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Abstract: Change detection (CD) is one of the most important topics in remote sensing. In this pa-
per, we propose a novel higher-order clique conditional random field model to unsupervised CD 
for remote sensing images (termed HOC2RF), by defining a higher-order clique potential. The 
clique potential, constructed based on a well-designed higher-order clique of image objects, takes 
the interaction between the neighboring objects in both feature and location spaces into account. 
HOC2RF consists of five principle steps: (1) Two difference images with complementary change 
information are produced by change vector analysis and using the spectral correlation mapper, 
which describe changes from the perspective of the vector magnitude and angle, respectively. (2) 
The fuzzy partition matrix of each difference image is calculated by fuzzy clustering, and the fused 
partition matrix is obtained by fusing the calculated partition matrices with evidence theory. (3) An 
object-level map is created by segmenting the difference images with an adaptive morphological 
reconstruction based watershed algorithm. (4) The energy function of the proposed HOC2RF, 
composed of unary, pairwise, and higher-order clique potentials, is computed based on the dif-
ference images, the fusion partition matrix, and the object-level map. (5) The energy function is 
minimized by the graph cut algorithm to achieve the binary CD map. The proposed HOC2RF CD 
approach combines the complementary change information extracted from the perspectives of 
vector magnitude and angle, and synthetically exploits the pixel-level and object-level spatial cor-
relation of images. The main contributions of this article include: (1) proposing the idea of using the 
interaction between neighboring objects in both feature and location spaces to enhance the CD 
performance; and (2) presenting a method to construct a higher-order clique of objects, developing 
a higher-order clique potential function, and proposing a novel CD method HOC2RF. In the ex-
periments on three real remote sensing images, the Kappa coefficient/overall accuracy values of the 
proposed HOC2RF are 0.9655/0.9967, 0.9518/0.9910, and 0.7845/0.9651, respectively, which are su-
perior to some state-of-the-art CD methods. The experimental results confirm the effectiveness of 
the proposed method.  

Keywords: remote sensing change detection; unsupervised; object clique; higher-order clique  
potential; fuzzy C-means; evidence theory 
 

1. Introduction 
The change information on the earth surface is of great importance due to its exten-

sive uses in various practical applications, such as urban studies, environmental moni-
toring, resource management, and damage assessment [1]. Change detection (CD) from 
remote sensing images provides a powerful tool to detect the land cover changes. Gen-
erally, CD involves the analysis of multitemporal remote sensing images taken on the 
same ground area. Over the past several decades, a number of techniques to CD have 
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been proposed and developed for different types of remote sensing images [1,2].  
The techniques can be grouped into two categories according to whether they re-

quire training samples, i.e., supervised and unsupervised [3]. The former is able to pro-
vide the “from–to’’ types of land cover transitions. However, it is often difficult and la-
borious to gain sufficient training samples in real applications. In contrast, the latter 
performs CD by comparing two temporal remote sensing images directly, without need 
for any additional information. As a consequence, unsupervised CD is easier to imple-
ment and more popular [4,5]. 

Unsupervised CD is typically realized by two key steps: (1) produce a difference 
image (DI) and (2) analyze the DI to discriminate the no-change and change pixels. In the 
first step, different comparison algorithms can be employed to generate DI, including 
image differencing, change vector analysis (CVA), and spectral correlation mapper 
(SCM). For the second step, many machine learning techniques have been adopted to 
produce the binary CD map, such as thresholding [3,6], fuzzy C-means clustering (FCM) 
[7,8], and information fusion [9].  

Some unsupervised CD methods assume that the pixels in remote sensing images 
are independent of each other, and only use the spectral information of images. This of-
ten leads to “salt and pepper” noises in the generated CD map and thus reduces the CD 
accuracy. To address the problems, several methods have been presented to integrate 
spatial information into CD, such as neighboring windows [10], local histogram-based 
analysis [11], active contour model [12], and random field theory [4,13]. 

The Markov random field (MRF), as a classical model to utilize the spatial-context 
information in the labeling field, has been widely applied to the CD studies [3,13,14]. In 
MRF-based CD, the joint probability distribution of the observed DI and an initial CD 
map is first modeled using a Bayesian generative framework [15]. Then, the final CD map 
is obtained by an inference algorithm, such as graph cuts, simulated annealing, and iter-
ated conditional modes. However, for computational tractability, MRF generally as-
sumes that the observed image is conditional independent [16], which is not appropriate 
for some real applications and may result in the over-smoothing problem of CD maps. 

To overcome the shortcomings of MRF, the conditional random field (CRF) model 
was applied to remote sensing image CD [15,17]. CRF, which takes spatial-context in-
formation into account without assuming the conditional independence of the observed 
image, is an improved version of MRF. It was first given by [18] to segment and label the 
1-D natural language sequences, and then was extended by [19] to deal with the labeling 
task of 2-D images. From then on, CRF has been extensively applied to image analysis 
and classification because of its effectiveness and flexibility. The pairwise CRF is the most 
commonly used CRF model in the analysis of remotely sensed imagery. 

Recently, the higher-order CRF (HOCRF) was introduced into the CD task [20,21]. 
HOCRF incorporates a higher-order potential function (object term) into the pairwise 
CRF, and can make better use of the spatial correlation of images. Experimental results 
showed that HOCRF could obtain higher CD accuracy than pairwise CRF. However, the 
HOCRF CD methods in [20,21] have two main limitations: (1) they only consider a single 
object and ignore the dependence of neighboring objects when computing higher-order 
potentials. This limits the methods’ ability to utilize the spatial contextual information of 
images for CD. (2) They only use the magnitude change of spectral vectors while ignoring 
the spectral angle (direction) difference, which is also crucial for CD [22].  

In order to overcome the above two limitations and enhance the CD performance, in 
this study, we propose a novel higher-order clique CRF model (HOC2RF) for the unsu-
pervised CD of remote sensing images. For the first limitation, HOC2RF defines a novel 
higher-order clique potential based on a properly designed clique of objects to utilize the 
interaction of neighboring objects in both feature and location spaces. For the second 
limitation, HOC2RF considers two complementary DI images in both observed and la-
beling fields. The two DI images describe change information from the perspective of 
vector magnitude and angle, respectively.  
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The proposed HOC2RF CD method is made up of five main steps. Two DI images 
providing complementary change information are generated first using CVA and SCM. 
Second, the fuzzy partition matrix for each DI is estimated by FCM, and the fused parti-
tion matrix is achieved by combining the estimated partition matrices with evidence 
theory. Third, an adaptive morphological reconstruction (AMR)-based watershed algo-
rithm is used to segment the DI images for creating an object-level map. Then, the 
HOC2RF energy function with three potentials is calculated based on the DIs, the fused 
fuzzy partition matrix, and the object-level map. Finally, the CD map is obtained by 
minimizing the HOC2RF energy function with the graph cut algorithm. The main con-
tributions of the paper are as below: 
(1) The basic idea of using the interaction between neighboring objects in both feature 

and location spaces to enhance CD performance.  
(2) The method to construct a higher-order clique of objects, the novel higher-order 

clique potential function, and the novel CD method HOC2RF. 
The rest of this paper is organized as follows. Section 2 presents related works in the 

literature. Section 3 describes the proposed HOC2RF CD method in detail. Section 4 
evaluates the performance of HOC2RF by three experiments. Finally, the discussion and 
conclusions of this paper are presented in Sections 5 and 6, respectively. 

2. Related Work 
Recently, CRF has been applied to remote sensing CD, and some CRF-based CD 

techniques have been proposed and developed [15,17,20,21,23,24]. These techniques can 
be divided into three classes according to the types of CRF models they used: pairwise 
CRF-based, fully connected CRF-based (FCCRF), and HOCRF-based methods.  

The pairwise CRF-based CD methods [15,23,24] include two potential functions, 
unary and pairwise. The former models the relationship between the labeling and ob-
served fields and describes the cost of a single pixel being assigned to the change or 
no-change class. The latter models the spatial contextual information between the adja-
cent pixels in a local neighborhood. Cao et al. [23] applied pairwise CRF to unsupervised 
CD. The method uses FCM to compute unary potentials and uses a scaled squared Eu-
clidean distance to define pairwise potential.  

Lv et al. [15] proposed a multi-feature probabilistic ensemble CD method based on 
pairwise CRF. It combines the DI’s spectral and morphological features in order to obtain 
more accurate unary potential. To improve the accuracy of CD, Shao et al. [24] first fused 
three-scale DI images to compute the unary potential, and then used a spatial attraction 
model to improve the pairwise potential. Although the pairwise CRF-based methods can 
obtain effective CD results, they still have a common limitation: they do not fully exploit 
the spatial contextual information of images since their pairwise potentials only consider 
a small local neighborhood. 

Different from the pairwise CRF, the FCCRF model establishes pairwise potentials 
based on all pairs of pixels in the whole image, which can enhance the ability to model 
the dependence of pixels in an image. Cao et al. [17] adopted FCCRF to perform CD to 
utilize the long-range dependence of pixels. Their experimental results demonstrate that 
FCCRF can yield more accurate CD results than pairwise CRF. However, the FCCRF CD 
method [17] (with five parameters) requires much more parameter tuning than the 
pairwise CRF methods (with only one parameter).  

In order to utilize the spatial correlation of pixels in a higher-order neighborhood 
(i.e., an image object), HOCRF was introduced into the CD task by [20,21]. The HOCRF 
CD methods add an object term (i.e., a higher-order potential) into the pairwise CRF to 
capture rich statistics and contextual information in an object and can take advantage of 
the spatial correlation of pixels more effectively.  

However, the HOCRF CD approaches in [20,21] have the following two drawbacks: 
(1) their higher-order potentials only consider a single object, ignoring the interaction 
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between neighboring objects. (2) They only use the magnitude change of spectral vectors 
and ignore the spectral angle difference, which is also crucial for CD [23]. Table 1 sum-
maries the unsupervised CD methods based on CRF in the literature.  

Table 1. The comparison of unsupervised CD methods based on CRF. 

Category References Advantages Limitations 

Pairwise 
CRF 

Cao et al. [23] 
 Easy to implement  
 Having only one parameter  

 Only considering a small local neigh-
borhood and therefore failing to fully 
use the spatial-context information of 
images 

 Only using the magnitude change of 
spectral vectors 

Lv et al. [15] 
 Combining three features of DI for unary po-

tential  
 Having only one parameter 

Shao et al. 
[24] 

 Fusing three-scale DIs for unary potential 
 Improving pairwise potential with a spatial 

attraction model 
 Having only one parameter 

FCCRF Cao et al. [17] 

 Considering all pairs of pixels in the whole 
image  

 Demanding much more parameter tun-
ing 

 Only using the magnitude change of 
spectral vectors 

HOCRF 

Zhou et al. 
[20] 

 Utilizing the spatial-context information in 
both local neighborhoods and image objects  

 Only considering a single object and 
ignoring the dependence between 
neighboring objects 

 Only using the magnitude change of 
spectral vectors Lv et al. [21] 

In addition, CRF has also been introduced into supervised CD [25,26]. Li et al. [25] 
used the supervised support vector machine (SVM) to compute the unary potential, and 
utilized the statistical distribution of DI image to enhance the performance of pairwise 
CRF. Shi et al. [26] proposed a class-priori CRF models for binary and multiclass CD 
tasks, which used the class posterior probabilities obtained by SVM to improve the CD 
accuracy.  

This study follows the HOCRF CD methods [20,21], which can utilize the spatial 
contextual information in a local neighborhood and an image object and has less param-
eters than FCCRF. In order to maintain the advantages of these methods and overcome 
their two main limitations mentioned above, this paper proposes a novel HOC2RF model 
for unsupervised CD of remote sensing images. The details of the proposed CD method 
are described in the next section. 

3. Proposed HOC2RF CD Method 
This section details the proposed HOC2RF CD approach. HOC2RF maintains the 

advantages of the existing HOCRF CD methods and overcomes their two main limita-
tions. First, HOC2RF defines a novel higher-order clique potential by constructing a 
higher-order clique of objects, to utilize the interaction between the neighboring objects 
in both feature and location spaces. Then, HOC2RF makes comprehensive use of the 
magnitude and angle change of spectral vectors in both observed and labeling fields to 
enhance the CD performance.  

3.1. Procedure and Organization of HOC2RF 
The proposed HOC2RF model involves two types of fields: observed and labeling, 

and includes three potentials: unary, pairwise, and higher-order clique. This study uses 
two complementary DIs computed by CVA and SCM to define the observed field. For the 
labeling field, an initial CD map is yielded by fusing the two DI images with FCM and 
evidence theory. In the process of fusing the two DIs, a fusion fuzzy partition matrix is 
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also obtained, which will be used to compute the unary potential. In addition, in order to 
compute the proposed higher-order clique potential, an object-level map needs to be 
generated. 

Specifically, the proposed HOC2RF CD method is achieved by the following steps 
(Figure 1): (1) produce two complementary DI images using CVA and SCM; (2) combine 
the two DIs with FCM and evidence theory to obtain the fused fuzzy partition matrix and 
an initial CD map; (3) generate an object-level map using the AMR-based watershed al-
gorithm; (4) compute the unary, pairwise, and higher-order clique potentials for 
HOC2RF; and (5) create the final CD map by optimizing the HOC2RF model with the 
graph cut algorithm.  

Image X1

CVA SCM

Image X2

Two DI imagesAMR-based 
watershed algorithm

An object-level map Fused partition matrix 
and an initial  CD map

Graph cut algorithm

Final CD map

FCM  Evidence 
theory

＋

＋
＋

＋

Unary Higher-order clique Pairwise  

Proposed HOC2RF model

 
Figure 1. The flowchart of the proposed HOC2RF CD method. 

Steps 1–3 are the preparation steps for defining the HOC2RF model. The two DIs 
obtained in Step 1 are used to define the observation field of HOC2RF. The fused fuzzy 
partition matrix and initial CD map yielded in Step 2 are used to compute the unary po-
tential and define the labeling field, respectively. The object-level map generated in Step 
3 is used for computing the higher-order clique potential.  

The rest of Section 3 is organized as follows: Sections 3.2–3.4 present the details of 
Steps 1–3, respectively. Section 3.5 describes the proposed HOC2RF model and its im-
plementation in detail.  

3.2. Generating Complementary DI Images  
Let us consider two multispectral (or hyperspectral) remote sensing images X1 and 

X2 (with the same size of N pixels) acquired in the same geographical area at two differ-
ent dates, respectively, which have been radiometrically corrected and coregistered. Both 
X1 and X2 are composed of B spectral bands (B > 1); Xtb is the bth band of image Xt, t = 1, 2; 
b = 1, 2, …, B.  

Generally, different land cover types have their own typical spectral characteristics 
represented by peculiar spectral curves, although there are the phenomena of “same ob-
ject with different spectrum” and “different objects with same spectrum” in some cases. 
Accordingly, various features could be extracted from remote sensing images. For the CD 
task, the differences between multitemporal remote sensing images can reflect the 
changes occurring on the corresponding area during the observation times to an extent, 
and thus can provide hints to CD. Images with multiple spectral bands can constitute 
spectral vectors of elements [22]. For the multispectral image CD, the DI image is gener-
ally produced based on the multitemporal spectral vectors.  

However, most unsupervised CD techniques mainly take the vector magnitude 
change into account, failing to utilize the vector angle (or direction). The vector magni-
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tude and angle can provide complementary change information [22], and can be de-
scribed by CVA and spectral angle mapper (SAM), respectively. SAM uses cosine corre-
lation to compute the vector angle, which is unable to detect negatively correlated data 
and sensitive to offset factors [27]. In contrast, SCM uses Pearson’s correlation to calculate 
vector angles, and can overcome the shortcomings of SAM to some extent. Given the 
above analysis, this study uses CVA and SCM to produce the DI images.  

The DI image defined by CVA is denoted by DICVA. CVA uses the Euclidean distance 
to compute the differences between two temporal images. Specifically, DICVA can be 
computed through the following equation:  


B

CVA b b
b

DI i X i X i 2
2 1

=1
( ) = ( ( ) - ( ))  (1)

where Xtb(i) is the ith pixel at the bth band of image Xt, t = 1, 2; b = 1, 2, …, B; and i = 1, 2, …, 
N. 

Denote the DI determined with SCM by DISCM. SCM utilizes the angle of spectral 
vectors to model their difference. First, the Pearson’s correlation coefficient of X2 and X1 is 
calculated by  

=

= =

− ⋅ −
=

− ⋅ −



 
,

B

b b
b

i B B

b b
b b

X i X i X i X i))
X X

X i X i X i X i

2 2 1 1
1

2 1
2 2

2 2 1 1
1 1

( ( ) ( )) ( ( ) (
SCM ( )

( ( ) ( )) ( ( ) ( ))
 (2)

where Xtb(i) denotes the ith pixel at the bth band of image Xt, and ( )tX i  represents the 
average of the spectral bands of Xt at pixel i, t = 1, 2; b = 1, 2, …, B; and i = 1, 2, …, N. The 
correlation coefficient in (2) can be viewed as an angle if applying the arc-cosine opera-
tion to it. Thus, SCM is the centered version of SAM by 1X  and 2X . The SCMi(X2, X1) 
value varies in the interval [−1, 1]. SCMi(X2, X1) = 1 means that the two vectors are com-
pletely positively correlated, and SCMi(X2, X1) = −1 means that the two vectors are com-
pletely negatively correlated. Then, SCM(X2, X1) can be converted to the DI image DISCM 
by Equation (3) or (4): 

SCM iDI i X X2 1( ) = 1- SCM ( , )  (3)

SCM iDI i X X2 1( ) = arcos(SCM ( , ))  (4)

Here, X1 and X2 represent the two considered remote sensing images (see the be-
ginning of this subsection). After obtaining the two DI images, their pixel values are 
normalized to the interval [0, 1] in order to make different datasets have the same weight. 

3.3. Combine DI Images with FCM and Evidence Theory 
Evidence theory (also known as Dempster–Shafer theory) [28,29] is a popular deci-

sion-level fusion framework and has been successfully applied to various applications. It 
can deal with both single and composite hypotheses and allows the modeling of both 
uncertainty and ignorance. Let us consider a frame of discernment Ω consisting of all 
possible single hypotheses and its power set P(Ω). A mass function for the discernment 
frame Ω is a mapping m from P(Ω) to the interval [0, 1] and satisfies the following prop-
erties: 

∈

 ∅




P Ω

m
m A

A ( )

( ) = 0
( ) = 1  (5)

where ∅  represents the empty set, A represents a nonempty subset of Ω, and m(A) 
represents the mass value of A.  
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In evidence theory, evidence from different sources is usually combined using the 
orthogonal sum. Consider D mass functions (namely, mn, n = 1, 2, …, D) from D pieces of 
evidence, respectively. Their fused mass function m can be determined as follows [30]: 

⊕ ⊕ ⊕


≠ ∅= 

 ∅

 ∏




D

D

D

n n
A A A n

m A m m m

m A A

A
1

1 2

= =1

( ) =

1 ( )  
1-Ψ

0 =

 (6)

with 

∅
 ∏

 D

D

n n
A A n

m A
1 = =1

Ψ = ( )  (7)

where Ψ  represents the degree of conflict between evidence, called the conflict coeffi-
cient.  

For the CD task, there are two single hypotheses in Ω—namely, Ω = {Cu, Cc}, where 
Cu and Cc represent the no-change and change classes, respectively. Two pieces of evi-
dence, the two produced DI images, are available for Ω in our case. In order to fuse the 
DIs with evidence theory, the first step is to define their mass functions.  

Usually, there exists an overlap between the ranges of the DI pixel values from the 
change and no-change classes [8]. This leads to the inherent uncertainty in the analysis of 
DI. Fuzzy clustering provides an opportune tool for analyzing DI owning to its capability 
to process uncertainty. In fuzzy clustering, the pixels are not assigned to either the 
no-change or the change category but to both categories with a certain degree of mem-
bership. Moreover, fuzzy clustering requires no prior assumption about the distribution 
of the no-change and change classes. Given the above analysis, we use the popular FCM 
clustering to analyze the DIs for estimating their fuzzy partition matrices (also called 
membership functions). The mass functions for the two pieces of DI evidence are then 
derived from the estimated fuzzy partition matrices. The FCM details can be found in 
[31].  

Let Un = {uni(k)} represent the fuzzy partition matrix obtained by FCM based on the 
nth DI image, n = 1, 2, and uni(k) stands for the membership of the ith pixel with respect to 
class k, i = 1, 2, …, N; k ∈ {Cu, Cc}, satisfying 

≤ ≤

 +

 
ni

ni u ni c

u k

u C u C

( ) 1

( ) ( ) 1

0

=
 (8)

The mass function mn for the nth DI image can be determined according to the fuzzy 
partition matrix Un. In particular, the mass values of a given pixel i for no-change and 
change classes are obtained by  

{ }∈ ,，ni ni u cm k u k k C C( ) = ( )  (9)

where mni(k) represents the mass value of the ith pixel to class k obtained based on the nth 
DI image. Then, the combined mass function m is computed through Equation (6), and an 
initial CD map is yielded using the principle of maximum mass value. For a given pixel i, 
its initial class label yi is obtained as follows:  

 ≥


<

c i c i u
i

u i c i u

C if m C m C
y

C if m C m C
( ) ( )

=
( ) ( )

 (10)

where mi(Cu) and mi(Cc) represent the combined mass values of pixel i to the no-change 
and change classes, respectively. 
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3.4. Generate an Object-Level Map for HOC2RF 
This subsection aims to generate an object-level map by segmenting the DI images, 

which will be used for computing the proposed higher-order clique potential function. 
Different segmentation techniques can be employed to produce object-level images, such 
as the spectral clustering and the seeded algorithm. Seeded segmentation algorithms 
have been successfully applied to many image segmentation applications because of their 
good performance [32]. The watershed algorithm is one of the most important seeded 
algorithms. However, it often suffers from the problem of over-segmentation.  

This is because the watershed algorithm gains seeds from the gradient image that 
usually contains many seeds produced by unimportant texture details or noises. To solve 
this problem, an advanced AMR technique was given recently in [32] to improve the seed 
image. The AMR algorithm has the following advantages: (1) It is easy to implement; (2) 
it can remove useless seeds while maintaining meaningful ones adaptively; (3) it uses 
multiscale structuring elements of erosion and dilation operations and is robust to the 
structuring element scale; and (4) it has two attractive properties—namely, the mono-
tonicity and the convergence, which help AMR-based algorithms obtain a hierarchical 
segmentation. We refer to [32] for more details of AMR.  

This study proposes to use the AMR-based watershed algorithm to segment the DIs 
for producing an object-level map consisting of image objects. Specifically, a gradient 
image is created first by applying the Sobel operator to the three-dimensional DI image, 
DI = {DICVA, DISCM, DImean}, where DImean = (DICVA + DISCM)/2. Then, the AMR algorithm is 
employed to reconstruct the gradient image adaptively. Finally, the reconstructed gra-
dient image is used as the seed image, and the watershed algorithm is adopted to yield 
an object-level image.  

In AMR, two parameters need to be set: the scale of the minimal structuring element 
s and the positive threshold η used to control the convergent condition. Since the seg-
mentation results are not sensitive to these two parameters, they are fixed in this work 
and set to 2 and 10−5, respectively—that is, s = 2 and η = 10−5. The obtained object-level 
map will be used in the next subsection for computing the higher-order potential term of 
the proposed HOC2RF.  

3.5. HOC2RF Model 
This subsection defines the proposed HOC2RF model based on the DIs, the fused 

fuzzy partition matrix, the initial CD map, and the object-level map obtained in Sections 
3.2–3.4. HOC2RF integrates the complementary change information extracted from the 
perspective of vector magnitude and angle, and synthetically utilizes the spatial correla-
tion of images at both the pixel and object levels. The details of the proposed HOC2RF are 
as follows. 

Let the random variable sets X = {x1, x2, …, xN} and Y = {y1, y2, …, yN} denote the ob-
servation field and labeling field of an image, respectively, where N represents the total 
number of the pixels in the used image. xi stands for the spectral features of pixel i, and yi 
∈ C denotes the class label of pixel i, where C = {C1, C2, …, CM} is the class label set and M 
denotes the number of classes. For unsupervised CD, C = {Cu, Cc}.  

In HOC2RF, X is defined based on the two complementary DIs, DICVA and DISCM 
(obtained in Section 3.2). In particular, X = DI = {DICVA, DISCM, DImean}, DImean = (DICVA + 
DISCM)/2, and xi = {DICVA(i), DISCM(i), DImean(i)}. The initial class label yi for the labeling field 
is obtained by combining DICVA and DISCM (see Section 3.3). Then, the energy function of 
the proposed HOC2RF is defined as follows:  

( )
∈ ∈

  
i

N

i i ij i j hi
N

gh
i S

N

o
i j o

ψ y X ψ y X ψ vE y XX
=1 =1

( ) + λ ( )= , , , ( , )+  (11)

where , )( ,i iy Xψ ( , , ),ij i jy y Xψ  and ( , )high ov Xψ  represent the unary, the pairwise, and 
the proposed higher-order clique potentials, respectively. Ni denotes the neighborhood 
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of pixel I, and j ∈ Ni denotes the neighboring pixel of pixel i. In this study, the widely 
used second-order (i.e., the eight neighbors) neighborhood system is used to define Ni. S 
is the set composed of the image objects from the object-level map produced in Section 
3.4, o represents an image object, vo represents the higher-order clique of objects for o (see 
Equation (15)), and the parameter λ is the weight coefficient used to control the weight of 
the pairwise potential.  

3.5.1. Unary and Pairwise Potentials 
The unary potential function )( ,i iy Xy  is used to describe the relationship between 

the labeling and observation fields. )( ,i iy Xy  denotes the cost of pixel i taking the class 
label yi given the observed data and is usually defined as the negative logarithm of the 
probability of pixel i belonging to class yi: 

( ) −i i iψ y X P y= log (, )  (12)

where P(yi) represents the probability of pixel i to class yi, yi ∈{Cu, Cc}, and log is the 
natural logarithm operator. P(yi) can be computed with different techniques, such as 
FCM. In this study, P(yi) is defined using the joint mass function that is obtained by 
combining the two complementary DIs DICVA and DISCM with FCM and evidence theory 
(see Sections 3.2 and 3.3). This is 





i ui u
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i
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P y
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=
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where mi(Cu) and mi(Cc) represent the combined mass values of pixel i to the no-change 
and change classes, respectively (see Section 3.3). 

The pairwise potential function ( , , )ij i jy y Xy  is used to utilize the spatial correla-
tion of an image in local neighborhood, and to model the interaction between pixel i and 
its neighboring pixels j in Ni. It imposes a label constraint on the image by constraining 
the class labels to be consistent, by which the adjacent pixels with similar spectral values 
are encouraged to take the same class label. Following [15], the pairwise potential term in 
(11) is written as follows: 


  

−     

i j

i j ij i j

if y

ψ y X d x x
otherwis

y

σ

y
e

2

0 

) = ( , )
1 + exp        

2

=

( , ,  (14)

where d(xi, xj) is the Euclidean distance of xi and xj, respectively: xi = {DICVA(i), DISCM(i), 
DImean(i)} and xj = {DICVA(j), DISCM(j), DImean(j)}. 2σ  is the mean value of d(xi, xj) over the 
neighborhood Ni. 

3.5.2. Proposed Higher-Order Clique Potential 
The higher-order potential (object term) was introduced into the CD task in [21] to 

enhance CD performance. However, the higher-order potential in [21] only considers a 
single object, ignoring the dependence between neighboring objects. To overcome this 
shortcoming, this study proposes a novel higher-order clique potential by constructing a 
higher-order clique of objects and by considering the dependence between neighboring 
objects in both feature and location spaces. For a given object o, its higher-order clique vo 
is defined as:  

{ }ov o r o r o g o g o1 2 1 2= , ( ), ( ), ( ), ( )  (15)
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where o denotes the object o; r1(o) and r2(o) denote the two neighboring objects that are 
nearest to object o in the feature space; and g1(o) and g2(o) denote the two neighboring 
objects nearest to object o in the location space. Figure 2a,b shows an example of the fea-
ture space (location space) for a simple object-level image.  

(a) (b)

Object o in the 
object-level image

Feature 1

Fe
at

ur
e 

2

Object o in the 
object-level image

The center pixel of object o

 
Figure 2. (a) An example of the 2-D feature space for a simple object-level image and (b) an exam-
ple of the location space for a simple object-level image. 

In order to determine the objects r1(o), r2(o), g1(o), and g2(o), we need to define the 
distances between objects in the feature and location spaces. For two given objects o1 and 
o2, their distance in the feature space is defined as the Euclidean distance of x(o1) and x(o2), 
where x(o1) and x(o2) denote the mean values of the DI features of the pixels in objects o1 
and o2, respectively. The distance between o1 and o2 in the location space is defined as the 
Euclidean distance of the location coordinates of the center pixels of objects o1 and o2. 

The clique vo is made up of three parts: the object o, its two nearest neighboring ob-
jects in feature space, and its two nearest neighboring objects in location space. In gen-
eral, there is correlation between the neighboring objects—in particular for the over- 
segmentation objects. The proposed higher-order clique potential function ( , )high ov Xψ  is 
defined based on the object clique vo and is used to utilize the correlation of the pixels 
within an object and its nearest neighboring objects in both feature and location spaces. 

( , )high ov Xψ  takes the following form: 

( ) ×high oo oψ v X N(v ) f=,  (16)

where ( , )high ov Xψ  is used to describe the cost of the label inconsistency in the clique vo. 
N(vo) denotes the number of the pixels in the clique vo, and consequently, a large clique 
will have a large weight. of  is used to define the cost coefficient, which takes both the 
clique segmentation quality and the clique likelihood for change/no-change into account. 
In particular, the cost coefficient of  is defined as:  

( ){ }× k k
o k o o ov zf q v vz= min min ( ) ( ) + (1- ( )) , 1  (17)

where min represents the minimum operator, q(vo) represents the clique segmentation 
quality of clique vo, and zk(vo) represents the clique likelihood of clique vo to class k, k∈{Cu, 
Cc}. 

In this study, the clique segmentation quality, q(vo), is defined as the weighted av-
erage sum of the segmentation quality of the objects in clique vo: 

×o

q o q r ο q r ο q g ο q g ο
q v

1 2 1 2( ) + 0.5 ( ( )) + 0.5 ( ( )) + 0.5 ( ( )) + 0.5 ( ( ))
( ) =

1+ 4 0.5
 (18)
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where q(o), q(r1(o)), q(r2(o)), q(g1(o)), and q(g2(o)) stand for the segmentation quality of 
objects o, r1(o), r2(o), g1(o), and g2(o), respectively.  

Let ol denote a given object in clique vo. Then, the object segmentation quality of ol is 
estimated based on the object consistency assumption, which encourages all the pixels in 
an object to have the same class label. Specifically, we define q(ol) as follows: q(ol) = (N(ol) − 
Nk(ol))/Q(ol), where N(ol) denotes the number of the pixels in object ol, Nk(ol) denotes the 
number of the pixels assigned to class k in object ol, k∈{Cu, Cc}, and Q(ol) denotes a trun-
cated parameter used to adjust the degree of rigidity of q(ol). This study sets Q(ol) = 0.1 × 
N(ol). That means, if more than 90% of the pixels in ol are assigned to Cc or Cu, the value of 
q(ol) is less than 1. Similarly, if 70% of the pixels in object ol are assigned to Cc or Cu, the 
value of q(ol) is set to 3.  

According to the definition of q(ol), the more pixels of an object have the same class 
label, the better segmentation quality on this object and the smaller value of q(ol) will be. 
As a result, the better the segmentation quality of the objects in clique vo is, the smaller 
value of q(vo) will be (see Equation (18)).  

The clique likelihood zk(vo) is defined based on the number of pixels in the objects 
from clique vo and the objects’ joint mass values, taking the following form:  

× × × × ×k k k k k

o
k N m o N r m r N r m r N g m g N g m g

z
N N r N r N

o o o o o o o o o
v

o o o og N g o

1 1 2 2 1 1 2 2

1 2 1 2

( ( ) ( ( (
)

( ) + ( ( ( ( ) + ( ( ( ( ) + ( ( ( ( )
( ) =

( +
) + 0 .5 )) ) 0 .5 )) ) 0 .5 )) ) 0 .5 )) )

) 0 .5 )) 0 .5 )) 0 .5( )) 0 .5( + ( ( + ( ( ( ( )+
 (19)

where N(o), N(r1(o)), N(r2(o)), N(g1(o)), and N(g2(o)) denote the number of the pixels in ob-
jects o, r1(o), r2(o), g1(o), and g2(o), respectively. mk(o) denotes the joint mass value of the 
object o to class k and is computed via mk(o) = ( ) ( )ii o

m k N o
∈ , where mi(k) denotes the 

joint mass value of pixel i to class k, k∈{Cu, Cc}. mk(r1(o)), mk(r2(o)), mk(g1(o)), and mk(g2(o)) 
have the similar definition of mk(o). 

Generally, the center object in clique vo is more important than their neighboring 
objects. Accordingly, when computing q(vo) and zk(vo), the weight of object o is set to 1, 
whereas the weights of objects r1(o), r2(o), g1(o), and g2(o) are set to 0.5.  

On the one hand, the proposed higher-order clique potential encourages all pixels in 
clique vo to have the same class label. On the other hand, it uses the label consistency in a 
clique as a soft constraint and, thus, enables some pixels in the clique to take different 
labels. Accordingly, the higher-order clique potential can make effective use of the in-
teraction of the pixels within an object and its nearest neighboring objects in both feature 
and location spaces and, thus, can improve the CD performance.  

Different optimization algorithms, such as graph cuts and iterated conditional 
modes, can be adopted to minimize (optimize) the CRF model. The graph cut algorithm 
[33] is used to minimize the HOC2RF model for producing the final CD map.  

4. Results 
This section evaluates the performance of the proposed HOC2RF CD method. To this 

end, experiments were conducted on three real remote sensing datasets acquired by dif-
ferent sensors. Before performing CD, the relative radiometric correction and 
co-registration have been done on the three datasets, in order to make the two-temporal 
remote sensing images of each dataset to be comparable in both spectral and spatial 
spaces.  
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4.1. Dataset Description and Experimental Settings 
The first experiment was conducted on the Neimeng dataset, which comprises a pair 

of multispectral images taken by Landsat-5 Thematic Mapper sensor on August 22, 2006 
and June 17, 2011 in the boundary area between the Neimeng and Heilongjiang Prov-
inces, China. This dataset covers an area with 1200 × 1350 pixels, and contains one main 
type of land cover, forest. The changes occurred in this study area mainly due to a wild-
fire. Bands 1, 2, 3, 4, 5, and 7 were used for CD. Figure 3a–c shows the images of 2006 and 
2011, and their reference map, respectively. The reference map was produced according 
to a careful visual interpretation of the two-temporal images. 

 
Figure 3. (a) Image of 2006, (b) image of 2011, and (c) reference map. 

The second dataset, the Texas dataset, consists of two multispectral images with 
1534 × 808 pixels acquired by Landsat-5 Thematic Mapper sensor on August 26 and 
September 11, 2011. The dataset covers a forest fire in Bastrop County, Texas. Bands 1, 2, 
3, 4, and 5 were used for CD. Figure 4a–c shows the images of August and September, 
and their reference map, respectively.  

 
Figure 4. (a) Image of August, (b) image of September, and (c) reference map. 

The third dataset is the Poyang River dataset (463 × 241 pixels), which is made up of 
two Earth Observing-1 (EO-1) Hyperion images acquired on 3 May 2013 and 31 Decem-
ber 2013, respectively, in Jiangsu province, China. The dataset has 198 bands available 
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after noisy band removal. The images of May and December are displayed in Figure 5a,b, 
respectively; and their reference map is shown in Figure 5c.  

(b) (c) (a) 
 

Figure 5. (a) Image of May, (b) image of December, and (c) reference map. 

The Texas and Poyang River datasets are provided by [34,35], respectively. These 
two datasets are both offered in MAT format, and their location information is unavaila-
ble. As a result, we cannot show the information regarding the north direction and de-
tailed location for these two datasets (Figures 4 and 5). 

To assess the effectiveness of the proposed HOC2RF CD method, it was compared 
with nine related approaches, CVA, SCM, the reformulated fuzzy local information 
C-means (RFLICM) [36], MRF [3], the traditional pairwise CRF (CRF), the fully-connected 
CRF (FCCRF) [37], the improved FCCRF (IFCCRF) [17], the higher-order CRF (HOCRF) 
[21], and the improved nonlocal patch-based graph (INLPG) [38].  

Seven measures [39] were employed to conduct the performance evaluation: false 
positives (FP), the number of the unchanged pixels that are wrongly detected as changed 
ones; false negatives (FN), the number of the changed pixels that are wrongly detected as 
unchanged ones; true positives (TP), the number of the correctly detected change pixels; 
true negatives (TN), the correctly detected no-change pixels; overall errors (OE), the sum 
of FP and FN, OE = FP + FN; the overall accuracy (OA), OA = 1 − OE/(TP + TN + FP+  
FN); and the Kappa coefficient (KC), which is calculated by 

2

× ×
−

=
× ×

− ×(TP + TN) ((TN + FN) (TN + FP) + (TP + FP) (TP + FN))KC
((TN + FN) (TN + FP) + (TP + FP) (TP + FN))

N
N

 (20)

For the CD task, FP and FN are also known as false alarms (FA) and missed detec-
tions (MD), respectively. FA and MD are more widely used than FP and FN in CD liter-
ature. KC involves more classification information, and thus it is more cogent than the 
other indicators [39].  

In addition, the consumption time of each algorithm is also an important criterion. It 
was recorded for the comparison of time complexity of different algorithms. The nine 
comparative methods and the proposed HOC2RF were all conducted in a computer with 
Intel(R) Core(TM) i7-9750H 2.59 GHz processor and 16 GB RAM.  

The parameter m used in FCM and RFLICM to adjust the fuzzy degree of member-
ship was set to 2. The other parameters used in the compared and our algorithms were 
obtained by experiments, and only the results with the best parameters were given for 
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performance assessment. For the Neimeng, Texas, and Poyang River datasets, the 
weights of the pairwise potentials about MRF, CRF, HOCRF and the proposed HOC2RF 
were set to 4/7/3, 5/8/2, 5/7/1, and 8/9/1, respectively. 

The weights of the higher-order potential of HOCRF [21] were set to 3, 2 and 1. For 
our method, there is no need to set the weight of the higher-order clique potential, which 
is a fixed value, 1 (see Equation (11)). There are five parameters in FCCRF and IFCCRF: 
the two weights of the Gaussian kernels (w1 and w2), and the control parameters of near-
ness, similarity, and smoothness (θα, θβ, and θγ). The same as the two weights, the three 
control parameters, θα, θβ, and θγ, are also dimensionless. The values of the parameters in 
FCCRF and IFCCRF used in the experiments are shown in Table 2.  

Table 2. The values of the parameters of FCCRF and IFCCRF used in the experiments. 

Dataset Method w1 w2 𝜽𝜶 𝜽𝜷 𝜽𝜸 

Neimeng 
FCCRF 8 4 80 10 30 
IFCCRF 2 1 50 50 80 

Texas 
FCCRF 6 1 5 20 20 
IFCCRF 3 1 30 5 40 

Poyang River 
FCCRF 1 1 80 10 10 
IFCCRF 1 1 10 80 10 

4.2. Result and Analysis 
The CD results in this study are presented in two ways: the CD maps in a graphical 

format and the quantitative indicators in a tabular format. Figures 6–8 demonstrate the 
CD maps of different methods on the three datasets: (a)–(j) were produced by CVA, SCM, 
RFLICM, MRF, CRF, FCCRF, IFCCRF, HOCRF, INLPG, and the proposed HOC2RF ap-
proach, respectively. Black stands for the correctly detected no-change pixels, white 
stands for the correctly detected change pixels, red stands for the MD pixels, whereas 
yellow stands for the FA pixels. Tables 3–5 list the quantitative indicators of different CD 
maps for the three datasets: The unit of time is the second (s), and the other indicators are 
dimensionless. 
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(c) RFLICM

(f) FCCRF (h)  HOCRF(g) IFCCRF

No Change

Change

MD

FA

(d) MRF

(e) CRF

(i)  INLPG (j)  HOC2RF

(a) CVA (b) SCM

(k)  Reference map  
Figure 6. CD maps produced by different methods for the Neimeng dataset. 
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(a) CVA (b) SCM (c) RFLICM

(f) FCCRF (h)  HOCRF

(i) INLPG (j) HOC2RF

(g) IFCCRF

(d) MRF

(e) CRF

(k) Reference map

No Change

Change

MD

FA

 
Figure 7. CD maps produced by different methods for the Texas dataset. 
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(a) CVA (b) SCM (c) RFLICM

(f) FCCRF (h)  HOCRF

(i) INLPG (j) HOC2RF

(g) IFCCRF(e) CRF

(k)Reference map

(d) MRF

No Change

Change

MD
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Figure 8. CD maps produced by different methods for the Poyang River dataset. 
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Table 3. Quantitative indicators for CD maps on the Neimeng dataset. 

Methods MD FA TP TN OE OA KC Time(s) 
CVA 3400 877,835 77,790 1,450,975 91,235 0.9437 0.6037 10.39 
SCM 12,280 1174 68,910 1,537,636 13,454 0.9917 0.9067 3.30 

RFLICM 4356 53,102 76,834 1,485,708 57,458 0.9645 0.7099 37.94 
MRF 2255 43,478 78,935 1,495,332 45,788 0.9718 0.7610 11.90 
CRF 2384 24,634 78,806 1,514,176 27,018 0.9833 0.8450 14.85 

FCCRF 10,425 9261 70,765 1,529,549 19,686 0.9878 0.8715 4.33 
IFCCRF 7970 7362 73,220 1,531,448 15,332 0.9905 0.9002 7.22 
HOCRF 4027 8375 77,163 1,530,435 12,402 0.9923 0.9216 21.62 
INPLG 9557 2701 71,633 1,536,109 12,258 0.9924 0.9172 4058.78 

HOC2RF 2181 3164 79,009 1,535,646 5345 0.9967 0.9655 26.93 

Table 4. Quantitative indicators for CD maps on the Texas dataset. 

Methods MD FA TP TN OE OA KC Time(s) 
CVA 24,823 31,056 107,046 1,076,547 55,879 0.9549 0.7677 4.86 
SCM 59,124 2648 72745 1,104,955 61,772 0.9502 0.6770 2.53 

RFLICM 27,531 20,366 104,338 1,087,237 47,897 0.9614 0.7918 26.56 
MRF 18,097 14,788 113,772 1,092,815 32,885 0.9735 0.8589 9.11 
CRF 14,124 6457 117,745 1,101,146 20,581 0.9834 0.9104 8.01 

FCCRF 16,890 5515 114,979 1,102,088 22,405 0.9819 0.9012 2.28 
IFCCRF 12,338 6449 119,531 1,101,154 18,787 0.9848 0.9187 7.02 
HOCRF 18,197 5053 113,672 1,102,550 23,250 0.9812 0.8968 15.00 
INPLG 92,221 19,771 39,648 1,087,832 111,992 0.9096 0.3731 3553.57 

HOC2RF 8664 2472 123,205 1,105,131 11,136 0.9910 0.9518 20.96 

Table 5. Quantitative indicators for CD maps on the Poyang River dataset. 

Methods MD FA TP TN OE OA KC Time(s) 
CVA 347 8286 9351 93,599 8633 0.9226 0.6443 0.63 
SCM 3169 930 6529 100,955 4099 0.9633 0.7416 0.62 

RFLICM 434 6581 9264 95,304 7015 0.9371 0.6922 2.07 
MRF 1222 6182 8476 95,703 7404 0.9336 0.6605 0.71 
CRF 2144 3787 7554 98,098 5931 0.9468 0.6889 0.92 

FCCRF 3479 945 6219 100,940 4424 0.9604 0.7167 0.23 
IFCCRF 3489 862 6209 101,023 4351 0.9610 0.7200 1.81 
HOCRF 1105 6244 8593 95,641 7349 0.9341 0.6653 3.54 
INPLG 3840 23,738 5858 78,147 27,578 0.7528 0.1924 1317.21 

HOC2RF 1727 2168 7971 99,717 3895 0.9651 0.7845 4.94 

As shown in Figures 6–8, CVA and SCM provide complementary CD maps for all 
three datasets: The change maps obtained by CVA contain a large number of FA errors 
(yellow areas) but a small amount of MD errors (red areas), whereas the maps generated 
by SCM have small yellow FA areas but large red areas of MD (Figures 6a,b, 7a,b and 
8a,b). This observation proves that CVA and SCM can yield complementary change in-
formation and shows the potentials to enhance the CD performance by performing fu-
sion strategies.  

In terms of the other seven comparative algorithms, for the Neimeng dataset, 
HOCRF and INLPG yield better CD results than RFLICM, MRF, CRF, FCCRF, and 
IFCCRF (Figure 6c–i and Table 3). However, the map of HOCRF still contains a few ap-
parent yellow FA errors, whereas the INLPG’s map includes some apparent red MD ar-
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eas. For the Texas dataset, CRF and IFCCRF generate better CD results than other com-
parative methods (Figure 7c–i and Table 4).  

However, some obvious red MD errors still exist at the boundary of the change re-
gions in their CD maps (Figure 7e,g). For the Poyang River dataset, FCCRF and IFCCRF 
perform better than RFLICM, MRF, CRF, HOCRF, and INLPG (Figure 8c–i and Table 5). 
Nevertheless, the maps of FCCRF and IFCCRF have many MD errors. 

By integrating FCM, evidence theory, and the novel higher-order clique CRF model 
(developed in this study), the proposed HOC2RF CD approach first combines the com-
plementary change information coming from the perspective of vector magnitude and 
angle (direction) and then utilizes the spatial correlation of images at both pixel and ob-
ject levels to enhance the performance of CD. HOC2RF performs better than the nine 
benchmark algorithms and produces the most accurate change maps for all the three 
datasets (Figures 6–8).  

Tables 3–5 demonstrate the quantitative superiority of the proposed HOC2RF CD 
method. It yields the lowest OE and highest KC for all three datasets. For example, for the 
Neimeng dataset, its KC value is 0.9655, which is 36.18%, 5.88%, 25.56%, 20.45%, 12.05%, 
9.4%, 6.53%, 4.39%, and 4.83% larger than CVA, SCM, RFLICM, MRF, CRF, FCCRF, 
IFCCRF, HOCRF, and INLPG, respectively. For the Texas dataset, its OE is 11136 pixels, 
which decreases by at least 7600 pixels in compaction to the nine alternative methods. 

For the computation time complexity, INPLG takes much more time than the other 
methods as it has a complex process of generating DIs. The proposed HOC2RF has 
slightly higher computation time requirement than the CVA, SCM, MRF, CRF, FCCRF, 
IFCCRF, and HOCRF. For RFLICM, it takes more time than our method for the first two 
datasets but less time for the third dataset. 

5. Discussion 
5.1. Enhancing Process of HOC2RF  

As shown in Tables 3–5, for all the three datasets, the proposed HOC2RF method 
outperforms the nine benchmark methods over both OE and KC. Furthermore, the simi-
lar results for the three datasets demonstrate the robustness of HOC2RF to some extent.  

In this subsection, the Neimeng and Texas datasets are taken as examples to analyze 
and discuss the enhancing process of HOC2RF. To this end, Table 6 demonstrates the CD 
results produced by evidence theory, SHOC2RF, CVA-HOC2RF and the proposed 
HOC2RF. The CD results of evidence theory were obtained by combining the ones of 
CVA and SCM with evidence theory. SHOC2RF and CVA-HOC2RF can be viewed as two 
special cases of HOC2RF, which are used to analyze the effects of using the higher-order 
clique potential (16) and using the two complementary DIs, respectively. In SHOC2RF, 
the higher-order clique potential (16) is replaced with the higher-order potential (object 
term) in [21]. CVA-HOC2RF only uses the DI produced by CVA, removing the DI from 
SCM.  

Table 6. CD results obtained by evidence theory, SHOC2RF, CVA-HOC2RF and HOC2RF. 

Methods 
Neimeng Texas 

MD FA OE KC MD FA OE KC 
Evidence 5967 11,375 17,342 0.8910 29,200 6974 36,174 0.8342 
SHOC2RF 1213 9436 10,649 0.9341 17,722 1738 19,460 0.9128 

CVA-HOC2RF 2497 9104 11,601 0.9276 14,908 1600 16,508 0.9267 
HOC2RF 2181 3164 5345 0.9655 8664 2472 11,136 0.9518 

Through comparing the CD results generated by CVA, SCM, evidence theory, and 
the proposed HOC2RF in Tables 3, 4 and 6, it can be seen that HOC2RF enhances the CD 
performance by two stages:  
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(1) Combining the CD results from CVA and SCM using evidence theory. For the 
Neimeng dataset, the CD results of the evidence theory are better than those of CVA, 
RFLICM, MRF, CRF, and FCCRF, which use only one DI (Tables 3 and 6). For the Texas 
dataset, evidence theory performs better than CVA, SCM, and RFLICM (Tables 4 and 6). 
Although the evidence theory’s CD results are slightly worse than those from SCM for 
Neimeng dataset, the FA errors of CVA and the MD errors of SCM are both significantly 
reduced by the fusion step. This results in more balanced FA and MD errors in the CD 
result of evidence theory, and thus makes it easier to further improve the performance of 
CD by using the CRF model. In addition, the advantages of using two complementary 
DIs also can be seen by comparing the CD results of CVA-HOC2RF and HOC2RF (Table 
6). HOC2RF that fuses two DIs from CVA and SCM produces much better CD results 
than CVA-HOC2RF that only uses the CVA DI. For example, for the Neimeng dataset, the 
value of KC increases from 0.9276 for CVA-HOC2RF to 0.9655 for HOC2RF.  

(2) Improving the fused CD results of evidence theory by utilizing the HOC2RF 
model. For both Neimeng and Texas datasets, HOC2RF outperforms MRF, CRF, FCCRF, 
IFCCRF, and HOCRF (Tables 3, 4 and 6), demonstrating the superiority of the HOC2RF 
model. In addition, by comparing the SHOC2RF and HOC2RF rows in Table 6, we can see 
that, the proposed higher-order clique potential (16) performs much better than the 
higher-order potential used in [21]. For instance, for the Texas dataset, the KC value in-
creases from 0.9128 for SHOC2RF to 0.9518 for HOC2RF. This is mainly because the 
higher-order potential in [21] only considers a single object, ignoring the dependence of 
the neighboring objects, whereas the proposed higher-order clique potential (16) uses an 
object clique consisting of an object and its neighboring objects in both feature and loca-
tion spaces. 

5.2. Parameter Comparison of Random Field Models 
This subsection compares the parameters used in MRF, CRF, FCCRF, IFCCRF, 

HOCRF, and the proposed HOC2RF. Only one parameter (λ) needs to be set for imple-
menting of the proposed HOC2RF, the same as MRF and the traditional pairwise CRF. 
The parameter λ is used to tune the weight of the pairwise potential. In general, a small λ 
causes low MD errors but leads to a large amount of noise, whereas a large one will re-
move some noise but may miss some detailed changes. For HOCRF [21], it needs to set 
two parameters, the weights of the pairwise potential and higher-order potential (object 
term). For both FCCRF and IFCCRF, there are five parameters to be set: the two weights 
of the Gaussian kernels (w1 and w2), and the control parameters of nearness, similarity, 
and smoothness (θα, θβ, and θγ). Given the above analysis, the proposed HOC2RF needs 
much less parameter tuning than FCCRF IFCCRF, and HOCRF. 

6. Conclusions 
In this paper, a novel, unsupervised CD method was proposed by developing a 

higher-order clique CRF model, termed HOC2RF. For the observation field, HOC2RF 
further introduces the vector angle change of two temporal images compared with the 
existing CRF-based CD methods, which mainly utilize the vector magnitude change. For 
the labeling field, HOC2RF uses FCM and evidence theory to fuse the two complementary 
types of change information at the decision level to create an initial CD map.  

Moreover, HOC2RF defines a novel higher-order clique potential based on a 
properly designed clique of objects. The clique potential considers the interactions be-
tween neighboring objects in both feature and location spaces. As a consequence, 
HOC2RF can combine the complementary change information coming from the perspec-
tive of vector magnitude and angle and utilize the spatial-context information of images 
at both the pixel and object levels effectively. 

Three case studies verified the effectiveness and advantages of the proposed 
HOC2RF approach. The Kappa coefficient/overall accuracy values of HOC2RF were 
0.9655/0.9967, 0.9518/0.9910, and 0.7845/0.9651, respectively, which are better than the 
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nine benchmark methods (CVA, SCM, RFLICM, MRF, CRF, FCCRF, IFCCRF, HOCRF, 
and INLPG). For example, the Kappa coefficient values of HOC2RF increased at least by 
4.39%, 3.31%, and 4.29% compared to the nine methods.  

HOC2RF has only one parameter, thereby, needing much less parameter tuning 
compared with HOCRF, FCCRF, and IFCCRF. Theoretically, this article contributes to 
CD development by proposing the idea of using the interaction between neighboring 
objects in both feature and location spaces to enhance the CD performance. Methodo-
logically, we presented a method to construct a higher-order clique, developed a high-
er-order clique potential function, and proposed a novel CD method—HOC2RF. 

The proposed method has two limitations: (1) It has a slightly higher computation 
time requirement than the existing CRF CD methods because it needs to combine two DI 
images and compute the higher-order clique potential function. (2) Though it has only 
one parameter, it still requires parameter tuning. 

Future work can focus on the following two directions. (1) To further automate 
HOC2RF, additional work can be conducted on the automatic determination of the only 
parameter λ used in HOC2RF. (2) Additional research can be conducted on how to define 
new higher-order clique potential functions. 
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