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Abstract: This article reviews how precipitation microphysics processes are observed in dual-
polarization radar observations. These so-called “fingerprints” of precipitation processes are observed
as vertical gradients in radar observables. Fingerprints of rain processes are first reviewed, followed
by processes involving snow and ice. Then, emerging research is introduced, which includes more
quantitative analysis of these dual-polarization radar fingerprints to obtain microphysics model
parameters and microphysical process rates. New results based on a detailed rain shaft bin mi-
crophysical model are presented, and we conclude with an outlook of potentially fruitful future
research directions.
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1. Introduction

Dual-polarization radar observations are a valuable resource for studies of precipita-
tion microphysics. The value of such observations arises by virtue of the information about
hydrometeor shapes, sizes, orientations, and phase (liquid, ice) obtained through probing
clouds and precipitation with two orthogonal polarizations (see, e.g., [1–7]).

Dual-polarization radar data have been widely and successfully used for a broad
spectrum of applications. For example, there is a rich literature of studies developing and
applying hydrometeor classification algorithms (HCAs), also referred to as hydrometeor
identification or particle identification algorithms, which categorize individual pixels in
graphical displays of radar data by the inferred dominant backscattering hydrometeor
type. Such HCAs have been implemented using a variety of techniques, including theoreti-
cally or empirically determined thresholds for the different polarimetric radar variables
that correspond to various hydrometeor types (e.g., [8–10]), fuzzy logic or neuro-fuzzy
logic approaches (e.g., [1,11–21], among many others), and more data-driven approaches
such as hierarchical clustering or support vector machines (e.g., [22–26], among many
others). There is a good review of these approaches in [27]. While useful for spot-checking
model distributions of hydrometeors (e.g., [28]), these types of HCAs provide only limited
direct information about ongoing microphysical processes; one would have to infer pro-
cesses from independent algorithmic classifications of nearby pixels. For example, a pixel
classified as “snow aggregates” adjacent to one identified as “ice crystals” could imply
aggregation, etc. In addition, HCAs often have different species categories than are used in
models, making even such simple comparisons challenging (e.g., drizzle, different rainfall
intensities, and “big drops” in HCAs compared to a single “rain category” in model micro-
physics schemes). Finally, although grounded in theoretical and empirical studies, there
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still exists uncertainty in the HCA classifications. As such, although HCAs are useful for
qualitatively understanding the structure of precipitating systems, which can be leveraged
for other applications such as rainfall estimation (e.g., [29]), other approaches should be
considered for insights into microphysical processes.

There are also numerous studies proposing and applying retrievals of microphysically
useful quantities from the dual-polarization radar variables. This includes estimates of pre-
cipitation rates (e.g., see the recent review in this collection [30]), raindrop size distribution
parameters (e.g., [31–33]), ice water content and snow particle size distribution parame-
ters [34–39]. These retrievals generally map the radar variables to important microphysical
quantities through empirically or theoretically derived relationships. Such retrievals can be
useful for comparisons to numerical model simulations because the retrieved quantities
often are closely related to or directly predicted or diagnosed from model output. However,
uncertainties in these types of retrievals often are unquantified, and many require a priori
assumptions that introduce additional potential sources of error (e.g., [40]).

Instead, we focus this review on precipitation physics—processes—not hydrometeor
classifications or retrievals. These physical processes are fundamental precipitation for-
mation and evolution, yet their full understanding is lacking (e.g., [40]). An important,
but often underemphasized, component of uncertainty in model-based studies of radar-
observable signatures of microphysical processes is the fact that most do not consider
uncertainties related to the simplifications and assumptions of the scheme. For example,
bulk microphysics schemes treat a small number of size distribution moments prognos-
tically, typically with some assumed underlying size distribution that can be uniquely
determined from those prognostic moments [40]. This assumption allows for the precise
and unique calculation of radar observables for a given set of moment values. However,
such uniqueness does not exist in nature—for a given set of real precipitation moments,
there are an infinite number of possible particle size distributions, each producing some-
what different values of radar observables. To better match nature, forward simulated
radar observables should not be deterministic variables, but instead random variables
that sample from an error distribution related to the variability that is not captured by the
simplified state of the model microphysical assumptions. Indeed, this approach is taken in
recent works and will be discussed in detail in later sections. By finding ways to quantita-
tively observe and characterize these ongoing processes with radar, while respecting these
inherent uncertainties, we open the opportunity to learn more about them, and find robust
ways to assess and improve model microphysics parameterizations.

We begin with an overview of the concept of microphysical fingerprints in dual-
polarization radar observations, and then review the qualitative fingerprints for different
precipitation processes. Then, we introduce some emerging research tackling more quanti-
tative approaches to characterizing these microphysical fingerprints.

2. Qualitative Microphysical Fingerprints

The polarimetric radar variables used here include the radar reflectivity factor at
horizontal polarization (ZH), differential reflectivity (ZDR), specific differential phase shift
(KDP), and the co-polar correlation coefficient (ρhv). ZH is a measure of how much energy
is scattered back to the radar, including from hydrometeors, insects, birds, etc. When these
targets or particles are small compared to the radar wavelength, the amount of energy
they scatter back to the radar is proportional to their horizontal dimension to the sixth
power. The total ZH measured at a given location is the sum of this scattering from all
particles within the radar pulse’s volume. As such, the total ZH is proportional to the
number density of particles, as well. For a given particle size, those composed of liquid
backscatter much greater power than those composed of ice; backscattered power from
mixed-phase particles (i.e., those containing both liquid and ice) is somewhere between.
ZV the radar reflectivity factor at vertical polarization, and is defined similarly, except it
probes particles’ vertical dimensions. ZDR measures the difference between ZH and ZV (in
logarithmic scale), and thus provides an indication of the particles’ shapes given that the
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particles are small compared to the radar wavelength. For example, an oblate raindrop
with its maximum dimension oriented (on average) in the horizontal will backscatter more
energy from the horizontally polarized radar signal than from the vertically polarized radar
signal (i.e., ZH > ZV), leading to ZDR > 0 dB. Likewise, particles with more of their mass
aligned in the vertical direction will have ZV > ZH, and thus ZDR < 0 dB. Spherical particles,
or a collection of nonspherical particles that are randomly oriented, will scatter back energy
equally at horizontal and vertical polarizations (ZH = ZV), resulting in ZDR = 0 dB. For a
given non-spherical particle shape, those composed of liquid will produce larger magnitude
ZDR values than those composed of ice, similar to the behavior of ZH. ZDR will be biased
towards the particles in the radar sampling volume that dominate the backscattering
because it is weighted by ZH and ZV.

Unlike ZH and ZDR, KDP is a measure of phase shift: it is the difference between the
phases of the horizontally polarized and vertically polarized waves as they propagate through
precipitation. Such phase differences arise from nonspherical particles: those with more of
their mass aligned in the horizontal direction will produce KDP > 0 deg km−1, and those with
more of their mass aligned in the vertical direction will produce KDP < 0 deg km−1. The
sensitivity of KDP to drop size D is less than that of ZH, closer to ~D4 or ~D5 compared
to the ~D6 dependence of ZH. KDP is also proportional to the number concentration of
nonspherical particles. Unlike ZH and ZDR, KDP is insensitive to spherical particles; in
a sense, it only “sees” the oriented nonspherical particles within the sampling volume.
Finally, ρhv is a measure of the diversity of particles’ intrinsic ZDR within the sampling
volume. For spherical particles or non-spherical particles with very similar shapes and
orientations (and thus similar ZDR), ρhv is near unity. When there exists a variety of particle
shapes and orientations in the sampling volume, ρhv is reduced. For a more detailed
overview of the physical meaning of these quantities, see the texts [1,2,7] and the review
series [3–5].

As precipitation falls towards Earth’s surface, a variety of physical processes may
affect their sizes, spatial distribution, and phase. Such changes to particle populations
are observable by polarimetric radars because of the sensitivities of the different radar
variables to particle sizes, shapes, number densities, and physical compositions outlined
above. Because these changes occur primarily as hydrometeors descend (i.e., outside
of strong updrafts), vertical profiles of the polarimetric radar variables can be used to
assess these ongoing processes. The idea of identifying polarimetric radar “fingerprints”
of ongoing microphysical processes was introduced by [41], motivated by the interest in
characterizing and quantifying microphysical processes in precipitation. Specifically, these
fingerprints are defined as vertical changes in two or more of the dual-polarization radar
variables within the lowest few kilometers of a precipitation shaft (e.g., increases in ZH and
ZDR towards the ground). Use of multiple polarimetric radar variables provides additional
degrees of freedom over conventional (i.e., ZH alone) observations, affording unique
fingerprints for various microphysical processes. Such information provides an advantage
over traditional techniques using ZH alone, such as contoured reflectivity by altitude
diagrams (CFADs). These qualitative fingerprints are summarized in graphical form in [41],
and reproduced with modifications in [7]. We will review these fingerprints associated
with different microphysical processes here; their graphical depiction follows [42]. Figure 1
shows an example of how these fingerprints will be summarized graphically. The vertical
axis represents height, and the abscissa indicates the value of the given polarimetric radar
variable, each color coded and in individual subpanels. In the example shown, ZH, ZDR,
and KDP all increase towards the ground.
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S band) over a 3-km, steady-state rain shaft. 

Figure 1. Graphical representation of microphysical “fingerprints” in vertical profiles of dual-
polarization radar variables. Height is on the vertical axis, increasing upwards, whereas the value of
each polarimetric radar variable increases from left to right along the abscissa. Each radar variable
is shown in a subpanel, color-coded as follows: goldenrod for ZH on the left, cyan for ZDR in the
middle, and magenta for KDP on the right. In this example, all three radar variables are seen to
increase towards the ground.

2.1. Rain Microphysical Processes

Raindrops falling to Earth’s surface undergo a variety of processes, including inter-
actions with other drops. The so-called collisional processes include collision-coalescence,
and collisional breakup. Although these processes do not change the overall amount of
raindrop mass in a rain shaft, they do redistribute the mass to different parts of the drop
size distribution (DSD). As such, and because of the raindrop shape dependence on size,
these processes have observable signals in the polarimetric radar measurements.

Collision-coalescence is the process by which two or more drops collide and stick
together, or coalesce, to form a larger drop (e.g., [43]). As a result, the raindrop number
concentration N decreases, but the overall mean raindrop size increases. For particles with
sizes D much smaller than the radar’s wavelength, backscattering of the radar signal is a
strong function of size (~D6), which dominates over backscattering’s direct proportionality
to number concentration (~N). Therefore, collision-coalescence is expected to increase ZH
in the rainshaft towards the ground, because the increase in drop size resulting from the
merging of two or more drops dominates the decrease in number concentration of these
smaller drops. Similarly, ZDR and KDP are both expected to increase towards the ground
owing to the production of these larger, more oblate drops (Figure 2a). Using a detailed bin
microphysical model, Ref. [44] first quantified the expected collision-coalescence fingerprint,
revealing increases in ZH of <4 dB, in ZDR of <0.5 dB, and in KDP < 0.5 deg km−1 (at S band)
over a 3-km, steady-state rain shaft.
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Figure 2. Different microphysical fingerprints for liquid precipitation, including (a) coalescence,
(b) breakup, (c) evaporation, and (d) size sorting. In panel (c), the lighter cyan shading indicates a
range of possible fingerprints for ZDR, based on work by [45].

Other collisions between raindrops result in a dramatically different outcome: the
disruption or breakup of colliding drops into multiple, smaller drop fragments (e.g., [46,47]).
Although the precise distribution of drop fragments following the collision between various
drop-size pairs is highly complicated and still a subject of study (e.g., [48–51]), the overall
effect on the polarimetric radar variables is understood. The increase in drop number
concentration is overshadowed by the decrease in mean raindrop size, resulting in an
observable effect of decreased ZH, ZDR, and KDP towards the ground (Figure 2b). The
modeling study of [44] showed much larger changes in the radar variables owing to
collisional breakup compared to collision-coalescence: decreases in magnitudes up to
5 dB for ZH, 1.5 dB for ZDR, and 0.7 deg km−1 for KDP (at S band) over the 3-km steady-
state rain shaft. However, the authors noted that, based on comparisons to observations,
the bin model’s accounting for collisional breakup may be “overaggressive,” leading to
exaggerated vertical changes in the radar variables.

In nature, of course, collision-coalescence and collisional breakup do not act in isolation.
Rather, both act on populations of raindrops simultaneously. Some regimes exist in which
one process is dominant over the other, leading to observable fingerprints qualitatively
consistent with those in Figure 2a,b. However, other regimes may exist in which both
processes are approximately balanced, leading to relatively small vertical changes in the
radar variables overall. In such cases, measurement errors may obfuscate the underlying
fingerprint signal, making assessing the dominant microphysical process challenging, if
not impossible.

When raindrops fall below cloud base into subsaturated air (i.e., relative humidity
with respect to liquid water is <100%), they will lose mass owing to evaporation, defined
as net vapor diffusion away from the drop and to the ambient environment. For vapor
diffusion, the rate of change of raindrop size dD/dt is inversely proportional to the raindrop
size D itself (e.g., [43]). In other words, smaller drops will lose size more rapidly owing to
evaporation than larger drops. Given the strong size dependence of radar wave backscat-
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tering (for particles much smaller than the radar wavelength), evaporation can lead to a
somewhat counterintuitive fingerprint in which ZH and KDP decrease towards the ground,
but ZDR increases slightly (Figure 2c), as first pointed out by [52]. This occurs when the
greater amount of mass lost from smaller drops relative to larger drops in a given DSD leads
to a slight upward shift in the mean drop size. Using an idealized bin microphysics model,
Ref. [53] showed that these increases in ZDR are quite small (<0.2 dB over a few-km-deep
rainshaft) and likely within the measurement uncertainty of most polarimetric radars [54].
As such, careful averaging in space or time, or techniques such as quasi-vertical profiles [55]
may be needed to observe this fingerprint robustly. In a follow-up study, Ref. [45] used
a similar idealized model to demonstrate that the ZDR fingerprint can actually reverse,
featuring ZDR decreasing towards the ground, in special cases of initial gamma DSDs
(e.g., [56,57]) with large mean drop sizes (i.e., large ZDR at the top of the rain shaft) and
large DSD breadth (Figure 3). However, Ref. [45] only considered evaporation, and ignored
the collisional processes. Kumjian and Prat [44] showed that collisional breakup tends to
dominate in rain shafts with such large initial ZDR; it is unclear if a pure evaporation signal
could be observed given the propensity for such DSDs to undergo collisional breakup. The
interplay between these processes requires detailed modeling; preliminary results of such
modeling will be shown in a later section.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 25 
 

 

counterintuitive fingerprint in which ZH and KDP decrease towards the ground, but ZDR in-
creases slightly (Figure 2c), as first pointed out by [52]. This occurs when the greater amount 
of mass lost from smaller drops relative to larger drops in a given DSD leads to a slight upward 
shift in the mean drop size. Using an idealized bin microphysics model, Ref [53] showed that 
these increases in ZDR are quite small (<0.2 dB over a few-km-deep rainshaft) and likely within 
the measurement uncertainty of most polarimetric radars [54]. As such, careful averaging in 
space or time, or techniques such as quasi-vertical profiles [55] may be needed to observe this 
fingerprint robustly. In a follow-up study, Ref [45] used a similar idealized model to demon-
strate that the ZDR fingerprint can actually reverse, featuring ZDR decreasing towards the 
ground, in special cases of initial gamma DSDs (e.g., [56,57]) with large mean drop sizes (i.e., 
large ZDR at the top of the rain shaft) and large DSD breadth (Figure 3). However, Ref [45] only 
considered evaporation, and ignored the collisional processes. Kumjian and Prat [44] showed 
that collisional breakup tends to dominate in rain shafts with such large initial ZDR; it is unclear 
if a pure evaporation signal could be observed given the propensity for such DSDs to undergo 
collisional breakup. The interplay between these processes requires detailed modeling; pre-
liminary results of such modeling will be shown in a later section. 

 
Figure 3. Adapted from [45]: color shading shows ZDR at top of rainshaft (dB according to outset 
scale); labeled solid contours show change in ZDR (in dB) over the 3 km rainshaft (positive indicates 
increase towards ground, negative indicates decrease towards ground) as follows: gray is zero 
change, blue contours are +0.2 and +0.3 dB; purple dashed lines are −0.15 and −0.3 dB. Results are 
shown as a function of initial gamma DSD (i.e., at the top of the domain) shape parameter 𝜇 on the 
abscissa and mean volume diameter D0 on the ordinate. Computations were performed for X band. 

Unlike the collisional processes, net evaporation involves mass changing phases from 
liquid to vapor. This phase change is associated with diabatic cooling through the en-
thalpy of vaporization as the highest-energy water molecules escape the liquid drop, leav-
ing behind lower-energy molecules and thus cooler drops overall (e.g., [43]). The authors 
of [45] used their idealized model to estimate the cooling rate in rain based on the ob-
served fingerprint, and plausibly retrieved cooling rates on order of a few K hr−1. Use of 
polarimetric radar information to quantify thermodynamic changes in the environment is 
an exciting research frontier, and one that could lead to significant improvements in nu-
merical models through, for example, data assimilation (e.g., [58]). 

Because raindrop fall speed increases monotonically with increasing size up to a 
point before leveling off (e.g., [59,60]), differential sedimentation occurs. This is part of the 

Figure 3. Adapted from [45]: color shading shows ZDR at top of rainshaft (dB according to outset
scale); labeled solid contours show change in ZDR (in dB) over the 3 km rainshaft (positive indicates
increase towards ground, negative indicates decrease towards ground) as follows: gray is zero change,
blue contours are +0.2 and +0.3 dB; purple dashed lines are −0.15 and −0.3 dB. Results are shown as
a function of initial gamma DSD (i.e., at the top of the domain) shape parameter µ on the abscissa
and mean volume diameter D0 on the ordinate. Computations were performed for X band.

Unlike the collisional processes, net evaporation involves mass changing phases
from liquid to vapor. This phase change is associated with diabatic cooling through the
enthalpy of vaporization as the highest-energy water molecules escape the liquid drop,
leaving behind lower-energy molecules and thus cooler drops overall (e.g., [43]). The
authors of [45] used their idealized model to estimate the cooling rate in rain based on the
observed fingerprint, and plausibly retrieved cooling rates on order of a few K hr−1. Use of
polarimetric radar information to quantify thermodynamic changes in the environment
is an exciting research frontier, and one that could lead to significant improvements in
numerical models through, for example, data assimilation (e.g., [58]).
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Because raindrop fall speed increases monotonically with increasing size up to a
point before leveling off (e.g., [59,60]), differential sedimentation occurs. This is part of the
reason why, as a cloud first begins to precipitate, one often encounters the largest drops
at the ground first. However, this “size sorting” can be sustained in the presence of an
updraft or non-zero storm-relative winds, which most often occur in environments with
appreciable vertical wind shear (e.g., [61–63]). Because of the raindrop shape dependence
on size, polarimetric radars are particularly well-suited for identifying regions of ongoing
size sorting. These regions are observed as spatially offset enhancements of ZDR and ZH
(and/or KDP); an iconic example is the “ZDR arc” feature offset from the precipitation core
in supercell storms (e.g., [64–67]). For a rain shaft, the transient effect of size sorting is
observed as a strong increase in ZDR towards the ground paired with decreases in ZH and
KDP (Figure 2d; [44,61]). Although the fingerprint is qualitatively consistent with that of
evaporation (cf. Figure 2c,d), the magnitude of the ZDR increase is far more significant for
size sorting than for evaporation. Thus, in situations where size sorting and evaporation
are both ongoing, it is expected that size sorting dominates the observed fingerprint.

To help visualize the different microphysical processes revealed by these finger-
prints, [44] introduced a 4-quadrant parameter space (Figure 4) representing changes
in different polarimetric radar variables. Plotting points representative of observed vertical
gradients in the polarimetric variables (changes in ZH and ZDR towards the ground in the
example shown in Figure 4) allows easy classification of the ongoing microphysical process.
This rain microphysical fingerprint framework has found uses in the hydrometeorological
literature, including classifying rainfall for quantitative precipitation estimation [68–70],
and has recently been extended to similar work with satellite observations [71].
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Figure 4. Fingerprint parameter space of [44]; shows dominant processes (colored text in each
quadrant) inferred from vertical gradients in ZH and ZDR (∆, with changes towards ground). For
example, coalescence is inferred from vertical profiles of ZH and ZDR that increase towards the
ground (i.e., ∆ZH > 0 dB and ∆ZDR > 0 dB).

Here we apply the idea of fingerprinting to data collected during Hurricane Matthew,
which made landfall on the United States in 2016. The storm produced a large stratiform
precipitation shield over North Carolina, where the U.S. National Weather Service oper-
ational KRAX WSR-88D polarimetric radar near Raleigh was well-suited to observe the
precipitation properties. We apply the QVP technique ([55]) to 11 h of data, starting at
13 UTC on 8 October 2016. During this time, the area around the KRAX radar experienced
persistent rainfall as the Hurricane made landfall to the south, slowed, and eventually
meandered eastward. Towards the end of this time period, drier air began wrapping
around the west side of the storm, eroding the precipitation shield from west to east. Data
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below the melting layer (located > 4 km AGL) are selected to focus the analysis on rain
microphysical processes. Figure 5a shows the time series of QVPs of ZH, revealing consis-
tently moderate to heavy rain, with some times experiencing > 40 dBz at the lowest levels.
Figure 5b is a similar presentation, but for ZDR. We note that, despite the larger ZH values,
ZDR remains < 1 dB for much of the event, indicative of smaller drops (and expected based
on the tropical nature of the precipitation).
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Figure 5. The evolution of vertical profiles of precipitation during Hurricane Matthew on 8 October
2016, observed by the WSR-88D radar near Raleigh, North Carolina (KRAX). (a) Time series of quasi-
vertical profiles of ZH (in dBz, shaded according to scale); (b) time series of quasi-vertical profiles of
ZDR (in dB, shaded according to scale); (c) retrieval of the dominant microphysical fingerprint in rain
(see text for details), where light blue indicates coalescence, dark green indicates breakup, light green
indicates the coalescence-breakup balance, and dark blue indicates evaporation or size sorting.

To characterize the microphysical fingerprint observed in the data, we first extracted
the vertical profiles of ZH and ZDR at each time and applied a 5-gate (~220-m) moving
average filter to smooth the data. Then, a least-squares linear fit was computed for each
data segment along a 15-gate (~660-m) moving window; the slope of these best-fit lines
indicates the vertical gradients of ZH and ZDR. Next, these computed ZH and ZDR vertical
gradients were used to assess the qualitative microphysical fingerprint. To avoid false
classifications based on noise present in the data, we applied minimum thresholds of
dZH/dz > 0.002 dB km−1 and dZDR/dz > 0.0001 dB km−1 (based on measurement uncer-
tainties of 1–2 dB in ZH and 0.1–0.2 dB in ZDR cited in [54]).

The resulting fingerprint classifications are shown in Figure 5c. Despite some noisiness
in the retrieval, an obvious feature is the prevalence of the coalescence fingerprint (54.4%
of identified pixels). That coalescence should dominate the signal in tropical rainfall is
expected based on the relatively small raindrop sizes (e.g., [44]). The breakup and “balance”
fingerprints were identified in 19.3% and 15.7% of the pixels, respectively. Evaporation
and/or size sorting was only identified in 10.6% of the pixels; interestingly, most of these
occur after 19 UTC. Because of the spatial averaging involved in the QVP technique, one
might not expect to see size sorting (which tends to be localized; see [61–67]) appear;
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indeed, the vertical gradients in ZDR after 19 UTC are small in magnitude. Recall that
during this time, Hurricane Matthew was ingesting drier air from the west. Thus, this
signal of increased prevalence of the evaporation fingerprint throughout this period is at
least broadly consistent with the observed storm evolution.

As in this example, dual-polarization radar fingerprints have been used predominantly
to infer (qualitatively) microphysical processes. It is unknown how process rate magnitudes
vary throughout this parameters space, although one could hypothesize that the process
rate magnitudes may increase with increasing fingerprint magnitude. For example, one
could hypothesize a correlation between larger decreases (towards the ground) in ZH and
ZDR and greater collisional breakup. As we will see later in Section 3, there is now some
evidence that these fingerprints can be used for quantitative process rate information,
which could substantially advance evaluation of numerical model microphysics schemes.

2.2. Snow and Ice Microphysical Processes

Similar to raindrops, ice crystals undergo a variety of microphysical processes during
their existence and descent to the ground. Some of these processes involve collisions
between hydrometeors, including ice–ice collisions that result in joining of two or more
ice crystals (known as aggregation), ice–ice collisional fragmentation, and ice–cloud droplet
collisions (known as riming). Further, ice particles may lose mass to the environment
through net diffusion of vapor molecules away from the particle during sublimation. Unlike
raindrops, however, ice particles may grow large enough entirely by vapor diffusion
to sediment to the surface (e.g., [43]). The polarimetric radar fingerprints of these ice
microphysical processes are far more challenging to characterize, owing in part to the
myriad shapes that ice crystals may acquire during their lifetimes, as well as comparatively
poor understanding of many of the processes involved in ice growth (see, e.g., [40]).

During vapor depositional growth of ice crystals, the particles may undergo substantial
changes in shape. For example, a spherical cloud droplet may freeze and subsequently
grow into an intricate dendritic snow crystal with aspect ratios that are extreme departures
from unity [72,73]. During this growth, the particle gains mass from the surrounding vapor,
increasing in size and thus increasing ZH. The aspect ratio’s growing departure from unity
would suggest an increase in ZDR, because small, pristine ice crystals align themselves
with maximum dimension in the horizontal, regardless of whether they take on oblate
(e.g., plate-like) or prolate (e.g., needle-like) shapes [1–7]. However, ice crystal growth can
be complicated by factors such as branching or hollowing (e.g., [74]). Such complicating
factors may reduce the compactness of ice molecules in the particle, sometimes referred
to as reducing the particle’s effective density, thereby contributing to a decrease in ZDR
(see [75]). Which effect wins out? There is some observational evidence that pure vapor
depositional growth for dendrites leads to approximately no change in ZDR, at least at X
band (e.g., [76,77]). The lack of an observable sharp increase in ZDR during the very early
growth from frozen droplets or other ice nuclei may be because the particle sizes were too
small for the radar wavelength used. We speculate that, given a shorter radar wavelength
sensitive to cloud-particle sizes, early growth should reflect a rapidly decreasing aspect
ratio and thus increase in ZDR concurrent with an increase in ZH. For precipitation radar
wavelengths (S, C, and X bands), this early growth likely is unobservable. KDP may respond
similarly to ZDR, with the exception that a sufficiently large quantity of snow crystals
would be necessary to obtain a strong enough signal to make a reliable estimate of KDP,
particularly at longer wavelengths [76], given the much weaker scattering of ice particles
compared to liquid and the inverse wavelength dependence of KDP [1,2]. Enhancements
of KDP in the planar crystal growth region near −15 ◦C have been identified as a signal of
vigorous vapor depositional growth (e.g., [78–84]). In contrast, others have argued that
KDP enhancements represent the onset of aggregation (e.g., [85]). Some emerging evidence
(Dunnavan et al., in preparation) suggests that primary nucleation and growth of large
concentrations of ice crystals may be responsible for the observed KDP signal, consistent
with the arguments put forth by [79]. Studies simulating the vapor depositional growth
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of ice crystals using reduced-density spheroids (e.g., [86,87]) are unable to capture the
effects of snow crystal shape on electromagnetic scattering (e.g., [75]), and thus likely do
not produce accurate fingerprints of vapor growth from ZDR and KDP. In summary, with
considerable uncertainty, we suggest the fingerprint of vapor growth as increases in ZH,
steady ZDR, and an increase in KDP accounting for primary nucleation and subsequent
vapor growth of large concentrations of ice crystals (Figure 6a).
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Figure 6. As in Figure 2, but for ice microphysical processes including (a) vapor depositional growth
of ice crystals, (b) aggregation, (c) riming, (d) riming with the Hallett-Mossop rime splintering process
occurring, (e) sublimation (including a range of possible increases in KDP owing to sublimational
fragmentation identified by [88]), (f) refreezing (with dashed lines showing the refreezing of partially
melted hydrometeors, and solid lines indicating the refreezing of fully melted hydrometeors), and
(g) melting. Note in (g) the additional panel showing the reduction in ρhv associated with melting,
given its importance for identifying this process.
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In contrast to vapor depositional growth, aggregation (defined as the collision of
two or more ice particles and subsequent coagulation into a single, larger particle) leads
to more readily understood polarimetric radar fingerprints. The increase in particle size
dramatically increases ZH. Contrary to arguments that snow aggregates are well modeled
by oblate spheroids (e.g., [89,90]), measurements of snow aggregate shapes reveal that
they are highly irregular (e.g., [91,92]). However, their complicated and often chaotic
orientations, paired with lower effective density, lead to ZDR values near 0 dB. Thus, the
transition from pristine monomer ice crystals (particularly planar or columnar crystals)
to well-developed aggregates comprising substantial numbers of monomer crystals (in
other words, the snow aggregates often experienced in midlatitude snow storms that
usually contain very large numbers of monomer ice crystals) is marked by a substantial
decrease in ZDR. Note that, at temperatures below about −20 ◦C, ice crystal habits are
complicated and not well understood [93]. These polycrystals, rosettes, and other irregular
shapes have less extreme aspect ratios, and thus only moderate ZDR; for these cases, the
aggregation fingerprint would be a more modest decrease in ZDR towards 0 dB (as seen in
some cases from, e.g., [83]). In cases of very light aggregation (e.g., [76]), the resulting early
aggregates with fewer constituent monomers may lead to positive ZDR values. Thus, the
ZDR fingerprint of such light aggregation is still a decrease towards the ground, though this
decrease may be less in magnitude than is typical in, for example, midlatitude snowstorms.
Aggregation signatures for KDP are still subject to some debate in the scientific literature.
As mentioned above, although some have argued the enhancement of KDP in the planar
crystal growth region, constrained to temperatures near −15 ◦C, is a signal of the onset of
aggregation [85], others have attributed this signature to vapor growth and/or nucleation.
For the same reasons that well-developed snow aggregates produce near-zero ZDR values,
KDP in snow aggregates also is near 0 deg km−1. Thus, any initial enhancement of KDP will
decrease towards zero during ongoing aggregation. These are summarized in Figure 6b.

When an ice particle collects supercooled liquid cloud droplets, the droplets freeze on
contact in a process known as riming. Because riming adds mass to the collector particle,
ZH is expected to increase (though perhaps less substantially than aggregation, given the
comparatively much smaller sizes of the collected cloud droplets). Evidence presented
in [94] shows that ZDR could either increase or decrease as ice crystals become rimed, and
that this ambiguous behavior may depend on the initial size (and, perhaps, the initial
shape) of the crystals undergoing riming. However, the end result of heavy riming from a
pristine crystal to a lump graupel particle is much like that of aggregation: increases in ZH
and decreases in ZDR and KDP (Figure 6c). Riming can be complicated by other ongoing
processes—for example, Hallett-Mossop rime splintering [95], which occurs at temperatures
between about −3 and −8 ◦C and can lead to rapid vapor growth of columnar ice crystals
in the same radar sampling volumes as the ongoing riming. In these cases, although ZH
and ZDR tend to be dominated by the rimed particles (i.e., rimed aggregates or graupel),
the large concentration of columnar ice crystals may lead to observable enhancements in
KDP (Figure 6d), as shown in [83,96–98]. Kumjian et al. [97] argued that riming also leads
to observable local decreases in the melting layer height, which they called “saggy bright
bands”. However, subsequent modeling work by [99] suggested that heavier precipitation
falling into the melting layer and associated increased cooling (owing to the enthalpy of
melting) can lead to the development of an isothermal layer that is responsible for the
sagging bright band (see the next subsection).

The impact of snow sublimation on the polarimetric radar variables has not received
as much attention in the literature. However, a recent study by [88] has found repeatable
signatures of dramatically reduced ZH and slightly reduced ZDR (usually no more than a
few tenths of a dB, and likely often within the radar system’s noise) within sublimating,
aggregated snow (Figure 6e). Intriguingly, they also found KDP enhancements at the
bottom of the column, which they interpreted as sublimational fragmentation, a form of
secondary ice production [100,101]. This represents another potential use of enhanced
KDP to identify secondary ice production processes in clouds. Indeed, KDP is particularly
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well-suited for identifying secondary ice production given its strong sensitivity to the
number concentration of highly anisotropic particles, and relatively low sensitivity to the
larger particles that tend to dominate backscatter (e.g., snow aggregates, graupel).

Another unexpected but potentially useful signature was discovered in situations of
refreezing of raindrops into ice pellets near the surface in winter precipitation [102]. The
term “refreezing” has been used in the literature to distinguish the formation of ice pellets
from, for example, droplet freezing in convective storm updrafts [103]. The intent is to
imply the particles began as snow (ice), melted, and then froze into ice again, even though
the term itself is imprecise from a physics perspective (much like “unmelting” would be).
As raindrops freeze into ice pellets, the substantial decrease in relative permittivity was
expected to drive down ZH, ZDR, and KDP. However, a local increase in ZDR (i.e., a local
maximum) was observed within a broader layer of ZH decreasing towards the surface
(Figure 6f). Kumjian et al. [102] proposed that preferential freezing of smaller drops led
to the signature by increasing the relative contribution to ZH (and thus to ZDR) of the
larger, unfrozen drops, analogous to evaporation and size sorting. They presented simple
scattering calculations that supported this hypothesis. In contrast, Ref. [104] suggested
that ice pellets acquired more exaggerated shapes owing to deformation during freezing
(although no supporting calculations were provided). However, follow-up work by [105]
using fully polarimetric Ka-band radar observations and modeling with scattering cal-
culations by [106] have suggested that asymmetric freezing is the likely explanation for
increasing ZDR. As a falling drop freezes, the upwind (downward-facing side) experiences
much greater thermal energy transfer owing to the ventilation (e.g., [107]), and thus faster
freezing. This asymmetry in ice shell thickness between the top and bottom of a freezing
drop leads to an exaggerated aspect ratio for the inner, unfrozen liquid portion of the parti-
cle, increasing ZDR. A subtle increase in KDP is sometimes observed within the refreezing
layer, and can also be explained by asymmetric freezing [106]. However, the presence of
anisotropic crystals generated in the refreezing layer, which have been observed in at least
some cases (e.g., [105,108]), could also lead to an increase in KDP as observed. Given the
exaggerated particle shapes in the refreezing layer, as well as any additional particle shape
deformations or other irregularities (e.g., [104]), ρhv also tends to decrease in the refreezing
layer (not shown). Recently, Ref. [109] have suggested that refreezing of partially melted
hydrometeors presents a different fingerprint, in which ZH, ZDR, and KDP all decrease
towards the surface (indicated in Figure 6f by dashed lines). This is in part because a
partially melted hydrometeor—one that contains ice—may start freezing immediately from
the existing ice, rather than forming an ice shell that grows inward asymmetrically. This
difference in geometries of the unfrozen liquid portion is argued to be responsible for the
difference in observed fingerprints [109].

2.3. Melting of Snow and Ice

As ice hydrometeors reach portions of the atmosphere with wetbulb temperatures > 0 ◦C,
they begin to melt. Owing to the much greater relative permittivity of liquid (compared to
ice) at weather radar wavelengths, the melting particles’ backscattering properties change
markedly during this transition: ZH increases and any polarization contrasts owing to
nonspherical particle shapes become exaggerated. This can lead, for example, to large
increases in ZDR and KDP, and decreases in ρhv (Figure 6g). The decreases in ρhv can be so
dramatic that we have added a panel to Figure 6g to emphasize the importance in ρhv for
identifying melting.

Such a marked transformation in the polarimetric radar fields is routinely observed in
the melting layer of stratiform precipitation (e.g., [110]). Numerous studies have focused
on melting layer detection (e.g., [111–115]). More recently, detailed statistical analyses of
large datasets of melting layer observations have revealed insights into how processes
above the melting layer (e.g., riming, vigorous depositional growth of planar crystals) are
reflected in the melting layer properties and subsequent precipitation rates beneath the
melting layer (e.g., [115,116]). Only [99], however, has attempted to extract quantitative
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information about microphysical process rates (specifically, cooling rates owing to melting)
from the melting layer. Specifically, their simulations suggest a high correlation (r2 > 0.9)
between the maximum KDP in the melting layer and the cooling rate.

The polarimetric radar signatures from melting hail and graupel are not as pronounced,
owing to (i) a much larger range of fallspeeds for these particles as a function of their size,
which tends to “spread out” the melting over a larger depth of the troposphere, and (ii) their
shapes tend to be more regular than melting snowflakes. Nonetheless, melting of hail
and graupel still leads to predictable increases in ZH and more exaggerated polarimetric
contrasts. Several studies have coupled a microphysical model of melting hail by [117]
with scattering calculations to produce expected melting hail signatures in terms of vertical
profiles of the polarimetric radar variables (e.g., [118–121]). In particular, smaller (<2 cm)
hailstones tend to acquire a “torus” of liquid meltwater that accumulates about their
equator, stabilizing fall behaviors and leading to larger ZDR. In contrast, larger hail (>2 cm)
tends to shed much of its meltwater. The lack of stabilization during fall leads to lower ZDR,
on average, given the diversity of shapes found in natural hailstones [122]. This feature
was exploited for an operational hail size discrimination algorithm ([121]) that classifies
hail into three categories: sub-severe, severe, and significantly severe (<2.5 cm; 2.5 to 5.0 cm;
and >5.0 cm, respectively; see [123] for proposed hail size naming conventions). However,
none of this work has exploited the radar data for quantitative use in understanding hail
processes; undoubtedly, interpretation is complicated by the myriad of natural hailstone
shapes [122] as well as the significant uncertainty in fall behavior [124].

3. Emerging Research with Microphysical Fingerprints

More recently, efforts have started to analyze microphysical fingerprints in dual-
polarization data more quantitatively, including with large sample sizes. This type of work
is an important first step for robust statistical analyses of precipitation processes inferred
from radar. Further, some of this work aims to quantify microphysical processes or process rates
using information from the dual-polarization radar fingerprints described above. Here, we
review a small sample of these recent and ongoing studies.

Reimel [42] explored the evolution of dominant rain fingerprints during a landfalling
U.S. Hurricane. She found that a large fraction of fingerprints over the 12-h observation pe-
riod suggested coalescence was dominant, in accord with expectations based on the tropical
nature of the precipitation. Further, this study utilized the new Bayesian Observationally
constrained Statistical-physical Scheme, or BOSS, model framework (e.g., [125,126]). BOSS
is a warm-rain bulk microphysics parameterization scheme that is designed to allow con-
straint by dual-polarization radar observations. BOSS uses flexible microphysical process
rate formulations, evolving raindrop size distribution moments using generalized power
series that allows one to choose the number of terms used to describe a process, as well
as the number of prognostic moments. BOSS was shown to reproduce the behavior of
traditional microphysics schemes, while simultaneously allowing for robust quantification
of uncertainty in parameter values as well as process rate formulations [125,126]. By using
this framework, Ref. [42] was able to quantitatively analyze process rates in the radar-
observed profiles, demonstrating that such process rate retrievals using radar observations
are possible.

In addition, to process rate retrievals, classification techniques such as those used
for HCAs are now being applied to vertical profiles of the polarimetric radar variables
to characterize microphysical fingerprints. For example, Ref. [127] used an unsupervised
classification method based on principal component analysis and k-means clustering to
categorize fingerprints. The technique was able to identify some of the “textbook examples”
of snow microphysics fingerprints, including those described above.

Recent work has demonstrated the ability of dual-polarization radar data to quantita-
tively retrieve important information in the context of bulk microphysics parameterization
schemes, including uncertain microphysical parameters themselves. For example, Ref. [77]
investigated the microphysical information content contained within dual-polarization
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radar fingerprints of vapor depositional growth of planar ice crystals. They used Markov
chain Monte Carlo (MCMC) sampling within a Bayesian inference framework to estimate
parameters in a bulk microphysics scheme. This method involved simultaneously perturb-
ing 10 uncertain microphysical and kinematic model parameters, running the model, and
evaluating the model output against the polarimetric radar observations. The process was
repeated millions of times, resulting in an estimate of the full probability density function
for each uncertain parameter, as well as parameter covariability [77]. In particular, the
authors focused on faceted ice crystal growth during vapor deposition, following the pa-
rameterization of [128]. The simulations were constrained using X-band polarimetric radar
observed vertical profiles of ZH and ZDR, along with vertically pointing Ka-band radar
observations of mean Doppler velocity, taken during an Arctic mixed-phase cloud that
produced pristine dendrites (a case analyzed by [76]). The resulting MCMC-constrained
growth parameters produced values of differential growth rates along the “a” and “c” axes
(along the basal and prism faces, respectively), equal to a temperature-dependent inherent
growth ratio, Γ, times the ratio of the ice crystal c and a axis lengths, shown by purple
dots in Figure 7. Detailed laboratory measurements and numerical simulations by [129]
suggested that ice crystal facets grow at a rate equal to the ratio αc/αa, where αc and
αa are the deposition coefficients along the a and c axes. Figure 7 also shows this ratio’s
dependence on temperature and the associated uncertainty, extracted from wind tunnel
measurements. The excellent correspondence between the radar-retrieved growth rates and
wind tunnel measurements seen in Figure 7 demonstrates the quantitative microphysical
information contained in dual-polarization radar fingerprints.
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Figure 7. The green line shows the ratio of deposition coefficients for the ice crystal c and a axes as
a function of temperature, with the green shading indicating the uncertainty, extracted from wind
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crystal axis ratio obtained from Markov chain Monte Carlo simulations and X-band polarimetric radar
observations (plotted with reduced data density, for clarity). Reprinted/adapted with permission
from [77]. 2021, American Meteorological Society.

The technique also revealed relationships between dual-pol radar variables and the
microphysical parameters in the model. For example, smaller simulated ZDR values were
produced when the inherent growth ratio was larger, leading to crystals with less extreme
aspect ratios and larger fall speeds ([77]). The authors made use of a probabilistic forward
operator by [130] to better capture the natural variability of planar crystal shapes. Incredibly,
the radar observations were informative to uncertain parameters in this probabilistic
forward operator, as well: ZDR observations provided some constraint on the subbranch
fractional coverage (a parameter determining the thickness of the dendritic ice crystal
sub-branches).

As part of work towards a new parameterization for warm rain microphysics, known
as BOSS [125,126], a large database of bin microphysical model simulations was com-
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piled [131]. This database used the one-dimensional rainshaft model of [132,133], which
explicitly treats the collisional processes and evaporation for a population of raindrops.
Specifically, the bin model uses a number- and mass-conserving numerical scheme to solve
the stochastic breakup and collection equations over 40 raindrop size (mass) bins. The
bin model domain used was 3 km tall (10-m vertical grid spacing), with a 1 s timestep.
Normalized gamma DSDs are initialized at the top of the domain, spanning median volume
diameters from 0.2 mm to 4 mm, normalized intercept parameters ranging from 100 to
80,000 m−3 mm−1, and shape parameters ranging from −1 to 10, encompassing rainfall
rates up to 500 mm hr−1. In all, this database comprises 9922 simulations featuring a wide
parameter space of initial DSDs and rainfall rates (e.g., see [42,132] for additional details).
As in [44], the dual-polarization radar variables were computed from the output of these
bin model simulations, taking the final output time (t = 60 min) to obtain “steady state”
rainshaft profiles. Vertical gradients in the polarimetric radar variables were computed at
299 height levels (corresponding to every 10 m in the vertical) in the domain, displayed in
units of dB km−1 for ease of interpretation. Data points for which ZH ≥ 50 dBz were dis-
carded as being unrealistically heavy rain. At each height level, the instantaneous process
rates are obtained for the 0th and 6th DSD moments, hereafter M0 and M6, respectively,
physically representing the total raindrop number concentration and radar reflectivity
factor (in the small-particle scattering approximation). Given the clear relationship between
M6 and the radar variables (e.g., see [134] for how each DSD moment is related to the
dual-polarization radar variables), we will focus here on M6 process rates. Note that the
results are sensitive to the bin model’s treatment of complex microphysical processes such
as collisional breakup. Even though the bin model uses the state-of-the-art parameteriza-
tions of these processes, considerable uncertainty still exists e.g., [48–51,133]. Indeed, [44]
suggested that the collisional breakup of drops in the bin model may be too aggressive,
leading to more extreme collisional breakup fingerprint magnitudes than typically observed
in rain. We therefore cautiously proceed with the analysis, given that the bin model and
forward operator are the best available tools to quantitatively link process rate magnitudes
and dual-polarization radar observables.

Figure 8 shows the [44] parameter space with points colored by their M6 collisional
process rate, defined as the sum of the rate of change in M6 owing to coalescence (positive)
and breakup (negative). The values are normalized on a 0 to 1 magnitude scale to facilitate
comparison of different rainfall rates, etc. As such, the resulting positive or negative values
indicate when one process wins out over the other: positive values indicate coalescence
is dominating changes in M6 (which is closely related to ZH at S band), negative values
indicate breakup is dominating changes in M6, and values near zero indicate a balance
between these two processes. We can see that, in general, the breakup-dominated cases
(negative values, purple dots) do fall within the “breakup” quadrant of the [44] parameter
space, as expected. Likewise, the coalescence-dominated cases (green dots, positive val-
ues) are found mainly within the coalescence quadrant. Further, there is a tendency for
stronger magnitudes of these processes to fall deeper within their respective quadrants,
implying that the magnitudes of the radar fingerprints are related to the magnitudes of the
process rates.

Figure 9 displays the same type of information, but this time for the M6 evaporation
rate. Note that the process rate has been normalized and displayed between 0 and 1, such
that 1 is the maximum evaporation rate. Recall that evaporation leads to a decrease in
M6 (and thus ZH). The M6 evaporation rates exhibit large magnitudes in the “evapora-
tion” quadrant, as well as the “breakup” quadrant. Interestingly, there is a clear shift of
increasing magnitudes moving towards the top left within the cloud of points—in other
words, even for points in the “breakup” quadrant, those closer to the evaporation quad-
rant of the [44] parameter space have larger M6 evaporation rate magnitudes. Further,
the larger the breakup process rate magnitude, the larger the evaporation process rate
magnitude, presumably because both scale with M6 and/or precipitation rate. Thus, even
when evaporation does not dominate the observed changes in the dual-polarization radar
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fingerprints, information about the magnitude of evaporation is contained in the proximity
to the evaporation quadrant, when displayed in the [44] parameter space diagram.
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These simulations strongly suggest that the magnitudes of the dual-polarization radar
fingerprints in rainshafts are quantitatively related to the microphysical process rates: larger
magnitudes of the fingerprints imply larger normalized process rate magnitudes. This is
promising, suggesting the use of dual-polarization radar data to not only infer ongoing
microphysical processes, but to retrieve quantitative information about the process rates for direct
comparisons with and evaluations of model microphysics schemes, and potentially, improved
retrievals of cooling associated with evaporation (e.g., [45]).

It is clear from these results that, in most simulated (and presumably real) rain-
shafts, multiple microphysical processes may be ongoing, each affecting the resulting
dual-polarization radar fingerprint. To dig deeper into the relative contributions of these
processes, we computed the combined M6 process rate differences, defined as collisional
processes minus evaporation. For this analysis, the “collisional processes” combine the
magnitudes of both breakup and coalescence as “positive” contributors, and evaporation
as a negative contributor. Thus, if evaporation dominates the changes to M6, the resulting
“process rate difference” is negative; if collisional processes dominate over evaporation,
the result is positive. Figure 10 shows the histograms of these combined M6 process rate
differences (magenta dotted lines), categorized using the [44] quadrants. For example, if
the simulated dual-polarization radar fingerprint suggests “coalescence,” the correspond-
ing process rates are placed in the upper right quadrant. We did this for each of the
2,966,678 data points (see figure caption for numbers of data points in each quadrant).
Further, Figure 10 also indicates which microphysical process dominates the contribution
to the “collisional process rates” by overlaid lines: red indicating breakup dominates, blue
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indicating that coalescence dominates, and goldenrod indicating if coalescence and breakup
are exactly balanced.
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In the “evaporation/size sorting” quadrant (upper left in Figure 10), we see that
evaporation dominates M6 for the vast majority of cases (82.6%), as expected; collisional
processes dominate only 17.4% of cases there. Interestingly, of the cases for which evapora-
tion dominates the overall changes to M6, coalescence is the dominant collisional process.
In contrast, when collisional processes dominate in this quadrant, it is breakup that tends
to win out. This makes physical sense because both evaporation and breakup should lead
to decreases in ZH (and thus M6). For the majority of cases in which evaporation and
coalescence are the dominant processes, ZDR tends to increase for both.

In contrast, the “coalescence” (upper right) quadrant in Figure 10 shows virtually no
cases where evaporation dominates changes to M6 (only 2.3%). Of the 97.7% of cases for
which collisional processes dominate, all of them feature coalescence as the dominant colli-
sional process, in good agreement with the theoretical expectation of this quadrant ([44]).
In essence, the coalescence fingerprint represents the “cleanest” or most unambiguous
identification of a dominant ongoing process.

The “breakup” quadrant (lower left) in Figure 10 exhibits a markedly different behavior
from the coalescence quadrant. In it, 55.3% of cases have evaporation dominating the M6
process rates, with only 44.7% of cases being dominated by collisional processes. Of
those dominated by collisional processes, unsurprisingly, breakup is the overwhelmingly
dominant process, again in good agreement with the theory. Note, however, that there
are some coalescence-dominant cases in this quadrant, albeit with small process rate
magnitudes. When evaporation dominates changes to M6 in this quadrant, there is a nearly
equal mix of coalescence and breakup dominating the collisional processes.

Finally, in the “balance” quadrant (Figure 10, lower right), we see more than an order of
magnitude fewer cases than in other quadrants. Further, 91.3% of the cases are dominated
by collisional processes, with coalescence being the heavily favored process. Only 8.7% of
cases in this quadrant have M6 changes dominated by evaporation.
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Figure 10. The [44] parameter space showing the observational fingerprint quadrants. In each,
histograms show the difference in the actual process rates: collisional processes—evaporation. If
evaporation dominates changes to M6, the resulting difference is negative (left of vertical gray line).
If collisional processes dominate over evaporation, the result is positive (right of vertical gray line).
Magenta dotted shows distributions of all cases that fit into those quadrants. These are subdivided
into those for which coalescence dominates the collisional process rates (blue), breakup dominates
the collisional process rates (red), or they are balanced (goldenrod); these are annotated in the top left
quadrant. Number of data points included in each quadrant as follows: coalescence n = 1,087,210;
evaporation/size sorting n = 765,021; breakup n = 1,016,795; balance n = 97,652.

This analysis reveals the complexity of multiple microphysical processes acting in a
rainshaft. For instance, the coalescence fingerprint is relatively more certain than other
fingerprints, given that almost all the cases in the “coalescence” quadrant (as defined
by [44]) are indeed dominated by coalescence. Similarly, the “evaporation” quadrant is
dominated by evaporation. In contrast, the breakup quadrant reveals that more than
half the cases actually are evaporation dominated. Further, despite the much smaller
number of fingerprints in the quadrant defined as “balance” by [44], we see that, in
fact, coalescence tends to be the dominant process leading to this fingerprint. In other
words, although collisional processes are dominant here (compared to evaporation), the
distribution is heavily skewed in favor of coalescence, rather than being more balanced
between coalescence and breakup.

Although process rate magnitudes and dual-polarization radar fingerprint magnitudes
are indeed correlated, retrieval of quantitative process rate magnitudes may be challenging
and requires careful sampling of the environment (e.g., to characterize the relative role
of evaporation in modulating the observed fingerprints). Partitioning fingerprints into
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the [44] four-quadrant parameter space prior to such retrievals may provide additional
constraint.

4. Concluding Remarks

Dual-polarization radar observations are powerful remote sensing data that provide
both qualitative and quantitative information about ongoing microphysical processes in
precipitation. This article reviews the concepts of qualitative radar-observed fingerprints
of different microphysical processes, which are summarized in Table 1. We also explore
the cutting-edge use of dual-polarization radar data to estimate important microphysical
information quantitatively.

Table 1. Summary of the changes in the polarimetric radar variables towards the ground for different
microphysical processes. A positive sign + indicates an increase in that radar variable between the
top and bottom of the profile, whereas a negative sign indicates a decrease. The presence of a second
sign in brackets [] indicates the possible variation.

Microphysical Processes ∆ZH ∆ZDR ∆KDP

Collision-Coalescence + + +

Breakup − − −
Evaporation − +[−] −
Size Sorting − − +

Vapor Deposition + + +

Aggregation + − −
Riming + − −

Riming with ice splintering + − +

Sublimation − − −
Sublimation with fragmentation − − +

Refreezing − +[−] +[−]

Melting * + + +

* The polarimetric radar signature of melting is accompanied by a sharp reduction in ρhv, which helps identify
the process.

In our view, this emerging research into quantitative use of microphysical fingerprints
is exciting, with ripe opportunity for fruitful studies. Making fuller use of all available
information from polarimetric radars may help advance the science, too. For example, the
co-polar correlation coefficient (ρhv) was neglected in most of the fingerprints discussed
herein. In part, this is because the fingerprint work was originally developed for rain
processes and using S-band radars, at which wavelength ρhv values tend to be very high
(>0.98) for pure rain [3,7]. However, work [135] shows how some information may be
gleaned from ρhv about the DSD shape (or “dispersion”) parameter, which controls the
DSD breadth. Such information could potentially provide additional constraint for process
rates that was not used for our BOSS work [125,126] Section 3. Linking this information
about DSD breadth to generalized DSD moments, rather than to a specific parameter
in an assumed underlying DSD functional form, may be particularly informative while
simultaneously removing a major source of uncertainty [125,126,134]. Extracting this type
of information from ρhv requires very high-quality measurements, however, and is likely
only a capability of research-grade radars. Snow and ice processes are more challenging
given the complexities of shapes. However, advances in scattering calculations [136]
and microphysics schemes [40] should allow better realism in the representation of other
processes for the coupled approach demonstrated above for rain and vapor depositional
growth of ice. Incorporating ρhv into analyses of ice processes in a manner similar to [135]
may also be valuable, particularly for aggregation and riming e.g., [84]. In this sense, the
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realm of ice microphysical processes guarantees fruitful advances. We advocate for Bayesian
inference frameworks such as those used in [78,125,126] to consider all potential sources
of uncertainty carefully and robustly. Doing so is crucial for critical evaluation of, and,
ultimately, improvement of microphysics parameterizations in models of varying scales.

The information available from microphysical fingerprints can also be valuable for
use in assimilation of polarimetric radar data into numerical models to improve analyses
and forecasts of high-impact weather. Although assimilation of dual-polarization radar
measurements into storm-scale numerical models has been explored, the results have
been mixed [137–140]. This is in large part because many modern microphysics parame-
terization schemes predict quantities (e.g., raindrop or snowflake mass mixing ratio and
number mixing ratio) that are not well-mapped to the radar measurements. Further, these
model-predicted quantities are underpinned by necessary but rigid structural assumptions
about particle size distributions built into the scheme that almost certainly are invalid in
nature [134], meaning that natural variability is severely underrepresented [40,134,141].
Instead, using the dual-polarization radar fingerprints for information about process rates
could be more fruitful, especially because these process rates can drive thermodynamic
changes in precipitation systems that directly influence the system’s dynamics (e.g., evap-
orative cooling or ice particle melting driving storm cold pools). Such an approach may
improve the connection between the imperfect model’s microphysical and dynamical pro-
cesses. Some research along these lines [58] has shown encouraging results. Continued
leveraging of dual-polarization radar observations for insights into microphysical processes
is warranted, especially when combined with complementary information available from
other observing platforms.
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