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Abstract: To support the rapid development of the Urban Air Mobility framework, safe navigation
must be ensured to Vertical Take-Off and Landing aircraft, especially in the approach and landing
phases. Visual sensors have the potential of providing accurate measurements with reduced budgets,
although integrity issues, as well as performance degradation in low visibility and highly dynamic
environments, may pose challenges. In this context, this paper focuses on autonomous navigation
during vertical approach and landing procedures and provides three main contributions. First, visual
sensing requirements relevant to Urban Air Mobility scenarios are defined considering realistic land-
ing trajectories, landing pad dimensions, and wind effects. Second, a multi-sensor-based navigation
architecture based on an Extended Kalman Filter is presented which integrates visual estimates with
inertial and GNSS measurements and includes different operating modes and ad hoc integrity checks.
The presented processing pipeline is built to provide the required navigation performance in different
conditions including day/night flight, atmospheric disturbances, low visibility, and can support
the autonomous initialization of a missed approach procedure. Third, performance assessment
of the proposed architecture is conducted within a highly realistic simulation environment which
reproduces real world scenarios and includes variable weather and illumination conditions. Results
show that the proposed architecture is robust with respect to dynamic and environmental challenges,
providing cm-level positioning uncertainty in the final landing phase. Furthermore, autonomous
initialization of a Missed Approach Procedure is demonstrated in case of loss of visual contact with
the landing pad and consequent increase of the self-estimated navigation uncertainty.

Keywords: Urban Air Mobility; autonomous approach and landing; Vertical Take-Off and Landing
aircraft; visual landing pad; visual sensing requirements; multi-sensor-based navigation

1. Introduction

The term Urban Air Mobility (UAM) refers to the concept of a new transportation
network which will enable the movement of people and goods in urban areas through
short flights of innovative platforms, mainly represented by electrical Vertical Take-Off and
Landing (VTOL) and Short Take-Off and Landing (STOL) aircraft. Currently, many efforts
are focused on realizing a safe UAM framework including the potential development of
advanced navigation technologies and algorithms, which will allow the aircraft to reliably
perform critical flight procedures such as approaches and landing in urban scenarios. In
this context, the conventional landing systems are expected to be complemented or replaced
by technological solutions tailored to UAM, including the use of multiple exteroceptive
sensors (e.g., cameras, radars, LIDARs) and, consequently, of multi-sensor navigation
algorithms. Furthermore, the level of autonomy of the vehicles will increase with the aim
to gradually remove the necessity for onboard pilots enabling higher payload capabilities,
while ensuring safe operations in each flight phase [1]. This process will require the
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implementation of autonomous decision-making algorithms complementing the navigation
estimates with piloting functions, such as the capability to decide for Missed Approach
Procedures (MAP) if the conditions required to safely perform landing are not met. This
paper studies the problem of vertical approach and landing procedures of VTOL aircraft in
the frame of UAM scenarios. Context and state of the art are described in sub-Section 1.1.
with reference to approach and landing procedures and visual based sensing solutions,
while sub-Section 1.2 clarifies the paper contribution.

1.1. Context and Related Works

At the time of writing this paper, aviation authorities are starting to publish the first
documents to design vertiports area and vertical take-off and landing procedures. The
EASA has first issued the Special Condition VTOL [2] containing indications to prove com-
pliance of VTOL aircraft prototypes with safety and design objectives, and then published
the Prototype Technical Design Specifications for Vertiports [3], distinguishing two main types
of Visual Flight Rules (VFR) for landing procedures:

• Conventional Landing (CL) with a defined glide path, which resembles the final phase
of the VFR approach path to heliports [4] as well as the vertiports’ VFR approach
procedure proposed by FAA in the Draft Engineering Brief for Vertiport Design [5];

• Vertical Landing (VL) with a defined obstacle-free volume (see Figures D-13 and D-14
of [3]), which will be required to maintain safe distances to obstacles in the airspace
above vertiports placed in urban environments.

At the same time, the UAM literature has already identified many different approach
and landing profiles compliant with the taxonomy provided above. Examples of the CL
approaches are provided by [6,7]. These solutions ensure a constant glide path during the
whole trajectory, with advantages such as the possibility to fly at higher velocities avoiding
dangerous aerodynamic phenomena like the Vortex Ring State (VRS). Hence, they represent
an optimal solution in terms of time and energy consumption in scenarios that allow a
gradual descent to the landing pad, keeping safe distances to potential obstacles.

When this latter requirement cannot be met, as in complex urban areas, the approach
and landing path should be selected, searching for a compromise between the constraints
linked to aerodynamic and obstacle avoidance. In this respect, some approach solutions
have been proposed, foreseeing a final vertical phase (according to the VL paradigm)
in which the VTOL aircraft descends at a limited sink rate. For instance, the 3-stepped
approach trajectory involves a descent with a fixed approach path until 200 m height above
the vertiport, a horizontal forward flight to the point right above the landing pad, and a
final vertical descent [8,9]. Such a vertical descent is also proposed in the Terminal Area of
Multi-vertiport system Concepts of Operations [10]. An alternative trajectory is defined by
Song et al. [11,12], who propose a vertiport airspace model, namely the Vertiport Terminal
Control Area (VTCA), optimized to control the approach of the arriving aircraft through
holding circles where the vehicles hover while waiting for the authorization to complete
the landing procedure.

The above-presented vertical approach solutions are not compatible with the nominal
visual slope indicators supporting VFR approaches, such as the Helicopter Approach
Path Indicator (HAPI) lights, and with the glideslope/localizer guidance provided by
the Instrument Landing Systems (ILS) adopted in Instrument Flight Rules (IFR) runway
approaches, leading to the necessity of alternative means to estimate the relative position
with respect the landing pad. Another issue is represented by the limited pilot view of the
landing area due to the elevate slope, which can be addressed by means of synthetic cues
like those obtainable by cameras according to the EASA [3].

Following these considerations, the implementation of a robust multi-sensor architec-
ture exploiting relative pose estimates obtained processing the frames collected by cameras
installed on the VTOL aircraft might represent a potential solution. Clearly, an efficient
ground infrastructure has to be designed to also correctly detect the landing pad in non-
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nominal visibility conditions (e.g., bad weather and night scenarios) to support the defined
architecture and, in particular, the visual-based pose estimation task.

In the framework of small UAS landing, the recognition of the landing pad has been
applied for H-shaped patterns placed in cluttered scenarios in nominal visibility condi-
tions [13] and in the case of low-illumination environments [14]. An alternative vision-only
method relies on the detection of ArUco markers placed in correspondence to the landing
point, demonstrating an accuracy of 11 cm in outdoor environments [15]. Usage of In-
fraRed (IR) cameras allow the extension of vision-based pose estimation techniques to night
scenarios. For instance, a flight controller receiving input pose estimates from the detection
of an IR-illuminated fiducial marker, as well as LIDAR and Inertial Measurement Unit
(IMU) measurements, is presented in [16]. Another approach identifies roof ledges through
Convolutional Neural Network, enabling reliable pose estimates for autonomous UAV
landing [17]. Deep Learning-based pose estimates are integrated with IMU measurements
for autonomous navigation based on Visual-Inertial Odometry in [18], also showing a
landing spot detection technique achieving an accuracy better than 10 cm.

The adoption of vision-aided navigation solutions has been studied also for larger
rotorcraft in the UAM landing framework. In [19], a vision-only method is presented
based on the autonomous detection of an H-shaped landing site in the last 25 m of the
VL trajectory of a VTOL aircraft, providing position estimates with an accuracy of 1.5 m.
Another study extends the vision-based pose estimation approach to the initial part of the
approach phase, through the integration in an Extended Kalman Filter (EKF) of the IMU
measurements and the pose estimates computed recognizing a pattern of lights placed in
the surroundings of the landing pad [20]. However, the approach trajectory with a constant
glide descent of 9◦ (similar to the procedures proposed by FAA [4,5,7]) considered in the
latter work might result not feasible in complex scenarios with high buildings in the area
around the landing pad, and the defined lights pattern (covering a 50 m-by-350 m area)
might not be integrable in urban scenarios which have a limited space available for the
vertiport area.

1.2. Paper Contribution

In this framework, this paper provides the following contributions:

• The definition of the visual sensor requirements needed to safely support these opera-
tions and increase the autonomy of the navigation architecture. Considering the case
of low visibility conditions, this corresponds to extending the sensing requirements of
Enhanced Visual Operations (EVO) to the new UAM scenarios.

• The implementation of a vision-aided, multi-sensor-based navigation architecture
which integrates the measurements of an IMU, a standalone GNSS receiver, and
a monocular camera. A multi-mode data fusion pipeline based on an EKF is de-
signed, which takes the distance from the landing area into account and adopts ad hoc
strategies to self-estimate navigation performance degradation and improve integrity,
protecting the navigation solution and consequently the overall landing procedure
from visual sensing anomalies.

• Performance assessment of the proposed architecture is conducted within a highly
realistic simulation environment in which sensor measurements are realistically repro-
duced, analysing day/night scenarios in both nominal and low visibility conditions.
Given the stringent safety requirements of UAM operations, the scope of this analysis
is to understand how the developed logic and processing pipeline work in degraded
conditions, and which are the applicability limits of the developed concepts.

The next Section defines the requirements to adopt vision sensors to complement/substitute
the pilot role in approach and landing phases. The requirements will be defined based
on aspects such as the assumed approach trajectory, the dimensions of the landing pad
and the aerodynamic constraints which influence the aircraft path in case of wind fields.
Section 3 will present the proposed navigation architecture, and the visual pose estimation
algorithm selected. Section 4 describes the customized simulation environment designed
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to test the navigation architecture. Section 5 presents the results of simulations conducted
to validate the proposed architecture and analyse the performance under highly variable
visibility conditions. Finally, conclusions are reported in Section 6.

2. Visual Sensor Requirements in UAM Landing Scenarios

Visual sensors can be installed on VTOL platforms to support navigation and control
functions which are usually relegated to the onboard pilot. In the approach and landing
phases, the collected camera frames can be processed to detect and track the landing pad,
and estimate the vehicle relative position. While visual sensors can also be used to provide
Sense and Avoid capabilities with respect to fixed and moving obstacles, the following
analysis does not address these issues and focuses on navigation and control needs in the
terminal flight phases.

2.1. Assumptions

A preliminary literature analysis relevant to approach and landing operations in UAM
scenarios is conducted to quantify the vision sensor’s requirements as a function of the
possible aspects that might influence them. Three main features are addressed: approach
and landing trajectories; landing pad dimensions; wind field effects.

Regarding the first point, the literature reported in Section 1 shows that there are two
different Concepts of Operations that can be selected. The choice between a constant glide
path and a vertical approach path has an impact on visual sensor requirements such as the
camera mounting configuration and Field of View (FOV). As reported by the EASA [3],
VTOL aircraft may need to be equipped with ad hoc sensing systems, e.g., cameras, to
safely perform vertical take-off and VL procedures without losing the visual cues needed
by the pilot in these phases. In this paper, as in most of the recent literature, the focus is set
on VL approaches, and the considered trajectories are the 3-stepped approach path and
the VTCA. As it happens for helicopter Point in Space (PinS) operations, a clear definition
of the “visual flight phase”, in which the visual contact with the landing pad must be
established, is also needed in these approach procedures. The Transition Point to the Visual
Flight phase (TPVF) (Figure 1) is placed at 350 m distance from the vertiport, which is
consistent with the performance of the autonomous vision-based algorithm for landing pad
detection and pose estimation reported is Section 5. The heights of the defined transition
points are conformal to the minimum height (Decision Height at minimum 250 ft) required
to obtain Visual Meteorological Conditions in current helicopter PinS procedures [21].
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With regards to the second point, the following areas can be defined around the
landing pad, extending the regulations from the heliport design literature [3,5,22].

• Touch-down and Lift-off Area (TLOF), i.e., the load bearing surface on which the
aircraft lands and/or takes off. Its minimum length and width should be at least
equal to the distance between the two outermost edges of the vehicle according to
the FAA [5] or to the diameter of the smallest circle enclosing the VTOL aircraft
projection on a horizontal plane, as stated by the EASA [3] for elevated TLOFs. The
TLOF can be designed to be rectangular or circular. According to the FAA, different
advantages are provided by the two design choices. A rectangular TLOF provides
better guidance for the pilot, while a circular TLOF may result more visible in an urban
environment. The TLOF is assumed with a diameter of 12.2 m (40 ft) [7], coherently
with the dimensions of the main VTOL prototypes, which are foreseen to be certified
for UAM procedures [23].

• Final Approach and Take-off Area (FATO), which is centred around every TLOF area.
This area represents the surface where VTOL aircraft complete the final phase of
the approach to a hover or a landing. It is assumed that the minimum horizontal
dimensions of this area are 1.5 times the minimum diameter of the circle enclosing the
VTOL aircraft projection [3]. A more conservative definition of the FATO dimensions
is provided by the FAA [5], assuming twice the distance between the vehicle’s two
outermost edges.

• Safety Area (SA), which is defined on a heliport surrounding the FATO to reduce the
risk of accidents for aircraft inadvertently diverging from the FATO.

The dimensions of the landing pad (i.e., the TLOF) impact both the required sensors’
FOV and resolution to keep the landing point clearly defined in the imagery during the
visual phase of the vertical landing path.

Finally, aiming to define the safety requirements to adopt vision sensors in UAM
approach and landing scenarios, an important role is given to urban wind field effects.

The risk for vehicles to encounter wind gusts in urban environments with high levels
of turbulence is increased with respect to nominal high-altitude operations. In the prox-
imity of extended high-rise buildings, VTOL aircraft flights might be affected by sudden
wind gusts generated by the interaction of the turbulent airflow with the buildings [24].
The evaluation of the vehicle reaction to urban gusts, both with a pilot in command or
an onboard autonomous guidance system, allows understanding if there is the risk to
overcome the Required Obstacle Clearance (ROC) limits. The required vision sensor FOV
has to consider these effects to maintain the visual contact with the landing pad during
the whole approach and landing procedure to avoid the necessity to perform a MAP. A
preliminary assessment of the effects of low altitude urban gusts on UAVs has been reported
by Galway et al. [25], although focused on UAVs lighter than the vehicles that are predicted
to be operative in UAM scenarios, estimating parameters such as the maximum attitude
oscillations that the rotorcraft can experience in this situation (i.e., ±15◦ yaw and ±5◦ pitch
for 8 kt background wind).

Moreover, wind fields determine the capability of safely taking off and landing along
predefined directions, impacting VTOL aircraft dynamics, and inducing to impose con-
straints for approval of vertiport operations. These wind-related constraints are quantified
for UAM scenarios by Zelinski [26] based on the experience of helicopter pilots:

1. Rotorcraft should not attempt approach and departure operations with a tailwind,
which can cause the aircraft to enter into VRS conditions.

2. Rotorcraft should not attempt approach or departure operations with a crosswind
greater than 15 knots.

These two constraints define the availability of vertiport TLOF pads according to
the wind conditions, leading to the necessity to provide real-time estimates of the urban
microclimates [1] and pre-schedule multiple paths according to the wind direction for
single-pad vertiports. The VTOL aircraft during the departure and landing phases could
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be forced to maintain an attitude profile (changing the vehicle heading) to ensure that
the relative wind speed is kept within the defined constraints while flying the standard
trajectories. In that case, the possibility to perform an approach without exactly pointing
the vertiport is a factor to be considered in the definition of vision sensor requirements in
terms of FOV selection.

2.2. Requirements

A preliminary definition of the vision system requirements needed to reproduce pilot
functions during approach and landing procedures can be obtained through the previous
assumptions and the following considerations.

• Camera mounting configuration and FOV. For the considered type of approach trajec-
tory, the camera must be mounted with an off-nadir pointing configuration. Moreover,
different constraints can be identified on the field of regard to be monitored in the
directions transversal and parallel to the velocity projection on the local horizontal
plane, which determine different requirements for the camera horizontal and vertical
FOV, respectively. Among the various impacting factors, the dimension of the landing
pad and the wind direction and intensity play a crucial role. The minimum camera
Horizontal FOV (HFOV) is defined to maintain visual contact with the TLOF area
in the case of approaches in crosswind conditions producing a maximum heading
deviation of 25◦, and to exclude the risk of visual contact loss due to wind gusts
causing a maximum heading oscillation of 15◦ of amplitude (as in [25]). Clearly, this
implies that the landing procedure should be aborted if these conditions cause larger
deviations from the nominal path. Consequently, using a worst-case approach, the
resulting minimum HFOV is 80◦ (i.e., ±40◦). The minimum camera Vertical FOV
(VFOV) is estimated to maintain the landing pad in view during the visual flight
phase of both the approach trajectories, considering the possibility of pitch oscillations
(assuming max. ±5◦ as in [25]). The landing pad must be visible in the vision sensor
imagery when the VTOL is in the final vertical descent above the vertiport and in each
other point of the trajectories. Considering both the trajectories, the last holding circle
of the VTCA is the point with the lower ratio between relative height and horizontal
distance from the landing pad. The minimum VFOV required is defined through the
comparison of the VFOV needed in this point to detect the landing pad and the value
needed with the same camera mounting configuration during a vertical descent. It
can be estimated by applying the pinhole camera model under perspective projection
geometry, as in:

VFOV = 2 × tan−1
(

Lv
2 ∗ h

)
(1)

where Lv is the maximum horizontal distance from the landing pad, while h is the
vertical distance from the landing pad (Figure 2). Since h is 90 m while Lv can be
computed as in:

Lv = a +
TLOF

2
(2)

where a, i.e., the horizontal distance from the centre of the landing pad, is equal to
86.1 m while TLOF is 12.2 m, the minimum required VFOV would be 54.2◦. There-
fore, the required VFOV shall be at least 60◦ to consider also the assumed potential
pitch oscillations. The simulations reported in Section 5 demonstrate that a cam-
era with the above-defined FOV applied mounted with 20◦ pitch deflection from
the nadir can provide a continuous visual contact with the landing pad in both the
approach trajectories.
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• Sensor resolution. Assuming the landing pad detection as the main objective of the
selected camera to support the approach phase, the required sensor resolution will
be strongly dependent on the ground infrastructure installed on it. Considering the
previously reported TLOF dimensions (12.2 m × 12.2 m), a value of 0.05◦ Instantaneous
Field of View (IFOV) leads to cover the area of interest with more than 1400 pixels at the
TPVF defined along the approach trajectories. As better highlighted by the numerical
simulation results shown in Section 5, this value results in being sufficient to accurately
extract a fiducial marker placed in correspondence of the TLOF and visible in the
whole approach trajectory, as well as to ensure an acceptable pose estimation accuracy.

• Refresh rate. The image frames shall be refreshed at least at 15 Hz, considering the
nominal frame rates adopted in the vision-aided navigation sensor literature (20 Hz is
tested in [14,16,17]) and the minimum 15 Hz value requested in nominal helicopter
synthetic/enhanced/combined vision operations to runways [27]. Assuming a value
of 25 m/s (90 km/h) for the maximum VTOL velocity as reported by the Volocopter
VoloCity specification [23], the platform would travel a distance of about 1.56 m
between two consecutive frame acquisitions. On the other hand, a higher refresh rate
might be required in different applications which are characterized by higher platform
speeds, for example the preliminary proof of concept of the eXternal Vision Systems
(XVS) designed to support future supersonic operations providing real-time imagery
in each flight phase assumes a camera frame rate of 60 Hz [28].

• System latency. A value of 100 m s is the maximum value considered acceptable in case
of synthetic images presented to the pilot in rotorcraft landing operations [29]. This
latency can be assumed as the threshold in these applications, including in the 100 m s
value the latencies of the image processing and any sensor fusion phases. The assumed
latency would lead the VTOL platform to fly 2.5 m between the frame acquisition and
the end of its processing in the worst case of maximum flight speed assumed as before.
Higher latency times might introduce the risk of pilot/autopilot oscillations.

Table 1 summarizes the defined vision sensor requirements.
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Table 1. Summary of the estimated requirements to implement vision sensors in UAM approach and
landing scenarios.

Vision Sensor Parameter Required Value

Field of View 80◦ × 60◦

Instantaneous Field of View 0.05◦

Refresh rate 15 Hz
Maximum system latency 100 ms

3. Vision-Aided Navigation Architecture

As stated before, the previously defined camera requirements provide a continuous
visual contact with the landing pad in the vertical approach trajectory. The acquired frames
can be processed through vision-based algorithms to estimate the pose of the VTOL aircraft
with respect to the landing pad. These pose measurements can then be fed into a filtering
scheme according to a loosely coupled configuration.

The implemented navigation filter is based on a complementary EKF which estimates
the state error vector based on the processing structure presented in [30], with the filter
correction step relying on position estimates from both the GNSS and the visual algorithms.
The navigation state components components are the Euler angles ψ, θ, ϕ, the velocity vN ,
vE, vD and the position components in North East Down coordinates with respect to the
landing pad. The inertial navigation equations allow the propagation of the above-defined
state vector. The integration of the visual-based pose estimation block in a closed-loop
EKF architecture (Figure 3) provides remarkable advantages to the navigation performance
during the approach flight phase.
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The main features of the architecture are reported below:

1. The prediction step of the filter allows coping with the lower update rate of visual-
based and GNSS-based measurements with respect to the inertial sensors data rate,
thus ensuring valid initial guesses to the vision-based iterative pose estimation algorithm.

2. The correction step of the filter in the approach phase trusts visual estimates and
GNSS measurements for position data (Figure 4). Only the estimates provided by the
standalone GNSS receiver are used in the first phase of the approach, when the high
distances from the landing pad prevent from obtaining accurate markers’ detection,
thus leading to coarse visual-based pose measurements. However, in this part of
the approach path, the landing pad is already searched and tracked by the visual
algorithm, thus being able to initialize the pose estimation process. Once the previ-
ously identified distance threshold from the landing pad (i.e., the TPVF) is reached,
visual-based pose measurements are fed to the filter correction step. Specifically,
in this second part of the approach, a multi-sensor correction step is implemented
following the cascaded single-epoch integration model [30], combining both GNSS
and visual sensor estimates. This scheme allows us to cross-check the integrity of
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GNSS measurements, which in urban scenarios might be affected at low altitudes
by failures due to signal multipath or non-line-of-sight (NLOS) receiver [31]. The
implemented logic accepts only GNSS position measurements that are included in the
3-sigma bounds defined over the corresponding filter position prediction through the
uncertainties of the prediction and the measurement.

3. Navigation performance is monitored at each time step through the control of the
estimated position uncertainty of the EKF. To improve integrity, a failure detection
logic verifies if the visual-based pose estimates are acceptable comparing the pose
estimation residuals with a threshold. Thanks to this process, if the pose estimated
from a specific image frame is deemed unreliable, it is not fed to the EKF correction
step, thus not contributing to the reduction of EKF position error covariance. In a
similar way, a missed detection of the landing pad in the image frame (e.g., due to
unfavorable visibility conditions or to obstacles) does not provide visual position
estimates. When the estimated navigation uncertainty, as expressed by the covariance
matrix of the filter, reaches a threshold which is deemed not compatible with a safe
landing procedure, a contingency event is generated with consequent activation
of a MAP. As concerns the definition of the error thresholds for MAP activation,
different approaches are possible which are all linked to the entries of the covariance
matrix. As an example, within an ILS-like perspective, constant lateral and glide-slope
deviation thresholds in degrees can be considered, and positioning uncertainties
can be converted into angular deviations by taking the distance to the landing pad
into account. For the sake of concreteness, in this work the threshold is set on the
three-dimensional positioning uncertainty computed as the square root of the sum
of the diagonal entries of the covariance matrix relevant to aircraft positioning. The
threshold is assumed to have a linear dependence on the distance to the vertiport,
which is consistent with the idea of a constant threshold for the angular errors. This
choice is also in line with typical performance of visual sensors capable of providing
improved position accuracy at reducing range. Since the logic adopted for MAP
activation is based on the positioning uncertainty, the system behaviour is strongly
affected by the characteristics of the inertial sensors. In fact, enhanced resilience
with respect to visual challenges is provided by architectures, integrating higher
performance inertial sensors which allow slower divergence of positioning errors.
This is modelled by the smaller process noise matrix adopted in the navigation filter. It
is worth noting that this is a navigation-induced MAP activation logic. In closed-loop
autonomous landing operations, a MAP may also be activated by excessive control
errors. These aspects are beyond the scope of this paper as the focus here is placed
on perception and estimation aspects. In general, a sufficient battery charge must be
available on electric VTOL aircraft to successfully cancel the landing procedure and
divert to an alternate vertiport [32]. It is assumed that the possibility to perform a
MAP shall be dependent on the VTOL aerodynamic performance and the scenario
surrounding the vertiport, influencing the minimum distance from the landing pad at
which it will be possible to safely cancel the landing procedure observing the ROC
minima. Such distance corresponds to the Landing Decision Point defined by the
EASA [3] and is assumed equal to 100 m in this work.

Visual-Based Pose Estimation

The role of the camera processing block within the above-defined architecture (in
Figure 3) is to provide accurate estimates of the relative position of the VTOL aircraft with
respect to the landing pad (Figure 5).
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Firstly, the collected image frames are processed to correctly detect and identify the
fiducial markers placed in correspondence to the landing pad. To detect the markers, a
region of interest is identified in each acquired frame, reprojecting the real coordinates xWRF
of the markers in the Camera Reference Frame (CRF) through the VTOL aircraft position
pWRF and orientation estimated at each prediction step by the filter. The orientation
provided by the EKF is adopted to compute the rotation matrix

=
m321 from WRF to CRF

needed to calculate the markers coordinates xCRF at the single frame, as in:

xCRF =
=
m321 × (xWRF − pWRF) (3)
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In that way, the image area to be processed to extract the markers of interest is reduced
to a specific window containing all the estimated reprojections at each frame. The following
markers (Figure 6) are selected in our study:

• AprilTag (AT) fiducial markers for daylight operations. A first AT marker occupying
the TLOF area is placed on the landing pad to allow the pose estimation process at large
distances, while 6 smaller ATs are adopted to maintain enough markers detectable
in proximity of the landing pad. The smaller ATs are inserted into the first one thus
not affecting the total landing pad dimension. The detection and identification of the
AT markers is carried out exploiting the procedure presented in [33], implemented in
MATLAB by the readAprilTag function.

• A pattern of lights for night scenarios respecting the FAA normative on heliport
lighting [4] and the EASA specifications for vertiport design [3], including only the
green flush lights placed in the FATO and TLOF areas to reduce the area occupied.
The introduction of five white lights inside the TLOF area allows keeping reliable
visual pose estimates in the last meters of the landing trajectory (similarly to the
function of the 6 smaller ATs). Each light is identified minimizing the sum of the
differences between the 2D coordinates of the green and white lights detected in the
region of interest and the reprojection of the pattern’s real coordinates in the image
plane. The defined Global Nearest Neighbour identification problem is solved by the
Jonker-Volgenant [34] algorithm implemented in MATLAB by the assignkbest function.
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Following the image processing and markers identification algorithms, the VTOL
aircraft pose is estimated from the computed set of 2D–3D correspondences solving the
Perspective-n-Point (PnP) problem. The selected technique for the solution of the PnP
problem is a custom implementation of the iterative Levenberg–Marquardt (LM) algorithm,
according to the formulation proposed by Gavin [35]. This solver receives a tentative
pose guess in input, and iteratively minimizes the corner reprojection errors through least
squares. The integration of the LM in the EKF permits to maintain accurate first guesses
provided by the propagation of filter prediction through the IMU measurements. In that
way, the iterative algorithm results are almost not influenced by sudden pose changes,
providing fast and accurate pose estimates given in input to the EKF in the correction step
with the related covariance. These covariance estimates are computed as in [36] through
the Hessian matrix of the process, calculated from the Jacobian matrix J(x) of the 2D input
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coordinates xi transformation and uploaded in each iteration of the LM algorithm. The

Hessian matrix
=
A is estimated as in:

=
A = ∑i(JT(xi)× J(xi)) (4)

and covariance matrix
=
Σ is estimated through:

=
Σ = σ2

n ×
=
A
−1

(5)

where σ2
n is the variance of the additive Gaussian noise, related to the pixel-level uncertainty

in the detection of to the fiducial markers on the image plane.

4. Simulation Environment

This Section introduces the simulation environment which has been developed to
test the performance of the proposed navigation filter. The Portland heliport and its
surroundings have been recreated in the gaming simulation environment Unreal Engine
(UE) 4 to reproduce a potential scenario that might be selected for future flight test activities
(Figure 7). The area covered by the reproduced scenario is 2 km × 2 km, which is considered
adequate to analyse each phase of the simulated landing trajectories (Figure 1). The height
above the terrain of the heliport selected for the landings is 24 m.
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UE 4 permits to customize the scene model, through the introduction of fiducial
markers or light patterns in correspondence of the selected landing site (see Figure 6).
Moreover, the same simulation environment can be visualized changing the sun position in
the sky sphere, emulating day/night/dusk conditions (Figure 8a), and weather conditions,
e.g., adding fog (Figure 8b) or rain.

The MATLAB/Simulink UAV Toolbox allows the simulation of a rotorcraft flying in
this UE scene with the sensors of interest installed on board. The adopted Simulink model
(Figure 9) allows the control of the following aspects.
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• The 3D scenario where the UAV flies, with the possibility to customize it through
the interaction with UE changing weather and illumination parameters (as the Sun
altitude and azimuth, the fog density, the cloud density, and speed). Furthermore,
other UAVs flying in the scenario can be introduced, e.g., enabling the simulation
of Sense and Avoid functionalities. Another effect on the scenario is given by the
shadows of the simulated UAVs.

• The trajectory of the UAVs introduced in the scenario. It is worth noting that the simu-
lated approach paths are the ideal ones reported in Section 5. Hence, the navigation
estimates are not used to correct potential deviations from the ideal path through
feedback control. At the moment, the effect of residual control errors is emulated
through sinusoidal orientation and translation deviations of the ideal trajectory, while
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the effective introduction of feedback control in the trajectory simulations will be
tacked in future applications.

• The parameters of the sensors installed on the rotorcraft, with the possibility to select
nominal camera, fisheye camera, and LIDAR.

The specifications of the selected sensors are reported in Table 2. The GNSS receiver
and the IMU are simulated through Matlab functions which receive in input the specifica-
tions reported in Table 2 and the imposed UAV trajectory. The GNSS’ position estimates
and IMU’s accelerations and angular velocities estimates obtained in this way are randomly
generated at each simulation respecting the assumed sensor properties. To simulate the
acquired image frames, a video of the UAV flying in the selected scenario is recorded and
subsequently converted into the single image frames.

Table 2. Specifications of the simulated sensors.

Simulated Sensor Specifications Selected Value

Camera

Focal length (pixels) (1109, 1109)

Principal point coordinates (pixels) (808, 640)

Image size (pixels)
Sample frequency

Off-nadir angle

(1280, 1616)
15 Hz
20 deg

GNSS receiver
GNSS Position Standard

Deviation 2.5 m Horizontal–5 m Vertical

Sample frequency 1 Hz

IMU

Sample Frequency 200 Hz

Gyroscopes Angular Random Walk (ARW) 0.05 deg/sqrt(h)

Gyroscopes Bias Instability (BI) 0.6 deg/h

Accelerometers Velocity Random Walk (VRW)
Accelerometers Bias Instability (ABI)

0.6 m/s/sqrt(h)
0.50 mg

5. Results
5.1. Visual-Based Pose Estimation Performance

Firstly, the performance of the implemented camera processing block has been tested to
determine the accuracy of the position estimates provided by the LM algorithm. Figure 10
reports the positioning errors of the LM algorithm computed over 50 simulations of the
same VTCA landing trajectory at daylight in nominal visibility conditions. The variability
characterizing the simulations for this test case and the following ones is relative to the
generation of IMU and GNSS measurements which are affected by random noise sources.
The obtained errors confirm that a distance of 350 m can be assumed for the TPVF defined
in Section 2, in which the filter correction step can include position estimates from the
visual algorithm.

5.2. EKF Performance

The following test cases have been selected to validate the previously introduced
filter architecture.

• Daylight: VTCA and 3-stepped trajectories assuming small attitude oscillations of the
rotorcraft (maximum 0.1◦ difference from ideal orientation) to consider its limits in
the attitude control capabilities. These scenarios can be used to assess the nominal
EKF accuracy.

• Perturbed: VTCA and 3-stepped trajectories assuming larger disturbances applied to
the ideal paths (i.e., 0.2 m horizontal displacement and 5◦ attitude at 1 Hz frequency) to
prove the robustness of the vision-aided architecture to significant oscillations caused
by atmospheric disturbances.
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• Night: VTCA and 3-stepped trajectories in case of night scenario to prove the archi-
tecture’s effectiveness in case the pose estimation process relies on the detection of a
pattern of lights instead of the AT markers suitable for day-light scenarios.

• Low visibility: VTCA trajectory in case of uniform fog to evaluate architecture’s ro-
bustness in non-ideal visibility conditions. The AT detections have been reported as
a function of the distance from the landing pad, so the same considerations can be
applied to the 3-stepped trajectory as well.

• MAP activation: VTCA trajectory in case of local fog banks along the trajectory to test
the effective autonomous activation of a MAP.
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Figure 10. LM position estimates errors average over 50 simulations and 3−sigma bounds. VTCA
landing trajectory in nominal visibility conditions. The plot scale is increased in the last 150 m to
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the landing pad is the selected threshold for TPVF.

The trajectory simulated in each test case has a duration of 80 s. In the last three cases,
the same disturbance level as in the Daylight case has been considered. Results of each test
case are reported through statistical analysis of the filter outputs estimated for multiple
repetitions of the selected trajectory to consider the random noise, characterizing IMU and
GNSS measurements.

5.2.1. Daylight

Figures 11 and 12 show the EKF positioning error for the VTCA and the 3-stepped
landing trajectories, while the positioning error statistics evaluated in different segments of
the paths are reported in Table 3 as a function of the reducing distance from the landing pad.

The previous plots and the table show that the EKF accuracy in position estimation
is dependent on the navigation sensor used in the correction step. The first phase of the
approaches, until 350 distance from the landing pad, is influenced by the accuracy of
the nominal GNSS receiver selected for the simulations. On the other side, starting from
the TPVF, the variance of the filter error gradually decreases until reaching maximum
positioning errors of 40 cm in the last 100 m of both the trajectories. The performance is
comparable for the two trajectories.
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last 150 m to better show the errors in the final phase of the approach.
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Table 3. Mean (µ) and standard deviation (σ) over 50 simulations of the EKF position estimates errors
computed along different sections of the trajectories in nominal visibility conditions.

Trajectory Parameter 550–350 m 350–200 m 200–100 m 100–20 m 20–0 m

VTCA

µx (m) 0.052 0.495 0.096 0.042 0.001
σx (m) 2.499 0.564 0.214 0.060 0.009
µy (m) −0.032 0.257 0.134 0.049 0.007
σy (m) 2.291 0.376 0.035 0.021 0.011
µz (m) 1.147 2.291 0.367 0.110 0.026
σz (m) 5.286 1.551 0.427 0.073 0.022

3-stepped

µx (m) 0.178 0.076 −0.113 −0.037 −0.003
σx (m) 2.355 0.287 0.069 0.023 0.023
µy (m) −0.671 0.239 0.146 0.060 0.009
σy (m) 2.220 0.218 0.074 0.025 0.030
µz (m) −0.095 0.507 0.283 0.069 0.036
σz (m) 5.030 0.506 0.374 0.036 0.043

5.2.2. Perturbed

Figures 13 and 14 show the average and 3-sigma bounds computed over 50 simulations
of the 2 disturbed trajectories. Table 4 summarizes the statistics of the positioning errors.
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Figure 13. EKF position estimates errors average over 50 simulations and 3−sigma bounds. VTCA
landing trajectory in nominal visibility conditions with disturbances applied to the path. The plot
scale is increased in the last 150 m to better show the errors in the final phase of the approach.

The results highlight the robustness of the implemented EKF to trajectory disturbances
that might be caused by wind fields in the area around the vertiport. The translation and
orientation oscillations of the aircraft are sensed by the IMU, maintaining accurate the
results of the EKF prediction step which are used to provide first guesses to the visual
pose estimation algorithm. This results in filter positioning errors comparable with the
undisturbed trajectories as shown in Table 4. Figures 13 and 14 also confirm that the
position estimates are not considerably influenced by the oscillations if compared to the
undisturbed case of Figures 11 and 12.
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Figure 14. EKF position estimates errors average over 50 simulations and 3−sigma bounds.
3−stepped landing trajectory in nominal visibility conditions with disturbances applied to the
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Table 4. Mean (µ) and standard deviation (σ) over 50 simulations of the EKF position estimates errors
computed along different sections of the disturbed trajectories in nominal visibility conditions.

Trajectory Parameter 550–350 m 350–200 m 200–100 m 100–20 m 20–0 m

VTCA

µx (m) −0.375 0.584 0.160 0.024 0.010
σx (m) 2.193 0.507 0.101 0.052 0.041
µy (m) 0.067 0.235 0.116 0.044 0.024
σy (m) 2.195 0.354 0.081 0.043 0.044
µz (m) −0.352 2.371 0.449 0.101 0.025
σz (m) 4.707 1.022 0.310 0.082 0.059

3-stepped

µx (m) −0.386 −0.033 −0.137 −0.050 0.001
σx (m) 2.411 0.300 0.107 0.034 0.064
µy (m) −0.110 0.148 0.115 0.046 0.019
σy (m) 2.452 0.255 0.150 0.044 0.082
µz (m) 0.816 0.346 0.345 0.081 0.065
σz (m) 5.246 0.622 0.229 0.050 0.097

5.2.3. Night

The errors in this scenario are conformal to those achieved in the daylight ones.
Figures 15 and 16 show the EKF positioning error for both the VTCA and the 3-stepped
landing trajectory, while in Table 5 the positioning error statistics evaluated in different
segments of the paths are reported.
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Figure 15. EKF position estimates errors average over 50 simulations and 3−sigma bounds. VTCA
landing trajectory at night-time. The plot scale is increased in the last 150 m to better show the errors
in the final phase of the approach.
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Figure 16. EKF position estimates errors average over 50 simulations and 3−sigma bounds.
3−stepped landing trajectory at night-time. The plot scale is increased in the last 150 m to bet-
ter show the errors in the final phase of the approach.

The plots and the statistics of the error verify that the different detection technique
adopted by the vision algorithm does not affect the accuracy and precision of the EKF
position estimates.
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Table 5. Mean (µ) and standard deviation (σ) over 50 simulations of the EKF position estimates errors
computed along different sections of the trajectories at night-time.

Trajectory Parameter 550–350 m 350–200 m 200–100 m 100–20 m 20–0 m

VTCA

µx (m) 0.235 −0.067 −0.042 −0.015 −0.002
σx (m) 2.413 0.448 0.034 0.019 0.013
µy (m) −0.402 0.126 0.067 0.025 0.009
σy (m) 2.451 0.358 0.026 0.014 0.012
µz (m) 0.618 0.160 0.027 0.019 0.015
σz (m) 5.074 1.073 0.048 0.023 0.019

3-stepped

µx (m) 0.192 −0.083 −0.063 −0.020 −0.005
σx (m) 2.719 0.261 0.169 0.028 0.018
µy (m) −0.436 0.118 0.070 0.029 0.012
σy (m) 2.658 0.240 0.074 0.022 0.015
µz (m) 0.668 0.032 0.206 0.109 0.023
σz (m) 4.599 0.522 0.229 0.052 0.029

5.2.4. Low Visibility

As anticipated before, the EKF architecture has also been tested for low visibility
scenarios with the aim to check the robustness of the navigation architecture in challenging
visual conditions and prove the autonomous initialization of balked landing procedures in
case of failures and anomalies in the landing pad visual tracking algorithm. The first test
case introduces a uniform fog in the daylight scenario, reproducing maximum meteoro-
logical visibility of 500 m (Figure 17). This parameter represents the distance at which the
landing pad is clearly detected by the image processing algorithm (similarly to the Runway
Visual Range adopted for the approval of the aircraft’s final approach phase). Consequently,
it is not a setting parameter characterizing the creation of the simulation scenario within
Unreal Engine, but rather it has been a-posteriori evaluated. Clearly, by modifying the
fog parameters (such as density and speed), the maximum meteorological visibility can be
indirectly changed.
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maximum meteorological visibility of 500 m).

In this case, the vision algorithm does not detect the AT marker placed on the landing
pad at the initialization of the approach procedure. However, in this case, the postponed
marker recognition does not affect the accuracy of the filter position estimates at the
transition to the visual flight phase and later in the approach, since the visual algorithm
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needs few image frames to be correctly initialized and the implemented EKF correction
step relies only on GNSS estimates until the selected distance of 350 m. In case of worse
meteorological visibility conditions not allowing the markers to be recognized at 350 m
distance, the implemented EKF would autonomously impose a MAP when the estimated
covariance of the EKF reaches the imposed threshold. The positioning errors in meters are
almost identical to the previous cases and are thus not reported. Indeed, it is interesting to
analyze the image processing error, i.e., the error in extracting the corners from the images,
to verify if and how it is affected by the degraded visibility conditions. This is done in
Figure 18, which reports the difference between the positions of the corners recognized by
the image processing algorithm and their reprojections estimated through the true markers’
pose in both the daylight (a) and the low-visibility test case (b). The fact that the detection
error (i.e., image processing error) has the same order of magnitude in both the cases
explains why the resulting positioning errors are similar. Figure 19 reports the difference
in the four detected AT corners’ coordinates in the image frames between the nominal
visibility case and the introduced low-visibility case.
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Figure 18. (a) Daylight: difference between the positions of the corners recognized by the
image processing algorithm and their reprojections estimated through the true markers’ pose;
(b) Low−visibility: difference between the positions of the corners recognized by the image pro-
cessing algorithm and their reprojections estimated through the true markers’ pose. Corners’ legend
is referred to the biggest marker of Figure 6a.

The resulting difference in the AT detections shows that the fog influences the detection
accuracy only in the first frames in which the marker is recognized. The low mean and
standard deviation of the computed difference confirm that the marker coordinates detected
in this case do not considerably affect the following PnP pose estimation process. To confirm
that these observations are valid when varying the perturbations applied to the landing
trajectory, a VTCA approach with the oscillations introduced in the Perturbed case has been
simulated in the same low-visibility scenario (Figure 17). Figure 20 reports the resulting
difference of the four detected AT corners’ coordinates in the image frames in the introduced
Perturbed case between low-visibility and nominal visibility conditions. Again, the fact that
the image processing performance is weakly affected by the degraded visibility conditions
justifies that positioning errors also have a similar level in the Perturbed/low visibility
test case.
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5.2.5. MAP Activation

The MAP activation case tests the effect on the vision-aided filter architecture of the
introduction of local fog banks, fully occulting the landing pad, within the previous uniform
fog (Figure 21).
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Figure 21. UE4 reproduction of Portland heliport and its surroundings with local fog banks.

In this scenario, failures of the visual detection of the AT fiducial markers occur
during the approach phase. This induces an increase of the EKF estimated covariance. The
approach procedure is effectively interrupted when the positioning uncertainty estimated,
as explained in Section 3, reaches the imposed threshold, which linearly decreases from
10 m at the TPVF and 0.2 m in correspondence of the landing pad. Figure 22 shows the
defined threshold, the three-dimensional positioning uncertainty as extracted from the EKF
covariance matrix, and the effective activation of a MAP after an increase of this value due
to the missed detections of the landing pad. When the VTOL reaches a distance of about
184 m, the landing pad in not detected anymore, so that the correction step cannot trust
LM-based pose estimate.
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6. Conclusions

In this paper, an analysis of the requirements to adopt vision sensors in UAM vertical
landing procedures, and a vision-aided multi-sensor navigation architecture tailored for
these scenarios, have been presented. Two vertical landing trajectories defined within the
UAM literature have been considered in the study, however the requirements and the
vision-aided filter could be adapted to other possible trajectories.

The estimated sensing requirements prove that the currently available vision sen-
sors have a technological level which can support piloted/autonomous vertical landing
procedures to vertiports.

As concerns the proposed navigation algorithm, the conducted simulations prove its
accuracy and robustness in non-nominal conditions. In fact, remarkable accuracy of position
estimates (maximum errors of 40 cm in the last 100 m of the considered trajectories) is
provided by the EKF architecture, considering significant disturbances applied to the ideal
paths. Furthermore, the same performance has been demonstrated simulating approaches
to the same vertiport at night-time, requiring the detection of a pattern of lights instead of
the AT fiducial marker adopted for nominal illumination scenes. In non-nominal visibility
conditions, the vision algorithm has shown accurate tracking of the AT marker once the
landing pad is recognized, maintaining accurate pose estimates in the flight phase relying
on visual pose estimates. Otherwise, it has been demonstrated that a MAP procedure can be
autonomously initialized if the marker is not detectable in the images and the self-estimated
positioning uncertainty exceeds a fixed threshold, e.g., when the UAV flies in a fog bank.
Future research will be aimed at enhancing the multi-sensor-based navigation approach,
including other sensor technologies, focusing on the ground infrastructure required to
better support landing pad detection in complex urban scenarios, and moving towards
flight experimentation in controlled scenarios. Furthermore, future activities will tackle the
integration of the presented navigation logic with autonomous visual flight guidance and
closed-loop control functions.
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