV, the accuracy of ERA5
PWV was slightly higher. Latitude, altitude and season were the influencing factors
on the NWP PWV estimation accuracy.

(2) The change trend of ERA5 PWV was consistent with both 24 h cumulative precipi-
tation and surface precipitation during the ‘July 20’ heavy rainstorm in Zhengzhou.
The average OMD and OMT between PWV and surface precipitation during the ‘July
20’ rainstorm in Zhengzhou were 56.63% and 3.68 h, respectively, and the maximum
optimal matching degree was 80.3%. The spatial–temporal relationship between PWV
and surface precipitation was strong.
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