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Abstract: The classification of vessel types in SAR imagery is of crucial importance for maritime
applications. However, the ability to use real SAR imagery for deep learning classification is limited,
due to the general lack of such data and/or the labor-intensive nature of labeling them. Simulating
SAR images can overcome these limitations, allowing the generation of an infinite number of datasets.
In this contribution, we present a synthetic SAR imagery dataset with ship wakes, which comprises
46,080 images for ten different real vessel models. The variety of simulation parameters includes
16 ship heading directions, 6 ship velocities, 8 wind directions, 2 wind velocities, and 3 incidence
angles. In addition, we extensively investigate the classification performance for noise-free, noisy,
and denoised ship wake scenes. We utilize the standard AlexNet architecture and employ training
from scratch. To achieve the best classification performance, we conduct Bayesian optimization to
determine hyperparameters. Results demonstrate that the classifications of vessel types based on
their SAR signatures are highly efficient, with maximum accuracies of 96.16%, 92.7%, and 93.59%,
when training using noise-free, noisy, and denoised datasets, respectively. Thus, we conclude that the
best strategy in practical applications should be to train convolutional neural networks on denoised
SAR datasets. The results show that the versatility of the SAR simulator can open up new horizons in
the application of machine learning to a variety of SAR platforms.

Keywords: SAR image; ship wake; deep learning; synthetic dataset

1. Introduction

Synthetic aperture radar (SAR) technologies have shown remarkable progress in recent
years and the availability of remotely sensed data of the sea surface is continuously growing.
Several spaceborne SAR missions (e.g., COSMO-SkyMed, TerraSAR-X, NovaSAR-1, ICEYE)
have developed a new generation of satellites exploiting SAR to provide spatial resolutions
that were previously unavailable. The corresponding SAR datasets are especially useful for
analyzing ship wakes, not only because of the high level of detail available but also because
of the lower satellite orbital altitude (e.g., in comparison to Sentinel-1), which decreases the
range-to-velocity (R/V) ratio—one of the key factors in SAR image degradation.

In addition, the application of artificial intelligence and machine learning (deep learn-
ing in particular) has also reached a significant level of maturity, with many methods having
been developed in the field of object detection, segmentation, and classification in remote
sensing images [1,2]. The main benefit of using SAR images, compared with other remote
sensing methods, is that they yield information for wide areas under challenging weather
conditions, day or night. Accurate analytics of SAR imagery is not only important in the
recognition of ships themselves, but also the detection and characterization of their wakes.
Although the visibility of ships is primarily enabled by strong radar signal backscattering,
they are not always present in SAR images, especially in images with lower SAR resolution
(e.g., Sentinel-1). Instead, the ship wake is the usual indicator of the ship presence, while
the ship position is also often shifted to some extent with respect to wake location as a
result of the Doppler effect.
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Ship wakes provide key information for the surveillance of maritime traffic (e.g., illegal
commercial activities) and are also useful in classifying the characteristics of the wake-
generating vessel and, hence, estimating the ship heading and velocity [3,4]. A detailed
description of the SAR wake imaging mechanism is presented in [5–7]. In addition, the
availability of automatic identification system (AIS) data enables the integration of such
information for machine learning development since it can constitute the ground-truth
for ship identification. The main issue is the limited availability of large amounts of both
types of data, which are the primary inputs required for building reliable training datasets.
The use of synthetic SAR imagery can fill this gap, providing a theoretically infinite set of
images for multiple sea conditions, ship models, and SAR platforms. It is important to
note that in this case, a priori simulation parameters substitute the need for AIS data. In
addition, this simplifies the laborious process of matching SAR images to the AIS data [8].

The earliest applications of deep learning for ship detection [9] and classification [10]
in SAR images were proposed only a few years ago. Thereafter, the main efforts of the
community have focused on the acquisition of real SAR datasets of ships and few of such
datasets have been presented [8,11–19]. However, it is important to note that most of
these datasets were created for detection tasks (some include segmentation) and only some
of them can be used for ship classification [8,12,13,18]. The first studies focusing on the
application of deep learning for the detection of ship wakes in SAR were ref. [20], where
detected ship wakes were used for ship velocities estimation, and [6], where a real SAR
dataset containing ship wakes was proposed. Recently, the concept of using simulated
SAR images of marine vehicles with wake patterns for deep learning applications was also
mentioned [21].

The main objective of our paper is to draw the attention of the research community to
the benefits of using synthetic SAR datasets for classification and detection tasks. The wake
system represents a unique signature for each individual ship. Nevertheless, attempting
the acquisition of all possible real SAR image variants for each ship would be a gargantuan
task, as many factors must be taken into account, such as different ship velocities and
different sea states. The use of an available and versatile SAR image simulator [7,22]
allows the generation of an unlimited number of different scenarios, overcoming these
limitations. Thus, in our work, for the first time, we present and make openly available
a synthetic dataset of SAR images containing ship wakes for classification purposes. It
includes 46,080 SAR images for ten different ship models. We also analyze for the first
time the best algorithm training strategy, by comparing the alternatives of using noise-free,
noisy, and denoised images for the ship identification task.

The communication is organized as follows: Section 2 presents the SAR imagery
modeling details and structure of the dataset and then describes the parameters of the
deep learning network that we employed. In Section 3, the classification results and
comparisons between different training strategies are discussed. A conclusion, with future
work directions and applications, is outlined in Section 4.

2. Materials and Methods

A complete description of the SAR imagery simulation methodology with all the
relevant mathematical details is available in [7], with the corresponding open-source
package (MATLAB) available via the University of Bristol Research Data Repository [22].

2.1. Ship Wake Modeling in SAR Imagery

A SAR image of a ship wake consists of two parts: wind- and ship-generated wave
components. They form the complete surface elevation model through their superposition
as Z = Zsea + Zship. The first part Zsea in turn is modeled based on the linear theory of
surface waves and includes a summation of many independent harmonic waves with
Rayleigh distributed amplitude A. The amplitude is based on sea wave spectrum S(k)
and directional spreading function D(k, θ). In this work, we used JONSWAP spectrum
SJ [23] with fetch size F = 20 km and Longuet-Higgins et al. cosine type spreading function
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DLH [24] with parameter S = 8. We utilized two wind velocities as Vw1 = 3 m/s and
Vw2 = 6 m/s. This choice follows from the fact that the Kelvin wake is best observed in
SAR images for a calm sea state (Vw ≤ 3 m/s) and cusp waves can still be observed at
relatively high wind velocities (6–10 m/s) [25]. We also selected eight different wind
directions: Dw1 = 0◦, Dw2 = 45◦, Dw3 = 90◦, Dw4 = 135◦, Dw5 = 180◦, Dw6 = 225◦, Dw7 = 270◦,
Dw8 = 315◦.

The second component of the SAR image, Zship, is modeled as a Kelvin wake and is
based on the Michell thin ship theory with its further approximated form of fluid velocity
potential described in [4,7]. Based on freely available information at www.marinetraffic.
com, we selected ten real ships (cargo, tanker, passenger vessel, high speed craft, fishing
vessel) and modeled them using the parameters shown in Table 1. Similar to the approach
taken for wind velocity, to account for factors influencing wake visualization, we limited
the minimum ship velocity to Vs1 = 5 m/s for all ship models. This is because a higher ship
velocity produces a better radar scattering as the wake signature. In addition, in [26], it
was shown that faster ships are more easily detectable in SAR images. In order to provide
balanced training samples for each ship, we equally interpolated ship velocities between
the minimum velocity Vs1 and maximum velocity Vs6 (unique for each ship) providing six
velocities per class (Table 1). This also ensures a greater difference between the velocities
for different ships and as a result, gives a greater diversity in wake signatures for all data.

Table 1. Vessel parameters used for simulating ship wakes.

Ship Type Length, m Beam, m Draft, m
Velocity, m/s

Vs1 Vs2 Vs3 Vs4 Vs5 Vs6

Cargo I 195 26 7.1 5 6.2 7.4 8.6 9.8 11
Cargo II 366 51 13.6 5 6.4 7.8 9.2 10.6 12
Tanker I 108 17 5.6 5 6 7 8 9 10
Tanker II 228 32 11 5 5.8 6.6 7.4 8.2 9

Passenger Vessel I 86 18 2.5 5 5.6 6.2 6.8 7.4 8
Passenger Vessel II 186 28 6.5 5 6.6 8.2 9.8 11.4 13
High Speed Craft I 100 17 2.5 5 7.8 10.6 13.4 16.2 19
High Speed Craft II 31 7 3.8 5 8 11 14 17 20

Fishing Vessel I 70 16 8 5 5.8 6.6 7.4 8.2 9
Fishing Vessel II 27 8 5.1 5 5.4 5.8 6.2 6.6 7

One of the most significant parameters influencing the SAR imaging of ship wakes is
the ship heading direction relative to the SAR platform flight direction. Indeed, depending
on the ship’s heading, waves of the Kelvin system may or may not be observable in the
SAR image. Therefore, we used a considerable number of ship heading directions (16 to
be precise) to create a greater combination of realistic SAR images of ship wake content.
The ship directions are as follows: Ds1 = 0◦, Ds2 = 22.5◦, Ds3 = 45◦, Ds4 = 67.5◦, Ds5 = 90◦,
Ds6 = 112.5◦, Ds7 = 135◦, Ds8 = 157.5◦, Ds9 = 180◦, Ds10 = 202.5◦, Ds11 = 225◦, Ds12 = 247.5◦,
Ds13 = 270◦, Ds14 = 292.5◦, Ds15 = 315◦, Ds16 = 337.5◦.

SAR images were simulated corresponding to normalized radar cross-section (NRCS),
with tilt and hydrodynamic modulations, and velocity bunching. The size of each scene
0.96 × 0.96 km is chosen to include enough details of wakes for all modeled vessels but
also because it is a convenient size as input into the deep convolutional neural network
(CNN). The simulation parameters are as follows (similar to the TerraSAR-X platform):

Frequency f → 9.65 (X-band) [GHz];
Wavelength λ→ 0.031 [m];
Incidence angle θr→ 20, 32.5, 45 [deg];
Polarization→ HH;
Platform altitude H→ 514 [km];
Platform velocity V → 7600 [m/s];
R/V (θr = 20, 32.5, 45 [deg])→ 72, 80.2, 95.6 [s];

www.marinetraffic.com
www.marinetraffic.com
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Azimuth resolution→ 3.3 [m];
Range resolution→ 3.3 [m].
Finally, all SAR images are scaled within the same intensity range of values by nonlin-

ear normalization [10]:

N(I) =
L(I)

maxL(I)
(1)

with

L(I) =
{

1 + logI i f I > 1
I i f I ≤ 1

(2)

An integral part of a real SAR image is speckle noise, which can significantly suppress
the wake details (Figure 1a,b). If we consider real SAR images as a basis for forming the
training dataset, the question is: Is it beneficial to use (i) noisy images for training and then
noisy images for input to the classification or (ii) denoised images for training and again
denoised images for classification? Although we do not use real SAR images in this study,
this issue is very important, because synthetic data can potentially be used as a training
dataset for classification tasks in real SAR images.

(a) (b) (c)
Figure 1. Simulated SAR images (θr = 20◦) of ship wake (Passenger Vessel I) with Vs = 8 m/s,
Ds = 45◦ and Vw = 3 m/s: (a) noise-free I; (b) with noise In; (c) denoised Id.

To answer this question and to determine the best strategy for network training we
prepared three datasets: (i) noise-free images I, (ii) noisy images In, and (iii) denoised
images Id. They are all identical, and only differ in a noise component (absent, present,
or filtered). For simplicity and without loss of generality, here we chose to employ a
K-distributed intensity speckle model [7]. Finally, because it is time-consuming to apply
advanced denoisers (e.g., BM3D or Bayesian filters [27,28]) for large datasets, for illustration
purposes, we utilized a simple median filter of size 5× 5. An example of simulated SAR
images is presented in Figure 1.

2.2. Dataset Structure

The schematic illustration of the structure of the dataset is shown in Figure 2. The
number of the synthetic SAR images per class is based on a combination of simulated
parameters as follows: 6 ship velocities Vs × 16 ship heading directions Ds × 2 wind
velocities Vw × 8 wind directions Dw × 1 polarization HH× 3 incidence angles θr . Thus,
the overall number of images in the dataset for 10 classes is 46,080 (10 ship models, being
2 models for each of the 5 categories of the ship, Table 1).



Remote Sens. 2022, 14, 3999 5 of 10

Figure 2. The structure of the synthetic SAR dataset for each class (for a single incidence angle θr)
with a cross combination of ship velocities Vs, the ship heading directions Ds, wind velocities Vw,
and wind directions Dw, with 1536 combinations overall. The values are given in Table 1 and in
the text.

2.3. CNN Architecture

To evaluate the proposed dataset, we employ one of the most well-known neural
network architectures, AlexNet [29]. The network is comprised of 8 layers, where the first
five are convolutional layers and the last three are fully connected. We slightly modified
a couple of parameters in this network, as shown in Figure 3, where we used 1 image
channel instead of 3 for the input imagery, and the final layer was updated for 10 output
classes instead of 1000. We also further adjusted the size of all images by interpolation to
227× 227 pixels.

Figure 3. The architecture of AlexNet is used for training from scratch. The input SAR image has a
size of 227× 227× 1 and a fully connected output layer for 10 classes.

In contrast to the large majority of studies, which use pre-trained AlexNet (transfer
learning), we employed the untrained AlexNet architecture (learning from scratch). As the
untrained network does not include optimized weights and biases, the hyperparameters
must be determined prior to training. Tuning these hyperparameters is a difficult and time-
consuming task. The optimal combination of hyperparameters was derived via Bayesian
optimization by maximizing the validation accuracy. We specified a range of values for
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each hyperparameter for all datasets (I, In, Id), and 30 trials per dataset were evaluated.
In Table 2, the initial range of values and estimated optimal values for each dataset are
provided. For all calculations, we used the stochastic gradient descent with momentum
(SGDM) optimizer, a batch size of 256, a maximum number of epochs of 50, and a frequency
of network validation of 108.

Table 2. Estimated hyperparameters via Bayesian optimization.

Parameter Range of Values
Optimal Value

I Id In

Initial learning rate [1× 10−5, 0.5] 2.1245× 10−3 2.5684× 10−3 1.0122× 10−3

Momentum [0.1, 0.98] 0.89919 0.93352 0.97300
L2 regularization [1× 10−10, 1× 10−2] 5.4902× 10−4 7.8834× 10−5 2.0062× 10−10

Additionally, to prevent overfitting, data augmentation was performed as follows:
a random translation within the range [−4, 4] pixels on the X and Y axes, and random
rotation within a range of [−5, 5] degrees. Three trained networks are presented in this
study corresponding to a noise-free dataset I (I-Net), a noisy dataset In (In-Net), and a
denoised dataset Id (Id-Net).

3. Results and Discussion

The proposed dataset was analyzed in two respects: (i) the performance in classifying
ship types based on their SAR image signatures, and (ii) for determining the best classifica-
tion strategy in terms of using either noise-free, noisy, or denoised training datasets.

All datasets were randomly partitioned into a training set (60%), validation set (20%),
and test set (20%). It is important to note here that in order to cross-validate different
datasets, all images within the training, validation, and test sets were the same for all
datasets (I, In, Id). For example, this allows the use of the network trained on the noise-free
dataset I (I-Net), and then, by substitution of the noise-free test set with the appropriate
test sets from noisy In and denoised Id datasets, the evaluation of the network performance
in terms of classification accuracy. Let us start with the overall comparison of trained
networks and their performance per class. Figure 4 illustrates confusion matrix graphs
calculated for all trained networks applied on relevant pairs (I-Net: I, Id-Net: Id, In-Net:
In) for the test sets. The accuracy is logical and follows the intuition that “less noise leads
to better performance” (I-Net—96.16%, Id-Net—93.59%, In-Net—92.7%).

(a) (b) (c)

Figure 4. Confusion matrices for classification performance on test sets by trained CNNs for the
paired ‘network-dataset’: (a) I-Net: I, (b) Id-Net: Id, (c) In-Net: In. Diagonal cells correspond to
correctly classified observations.
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In Table 3, the summary of classification accuracy results for different trained networks
is presented. Evaluations were only carried out for combinations potentially applicable to
real SAR images. This is due to the fact that real radar images always include speckle noise,
and for example, the use of networks trained on noisy In and denoised Id datasets (In-Net
and Id-Net) for ship identification in the noise-free dataset I is irrelevant. In this sense,
the estimation of the accuracy of the network I-Net on dataset I also seems redundant,
but we presented it for an overall comparison of the triad I-Net, In-Net, and Id-Net. In
summary, the following strategies were investigated: (i) the noise-free-trained network I-
Net evaluated with noise-free, noisy, and denoised datasets; (ii) In-Net and Id-Net networks
applied to the noisy and denoised datasets.

Table 3. Accuracies of the trained CNNs for different datasets including training and test sets.

Network
Training Set Test Set

I In Id I In Id

I-Net 98.68 77.35 74.21 96.16 75.90 73.18
In-Net − 97.82 72.24 − 92.70 69.93
Id-Net − 50.21 99.16 − 48.79 93.59

Interestingly, the maximum accuracy was achieved for Id-Net with the Id dataset
but only for the training set case (99.16%). The minimum accuracy of 48.79% occurred
when Id-Net was used on the In dataset (test set), which confirms the significant influence
of noise on the classification process. However, the better accuracy is related to I-Net
when it is cross-utilized on In and Id (75.9% and 73.18%) in comparison to scenarios where
In-Net was used with Id (69.93%) and again Id-Net with In (48.79%). Furthermore, in view
of judging potential applicability to the case of real SAR images, the best accuracy was
achieved for the network Id-Net with the Id dataset (93.59%). However, in practice, this
could also be dependent on the denoising method, while here a simple median filtering
was employed, as previously mentioned (Section 2.1). From this perspective, training
straightaway based on a noisy dataset can be considered an alternative approach, since
the accuracy for the network In-Net with the In dataset also achieved a good value of
92.7%. Hence, one can conclude that the two strategies that can be applied when using
our synthetic SAR dataset of ship wakes are to train on either (i) the denoised Id dataset,
or (ii) the noisy In dataset. The latter has the advantage of reducing the additional image
processing time (by excluding denoising). This is possible due to the generation of a large
number of synthetic radar images using multiple simulation scenarios.

For visualization purposes, Figure 5 also shows 25 randomly selected test images (In-
Net: In) with predicted classes and predicted probabilities of these classes. It is readily no-
ticeable that images with less distinguishable ship wake details are less accurately classified.
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Figure 5. Randomly selected test images (In-Net: In) with predicted classes and their pre-
dicted probabilities.

4. Conclusions

Synthetic aperture radar has been used for over fifty years to image waves on the
ocean’s surface. The many theoretical developments achieved in the hydrodynamic model-
ing of the sea surface and the effects on SAR image formation now allow the generation of
very realistic synthetic SAR datasets. This can enable the use of machine learning in the
classification of vessels. In this study, we introduced and analyzed the first such dataset
to help overcome the well-known limitation of the lack of a sufficient number of labeled
real SAR images with ship wakes for deep learning classification. The conceptualization of
this work has consisted of two aspects: (i) classification of ship types on the basis of their
wake signatures in synthetic SAR images, and (ii) analysis of the classification strategies in
terms of using noise-free, noisy, and denoised datasets. In contrast to the usual practice
of using pre-trained networks, we employed the untrained CNN AlexNet architecture
and performed training from scratch. It is demonstrated that even with a small number
of epochs (50), the networks were trained with a high level of accuracy for training sets
98.68%, 97.82%, and 99.16%, and for test sets 96.16%, 92.7%, and 93.59% (noise-free, noisy,
and denoised datasets, respectively).
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One should keep in mind that the ship velocity affects the amplitude of the wakes and,
consequently, their visualization in the radar image. The same applies to wind velocity,
but the general principle is that a bigger amplitude for wakes and smaller for ambient
sea waves is better for wake visualization. This creates uncertainties in the choice of
ship velocity for simulation, as for the same velocity and constant amplitude of ambient
sea waves, one ship’s wake will not be visible while another will. This means that the
training dataset may contain images where only the sea waves are represented, which
may have an impact on classification accuracy. However, it also applies to the concept of a
’boundary condition’ [7], where due to similar size (wavelength) and amplitude of the sea
and ship waves, wake signatures can disappear or be less noticeable in the SAR image. This
question should therefore be explored further, bearing in mind that with the increase in the
number of ship models, the problem becomes more complicated. Another major issue that
should be studied is the impact that similar wake signatures, corresponding however to
different vessels, have on classification accuracy. Finally, and perhaps most importantly,
the application to classify ships in real data should be investigated, either by direct use of
the presented trained networks or after some form of transfer learning.

To summarize, we highlight that there are a number of advantages to using synthetic
SAR datasets for classifying vessels. Since simulations allow for the generation of the
necessary amount of data, it solves the imbalanced data problems often experienced
with real data when they have a skewed class distribution. Automation also means that
synthetic data generation is much faster than the usual manual processing of real SAR
images. Furthermore, the use of known parameters for simulations can replace AIS data,
which also considerably simplifies the typical, laborious process of integrating AIS data
with SAR images. Ultimately, the versatility of our SAR simulator allows the building of
datasets corresponding to different SAR platforms.
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