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Abstract: The data assimilation algorithm is a common algorithm in space weather research. Based
on the GNSS data from the China Crustal Movement Observation Network (CMONOC) and the
International Reference Ionospheric Model (IRI), a fast three-dimensional (3D) electron density
nowcasting model for China and its adjacent regions was developed. Unlike the traditional Gaussian
background covariance model, the error covariance of the IRI model, based on the IGS grid TEC data,
is estimated in this work. Due to the large scale of the high-resolution covariance matrix, it cannot be
stored and calculated directly on a personal computer. The covariance localization (CL) technique is
introduced to sparse the covariance matrix while removing the pseudo-correlation of the covariance
matrix. After localization, the covariance matrix can be converted into a sparse matrix for storage and
calculation, which greatly reduces the computer memory requirement of the assimilation model and
improves the calculation speed of the model. Based on this algorithm, a series of experiments were
carried out in this work. The experimental results show that this algorithm can effectively assimilate
the observed GNSS to the background field, make up for the temporal and spatial limitations of the
observed data, and improve the accuracy of the ionospheric electron density nowcast. Compared
with the digisonde observed foF2 (the critical frequency of the ionospheric F2 layer), the RMSE of the
assimilation model is 0.44 MHz lower than that of the IRI model.

Keywords: data assimilation; electron density; covariance estimation; covariance localization

1. Introduction
1.1. Ionosphere Data Assimilation

The ionosphere is a highly variable environment that presents significant weather
variations with latitude, longitude, altitude, local time, season, and solar and geomagnetic
activities. In an effort to specify ionospheric weather, a large number of physics-based
theoretical and numerical ionospheric models have been developed based on historical
ionospheric data. Due to a lack of accurate estimation of ionospheric driving parameters
and the use of average information of ionospheric-related parameters in the modeling
process, although physics-based theoretical and numerical models can reproduce many cli-
matic characteristics of the ionosphere, these models fail to reproduce the detailed changes
of the ionospheric weather [1]. Data assimilation methods can assimilate continuous obser-
vations into the model to provide a global/regional ionospheric specification that is in good
agreement with the model and observed data [2]. In recent years, the theory of ionospheric
data assimilation has been rapidly developed. Using a data assimilation algorithm to build
a model, which not only contains the internal physical process but also reflects the real
observation, has become a growing interest in ionospheric research. Data assimilation
methods, such as 3D-VAR [3], the Kalman filter [4–10] have been widely used.

The physics-based model is based on the dynamic equation. Given the external driver,
it can describe the internal physical changes of the ionosphere and propagate the state
forward in time. By assimilating single-source or multi-source ionospheric observation data
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into the ionospheric physics-based model, the ion composition of the model is updated,
which effectively improves the short-term prediction ability of the model [1,2,4,5,11]. In
addition, some coupling models that combine different spatial domains (e.g., ionosphere–
thermosphere, magnetosphere–ionosphere) have been developed to study the influence
of the updated model state on the prediction results, with the ionospheric observation
used as the boundary condition of the ionosphere part of the model [8,11–13]. Based
on the thermosphere-ionosphere-electrodynamics general circulation model (TIEGCM),
Chen et al. (2016) evaluated the impact of different assimilation-forecast cycle lengths on
ionospheric predictions during geomagnetic storm conditions. Hsu et al. [9] evaluated
the influence of the set’s size on the assimilation effect by using the ensemble Kalman
filter (EnKF). He et al. [10] first found that by using sparse matrix technology, the EnKF-
based global ionospheric and thermosphere data assimilation system could be conducted
without a supercomputer. Further, the prediction performance of this model was evaluated
by He et al. [14].

The empirical model is a statistical model representing the average essence of obser-
vations, which fails to reproduce various short-term events. The empirical model does
not include the physical process of ionospheric change; thus, it is unable to predict the
ionosphere. Its prediction is usually realized by other algorithms, such as the Gaussian
Markov algorithm [15]. However, due to its simple deployment and high computational
efficiency, empirical models are also widely used in many fields. For example, the Interna-
tional Reference Ionosphere (IRI) model has been widely used in science, engineering, and
education, and is generally superior to other empirical and theoretical models [16]. In recent
event-based comparisons of the ionospheric models with ground and space measurements,
within the framework of the CEDAR Electrodynamics Thermosphere Ionosphere (ETI)
Challenge by the Community Coordinated Modeling Center (CCMC), the IRI was one of
the two top performers [16]. Although the IRI model does not have a prediction ability,
assimilating ionospheric observation data into the IRI model to improve the accuracy
of the ionospheric nowcast has proved to be effective [6,16]. Based on the IRI model, a
large number of global [17,18] or regional [7,19] three-dimensional ionospheric nowcasting
models have been developed. This method can also be used as regional real-time TEC
mapping technology [20]. Yue et al. [18] retrieved the occultation electron density profile
by assimilating the occultation slant total ionospheric electron content (STEC) into the IRI
model, and the results showed that this method is better than the traditional Abel integral
inversion method.

1.2. Covariance Modeling

For the ionospheric nowcast based on the empirical model, the current challenges are
the estimation of background-error covariance and the storage and calculation of a super-
large-scale covariance matrix. In the traditional assimilation model, the Gaussian covariance
estimation method is often used to estimate the background-error covariance matrix,
where the Gaussian model is static and assumes that the ionospheric correlation length
is fixed, and an exponential function is used to describe the variation in the ionospheric
correlation coefficient with distance [2,3,6,7,16–19]. Generally, the ionosphere is anisotropic
and changes with the longitude and latitude. The fixed correlation length cannot fully
describe the change in the ionosphere. Forsythe et al. [21,22] estimated the correlation
length of the IRI in horizontal and vertical directions based on the global ionosphere map
(GIM) and incoherent scattering radar data. Their results showed that the correlation
length of the ionosphere is also anisotropic, and the correlation region of the reference point
should be an asymmetric ellipse. Wang et al. [23] generated the background dataset by
disturbing the driving parameters of the IRI model, statistically obtained the covariance,
and linearly combined it with the traditional Gaussian covariance to analyze the influence
of the background model on the data assimilation results. However, the asymmetric elliptic
correlation length model easily leads to the asymmetry of the covariance matrix. The
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statistical covariance model has to calculate dozens to hundreds of sets in each iteration,
which usually results in the time overhead being unacceptable in practical applications.

No matter which assimilation method is used, its core is the modeling of the covariance
matrix. Although, many researchers use these similar algorithms to study the nowcast or
prediction of regional or global ionospheric weather and have achieved good results. How-
ever, in these studies, based on the assumption of the Gaussian correlation of ionospheric
error, the covariance is modeled by the Gaussian model with a fixed correlation length, and
the full matrix is used for a direct calculation in the assimilation process. In a small area or
low-resolution assimilation, the calculation time and resource consumption can be ignored.
However, for large-scale or high-resolution assimilation systems, the dimension of the
matrix rises sharply. Generally speaking, the number of elements of the covariance matrix
is equal to the square of the number of variables. When the resolution in longitude and
latitude is doubled, the covariance matrix is increased by 16 times, which is undoubtedly
unacceptable for personal or small computers.

1.3. Innovation

In this paper, based on a large number of previous observation data, we measured
the statistics of the errors of the IRI model under different solar activities, geomagnetic
conditions, local time and other conditions, obtaining the correlation coefficient matrix
under different conditions, and archived it. This correlation coefficient data file can be
read and used according to the relevant conditions in the assimilation, which can avoid
the errors introduced by the assumption of the ionospheric Gaussian correlation and fixed
correlation length to a certain extent.

Covariance localization is a classical covariance filtering technology that can eliminate
the long-distance pseudo-correlation of covariance and improve the performance of data
assimilation. The localized covariance matrix is a matrix composed of a large number of 0 el-
ements, which just meets the sparsity requirements of the sparse matrix. In previous studies,
the correlation coefficient threshold is usually set to truncate the covariance matrix and
then transform it into a sparse matrix, which may make the covariance matrix irreversible,
resulting in filtering divergence. Truncating with the covariance localization function can
ensure that the truncated covariance matrix is reversible and makes the assimilation system
more stable.

All in all, the algorithm in this paper can take advantage of more ionospheric correla-
tions and circumvent the use of a large-scale covariance matrix by applying the covariance
localization and sparse matrix technology to optimize the assimilation algorithm, which
would greatly reduce the computer memory requirement of the assimilation model and
improve the calculation speed of the model. This provides a feasible method for regional
GNSS ionospheric real-time monitoring.

2. Materials and Methods
2.1. Kalman Filtering Algorithm

The Kalman filtering algorithm is one of the common linear filtering and prediction
methods. It is proposed by Kalman et al. [24]. It is the first sequential assimilation algorithm
and is generally regarded as the theoretical basis of the sequential assimilation algorithm.
In recent studies, the Kalman filter algorithm was widely used in data assimilation.

According to the Kalman filtering theory, the assimilation process of observed data
can be expressed as:

Xa
t = Xb

t + K
(

Yt − HXb
t

)
, (1)

Kt = BtHT(HBtHT + R)
−1

, (2)

Ba
t = Bt − Bt HT(HBtHT + R)

−1
HBt, (3)

Xb
t+1 = MXa

t + wt, (4)
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Bb
t+1 = MBt+1MT + Q, (5)

where Xa is the electron density after assimilation, Xb is the electron density of the back-
ground field given by the IRI model, B is the covariance matrix of the error of the back-
ground field, Y is the vertical total electron content (VTEC) of the GNSS observation, H
is the observation operator, and R is the covariance matrix of the error of the observation
field. K is the gain matrix, which plays a role in adjusting the background field from the
observed data. Ba is the analysis field covariance matrix after assimilation. M is the state
transition matrix, and w is the state transition error.

In data assimilation, the result of data assimilation can be considered as the weighted
average of the observation and background. Therefore, whether the error of the back-
ground field and observation field can be accurately described significantly affects the
results of the assimilation experiment. In previous studies, the errors among the observed
data are considered to be uncorrelated and unbiased, and the observation error is con-
sidered proportional to the square of the observation value [6,15,19,25,26]. Therefore, the
observation-field error covariance matrix R is the diagonal matrix, and the element of the
diagonal is proportional to the observation square. R is expressed by Equation (6):

Rij = σi σj ρij =

{
ηoYiYj,

(
ρij = 1, i = j

)
0 ,

(
ρij = 0, i 6= j

) , (6)

where i and j represent the observation point, Rij is the error covariance among the obser-
vational points, ρij is the correlation coefficient, and ηo is a proportionality coefficient.

Since the errors of the observation data are not correlated with each other, only the
covariance matrix of background field errors can be used to transfer the spatial correlation
information to the assimilation results. The background error covariance model is based
on Gaussian theory (GBEC) and statistics (SBEC), two common modeling methods in
ionospheric data assimilation. The SBEC is a common modeling method of the EnKF assim-
ilation algorithm. It needs to calculate multiple groups of background data as samples and
then obtain the background-error covariance matrix through statistical analysis. The GBEC
is a common method to model the background field error covariance matrix in the Kalman
filter assimilation algorithm. The SBEC is more flow-dependent with enough samples,
which can obtain a more accurate covariance matrix. However, in each assimilation cycle,
the SBEC needs to calculate dozens to hundreds of groups of background data samples
to estimate the background-error covariance matrix. For large areas or high-resolution, it
needs a lot of calculation time. The GBEC only needs to calculate a group of background
data and then estimate the background-error covariance matrix through empirical for-
mulas, which can obviously reduce the calculation time. The Gaussian error covariance
model assumes a Gaussian correlation between background data, and the covariance is
proportional to the square of the observed value. The calculation method is as follows:

Bij = σiσjρij, (7)

σi
2 = ηbXb

iXb
i, (8)

ρij = e−Φ2
ij/2L2

Φ e−θ2
ij/2L2

θ e−H2
ij/2H2

θ , (9)

where Bij is the error covariance between background data, ρij is the correlation coefficient,ηb
is the proportional coefficient, Φij, θij and Hij are the distance between the grid points
in the longitude, latitude and height directions. We assume that the ionospheric correla-
tion is separable in the horizontal and vertical directions, so we calculate the ionospheric
correlation in the horizontal and vertical directions, respectively. Because it is difficult to
obtain the vertical structure information of the ionosphere by conventional observations,
the vertical structure of the ionosphere can only be observed by a few devices, such as the
digisonde or incoherent scattering radars. Therefore, for the vertical direction, we refer to
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the previous research experience and the actual assimilation effect and take the vertical
correlation length as 40 km.

In previous studies, it was generally considered that the ionosphere was isotropic,
or isotropic toward the direction of longitude, latitude and altitude, and the correlation
length was fixed and did not change with time, latitude and longitude, which did not
conform to the actual characteristics of the ionosphere. In this work, the CODE grid TEC
data, provided by IGS from 2003 to 2018, was used as the truth values to evaluate the errors
of the IRI-2016 model. The dataset was divided according to the solar flux, geomagnetic AP
index, season and local time, and the ionospheric correlation coefficients under different
conditions were statistically analyzed, and then a data file was formed. Each bin has about
a few hundred samples. This data file can be read and used according to the relevant
conditions in the assimilation. The dataset division conditions are shown in Table 1.

Table 1. Data division conditions.

Season

Spring
(March to May)

Summer
(June to August)

Autumn
(September to

November)

Winter
(December to

February)

F10.7

Low (0–100) Moderate (100–150) High (>150)

AP index

Low (0–30) Moderate (30–50) High (>50)

Time

0–24 h/2 h

The latitude and longitude resolutions of the assimilation model in this work are
1◦ × 1◦ × 30 min. In order to obtain the correlation coefficient matrix, we first matched
the IGS grid and assimilation grid into space and time. Since the resolution of the IGS
data is 5◦ × 2.5◦ × 2 h, we performed linear interpolation on the grid data of IGS in the
latitude and longitude directions to change the resolution to 1◦ × 1◦ × 30 min. When
estimating the covariance, the usual method is the empirical covariance estimate, which
is the maximum likelihood estimator of the covariance and is unbiased, i.e., it converges
to the true covariance when given many observations. However, when the number of
the sample is smaller than that of the variable, the empirical covariance estimation is not
the optimal estimate of the covariance, which may cause the covariance matrix to be less
than the rank, resulting in the matrix being irreversible, and regularization to reduce its
variance is usually beneficial. In this work, the Ledoit–Wolf shrunk covariance estimator
was used for estimating the error covariance of the IRI model [27]. The Ledoit–Wolf shrunk
covariance estimation is a generalized linear combination based on the covariance matrix
and identity matrix. When the sample size is smaller than the variable dimension, the
performance is better, and the covariance matrix can be guaranteed to be a positive-definite
matrix. The calculation method is as follows:

dNi(t) = NIRI(t)− NIGS, (10)

Dt(t) = dNi(t)− dNi, (11)

M = D ∗ (D)T/(M− 1), (12)

M = (1− sk)×M + sk× µ× eye(n), (13)

µ = trace(M)/n, (14)

where, NIRI is the IRI sample set, NIGS is the IGS sample set, sk is the shrinkage coeffi-
cient [27], eye is the identity matrix, and trace is a trace of the matrix.
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Therefore, Equation (14) can be redefined as:

ρ = M/(
√

trace(M)T ∗ trace(M)), (15)

Figure 1 shows the distribution of the correlation coefficient and correlation length
under the magnetic static period (AP < 30) and middle solar activity (100 < F10.7 < 150)
condition during winter (January–March) at 00:00 UT (universal time). Figure 1a is the
maximum meridian (the azimuth angle is 90◦ and 270◦) correlation length distribution;
Figure 1b is the distribution of the maximum zonal (the azimuth is 0◦ and 90◦) correlation
length; Figure 1c is the correlation coefficient distribution between the reference point and
its surrounding grid points, and the black dot line is the dividing line with a correlation
coefficient of 0.8. Figure 1d is the contour diagram of the meridian correlation coefficient
at 70◦E and 15◦N. It can be seen from Figure 1 that the ionosphere is anisotropic; as a
result, the ionospheric correlation coefficient models under different conditions can more
accurately describe the ionization changes and thus improve the effects of the assimilation.
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Figure 1. The distribution of the correlation coefficient and correlation length under magnetic static
period (AP < 30), and middle solar activity (100 < F10.7 < 150) condition during winter (January–
March) at 00:00 UT. Where (a) is the distribution map of meridional correlation length; (b) is the zonal
correlation length distribution map; (c) is the reference points and their related regional distributions;
(d) is the meridian contour distribution at 70◦E and 15◦N.

It is generally believed that there is a strong correlation between the ionospheric state
change and time. In this work, the Gaussian Markov algorithm was used to describe the
correlation. In the hidden Markov model, the probability distribution of the next state can
only be determined by the current state. Therefore, the time-decay error term is added
to the calculation result of the background field model as the prediction equation of the
Kalman filter. The error term is the difference between the state analysis value of the current
time step and the model-calculated value. The attenuation coefficient is an exponential
function related to the time scale, and 3 h (hour) in the geomagnetic calm period and 1 h
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in the geomagnetic storm period are selected [19]. Therefore, Equations (4) and (5) can be
rewritten as Equations (16) and (17):

Xb
t+1 = (xa

t − xb
t ) ∗ e−

∆t
τ + xb

t+1, (16)

Bb
t+1 = Ba

t ∗ e−
2∆t

τ − Bb
t ∗ e−

2∆t
τ + Bb+1

t , (17)

where Xb
t+1 is the background TEC, and τ is the ionospheric correlation time varying with

local time, and represents the influence of the assimilation results of the current step on the
background state of the next step. The value in this paper is 5 h [1]. We introduced relevant
scale factors that vary with local time. The formula is as follows:

f lt = 1/4 ∗ cos(π/12 ∗ (t− 14)) + 3/4, (18)

Because the observation sites are sparse, the observation field and the background
field usually have different dimensions. Therefore, the observation operator H is also
an important parameter, which can map the background field into the observation field.
Generally, H is a matrix with a different number of rows and columns. The number of
rows is equal to the number of observed grid points, and the number of columns is equal
to the number of grid points in the background field. When the observed value does not
exist, the corresponding column number element is set to 0; thus, H is a sparse matrix.
In this work, the state quantity of the observed field is VTEC, and the state quantity of
the background field is the electron density. Therefore, H represents the integral from the
electron density to the total electron content (TEC), and the non-zero element in H is the
length of the grid point.

2.2. Covariance Localization (CL)

Covariance models always introduce pseudo-correlation when estimating the background-
error covariance matrix. That is, there is a pseudo-correlation between the state variables
that are physically unrelated or spatially distant. As the assimilation process goes on, the
background-error covariance is underestimated by the system, the weight of observation
data becomes smaller and smaller, and finally, it is completely ignored, leading to the
divergence of filtering. In order to reduce the influence of the pseudo-correlation on
the assimilation process and improve the assimilation results, two methods, covariance
inflation [28] and localization [29], are proposed. Covariance inflation is a method used to
correct the underestimation of the background-error covariance matrix, which is mainly
used in the ensemble Kalman filter. The principle is that the dispersion of each ensemble
member from the mean is multiplied by an inflation factor slightly greater than 1 to solve
the large sampling error caused by the limited sample size. At present, two localization
methods: covariance localization (CL) [30] and local analysis (LA) [31], are widely used.

CL is a covariance filtering method, which uses localized radius to truncate the distance
pseudo-correlation in the background-error covariance matrix and improves the quality of
the background-error covariance matrix, making the covariance matrix more sparse. CL
is typically carried out by applying a Schur (Hadamard) product between a correlation
matrix ρ with distance-decreasing entries and an ensemble-estimated covariance matrix.
ρ is a Gaspari–Cohn (GC) five-order piecewise polynomial function, and the calculation
method is as follows [32]:

Bt = ρ ◦ Bt, (19)

ρ =


− 1

4 (||z||/c) 5 + 1
2 (||z||/c) 4 + 5

8 (||z||/c) 3 − 5
3 (||z||/c) 2 + 1 , 0 ≤

∣∣∣∣∣∣z∣∣∣∣∣∣< c
1

12 (||z||/c) 5 − 1
2 (||z||/c) 4 + 5

8 (||z||/c) 3 + 5
3 (||z||/c) 2 − 5(

∣∣∣∣∣∣z∣∣∣∣∣∣/c) + 4− 2
3 (c/

∣∣∣∣∣∣z∣∣∣∣∣∣), c ≤
∣∣∣∣∣∣z∣∣∣∣∣∣< 2c

0 , 2c ≤||z||

, (20)
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where c is the localization radius, the value is 15; that is, the points whose horizontal
distance is greater than are filtered out. ρ from ρ(0) = 1 smooth descent to ρ(2c) = 0.
The background-error covariance matrix B is a non-negative-definite matrix and ρ is a
positive-definite matrix, so the Schuur product of B and ρ is also a positive-definite matrix.
Thus, Equation (2) can be rewritten as:

Kt = (ρ ◦ Bt)HT(H(ρ ◦ Bt)HT + R)
−1

, (21)

Figure 2a,b presents the distribution of the meridional correlation coefficients obtained
from the statistical results and are localized by covariance. It can be seen from Figure 2a
that the meridional correlation tends toward 0 with the increase in the distance. The
local correlation coefficient is close to the original one in the central part, however, the
attenuation is faster. The localization radius can control the size of the truncated region. The
larger the localization radius is, the larger the correlation region will be, and the smoother
the result after assimilation will be. However, the increase in the localization radius will
lead to a sharp increase in the size of the covariance matrix. Therefore, it is important to
choose a reasonable localization reification radius in practical applications. Figure 2c shows
the correlation coefficient curves of the longitude before and after localization. Figure 2d
shows the correlation coefficient curves of zonal and meridional. Figure 2e is the change
curve of the correlation coefficient before and after localization at 5◦ from the reference
point. Figure 2f shows the change curve of the correlation coefficient in different seasons at
5◦ from the reference point. The curve after localization is located below the before, but
this does not exactly mean that the distribution fully depends on the localization radius.
It can be seen from Figure 2c–f that the localized correlation coefficients are different for
different directions, times and seasons. This also means that our covariance model contains
ionospheric anisotropy information. When we estimate the correlation coefficient under
different conditions, the sample size is much smaller than the variable dimension. The
localization function can be regarded as a tapering covariance regularization method,
which can provide some prior information for sample covariance [33]. This can not only
reduce the error problem when estimating the covariance from small samples, but it can
also avoid a series of abnormal problems caused by threshold truncation; for example, the
covariance matrix is not positive-definite. However, whether the local function we use is
optimal or whether we can estimate the optimal local function needs to be evaluated in the
follow-up work.

2.3. Sparse Matrix Compression Algorithm

In this paper, the longitude and latitude resolution is 1◦ × 1◦, the altitude resolution is
10 km and the time resolution is 30 min. The dimension of the background field data is
41× 71× 45, and the size of the covariance matrix is 130, 995× 130, 995. When calculating
and storing with float64 type, the size of the matrix is about 128 G. In the matrix operation,
the whole matrix is needed to be read into the memory first, and then the operation is
carried out, which cannot be realized by a personal computer, and the time-cost of complex
matrix operations, such as the inverse of the whole matrix is very large.

A sparse matrix is a matrix consisting of almost zero values. A sparse matrix differs
from most non-zero valued matrices, called dense matrices. When storing a sparse matrix,
memory must be allocated for each 32-bit or even 64-bit zero value in the matrix, which
is a waste of memory resources, since these zero values do not contain any information.
We can use compression technology to minimize the amount of data needed to be stored.
Almost all algorithms require the data matrix to exist in memory beforehand, which means
that when the data matrix cannot be fully stored in memory, the calculation process will
be interrupted. One advantage of converting from dense to sparse matrices is that sparse
matrices can be compressed into a suitable memory size in most cases. The sparsity of the
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matrix can be quantified by a score, which is the number of non-zero values in the matrix
divided by the total number of elements in the matrix.

sparseness =
n0

n
, (22)

where n0 is the number of non-zero elements in the matrix, and n is the total number of
elements in the matrix.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 2. (a) The distribution of meridional correlation coefficients at 70°E, 15°N obtained from sta-
tistics; (b) the distribution of meridional correlation coefficients at 70°E, 15°N, localized by covari-
ance; (c) the correlation coefficient curves of longitude before and after localization; (d) the correla-
tion coefficient curves of zonal and meridional; (e) the change curves of the correlation coefficient 
before and after localization at 5° from the reference point; (f) the change curves of the correlation 
coefficient in different seasons at 5° from the reference point. 

2.3. Sparse Matrix Compression Algorithm 
In this paper, the longitude and latitude resolution is 1 1°× ° , the altitude resolution 

is 10 km and the time resolution is 30 min. The dimension of the background field data is 
41 71 45× × , and the size of the covariance matrix is 130, 995 130, 995× . When calculating 
and storing with float64 type, the size of the matrix is about 128 G. In the matrix operation, 
the whole matrix is needed to be read into the memory first, and then the operation is 
carried out, which cannot be realized by a personal computer, and the time-cost of com-
plex matrix operations, such as the inverse of the whole matrix is very large. 

A sparse matrix is a matrix consisting of almost zero values. A sparse matrix differs 
from most non-zero valued matrices, called dense matrices. When storing a sparse matrix, 
memory must be allocated for each 32-bit or even 64-bit zero value in the matrix, which is 
a waste of memory resources, since these zero values do not contain any information. We 
can use compression technology to minimize the amount of data needed to be stored. Al-
most all algorithms require the data matrix to exist in memory beforehand, which means 
that when the data matrix cannot be fully stored in memory, the calculation process will 
be interrupted. One advantage of converting from dense to sparse matrices is that sparse 
matrices can be compressed into a suitable memory size in most cases. The sparsity of the 

Figure 2. (a) The distribution of meridional correlation coefficients at 70◦E, 15◦N obtained from statis-
tics; (b) the distribution of meridional correlation coefficients at 70◦E, 15◦N, localized by covariance;
(c) the correlation coefficient curves of longitude before and after localization; (d) the correlation
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A solution for representing and processing a sparse matrix is to use a data structure that
ignores zero values and stores only the non-zero values in the sparse matrix to represent the
sparse matrix. Commonly used sparse matrix compression formats include the coordinate
format (COO), compressed sparse row format (CSR), compressed sparse column format
(CSC), and the list of lists format (LIL). The CSR sparse matrix uses three one-dimensional
arrays to represent non-zero values, row ranges, and indices. This format requires the
matrix elements to be stored in row order and the elements in each row to be stored out of
order. For each row, a pointer is used to indicate the starting position of the element. The
CSR format supports an efficient arithmetic operation, efficient row slicing and fast matrix
operation. Therefore, storing the sparse matrix in CSR format can significantly improve
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the calculation speed of the assimilation model; however, the time-cost of changing the
sparsity structure of the CSR matrix is very expensive. For a super-large covariance matrix,
it cannot be transformed directly, and elements need to be added one by one through a loop.
Thus, by saving directly in CSR format, the matrix time-cost is very expensive. Therefore,
it is necessary to construct the sparse matrix of LIL formats through a circular method
before converting them to CSR formats. The LIL format uses two nested lists to store the
sparse matrix, which means that data hold the values of the non-zero elements in each
row, and the rows hold the column numbers of the non-zero elements in each row (the
column numbers are sorted sequentially). This format is good for adding elements one by
one and obtaining row-specific data quickly, but the LIL matrix multiplication is extremely
inefficient. The problem of storage and computing speed regarding a super-large sparse
matrix can be effectively solved by first constructing the LIL-format sparse matrix through
the cyclic method and then converting it into the CSR-format sparse matrix for calculation.
In this paper, the sparse matrix is firstly constructed in LIL format and then converted into
the CSR format for calculation.

3. Data
3.1. Background Data

The selection of background model and observation data directly determines the
quality of assimilation-forecast results. The IRI model is a commonly used ionospheric
model in ionospheric research, and it integrates a variety of ionospheric empirical models
with good performance, such as the nequick model. Therefore, the IRI [34,35] model is
chosen as the background model for the assimilation in this work. Since this work focuses
on the ionospheric changes in China and its surrounding areas, the latitude and longitude
ranges of the background field data are 15◦N–55◦N and 70◦E–140◦E, with a step size of 1◦,
and a height range of 60–500 km, with a step size of 10 km. We assume that the electron
density above 1000 km is negligible, and the electron content in the IRI model above 500 km
is proportional to the observation. Therefore, this part of electron content was subtracted
from the GNSS observations and then assimilated into the model. Therefore, the size of
background-error covariance matrix B is 130,995 × 130,995. The space division is shown in
Table 2.

Table 2. Spatial and temporal division of electron density.

Parameter Longitude Latitude Height Time

range 70◦E–140◦E 15◦N–55◦N 60–500 km 0–24 h
step 1◦ 1◦ 10 km 0.5 h

3.2. Observation Data

Observational data from 261 GNSS observatories at CMONOC were used in this work.
The sampling interval of the GNSS receiver is 30 s. The distribution of the GNSS stations in
CMONOC is shown in Figure 3.
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The GPS dual-frequency receiver can receive L1 (1575.42 MHz) and L2 (1227.6 MHz)
carrier signals simultaneously. By solving the group delay and phase delay data of the
GNSS dual-frequency signals jointly, the electron density integral along the propagation
path of each satellite signal, i.e., the slant TEC (STEC), is obtained. Based on the least square
principle, the carrier-phase observation is used to smooth the pseudo-range observation,
and the high-precision absolute TEC data can be obtained.
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where STECL is the integral of the electron density along the propagation path obtained
by the differential pseudo-distance observation, known as absolute TEC; STECP is the
product component of the electron density along the propagation path obtained by the
differential carrier-phase detection, known as relative TEC; P1 and P2 are the pseudo-
distances measured by the dual-frequency GNSS receiver; λ1 and λ2 are the wavelengths
of the carrier; L1 and L2 are carrier phases; K is a constant related to the plasma frequency
and electron concentration, generally, K is 80.62 m3s−2.

VTEC is the current common GNSS level two or three product data. For many
applications, including shortwave communications, radar frequency selection, refraction
error correction, etc., VTEC cannot be used directly. Therefore, instead of using STEC
directly for assimilation, we used VTEC, which provides a feasible method to make full use
of this part of the data. STEC can be converted into a vertical TEC (VTEC) by Equation (25).
In the process of solving the vertical TEC, the ionospheric-charged particles are generally
considered to be concentrated in a thin shell that is concentric with the Earth at an altitude
of 350–450 km, which is set as 400 km in this work. According to this model, we can convert
the STEC to TEC on the ionospheric thin-layer model with the same plane coordinates
as the ionospheric penetration point (IPP), i.e., the vertical TEC (VTEC) at the pierce
point position.

VTEC = (STEC− BS − BR)

√
1− (

Re cos(Ei)

Re + hs
)2, (25)

where Re is the radius of the Earth and hs is the height of the puncture point. Ei is the
observation elevation, BS is the hardware error of the GNSS satellite transmitter, and BR is
the hardware error of the ground receiver. The hardware error is estimated by the fifth-order
spherical harmonic function model, and the estimation strategy is a piecewise constant
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method (PWC). Since only TEC is concerned in this paper, the combined estimation of the
satellite and receiver errors is used to obtain the total hardware error BS + BR.

3.3. Digisonde Data

The ionospheric digisonde can measure the time delay of the ionospheric echo reaching
the receiver by transmitting a sweep-frequency pulse vertically from the ground and
obtaining the information of the ionospheric virtual height, varying with the frequency
at each frequency point. Using the embedded software from Digisonde, the ionospheric
characteristic parameters and electron density profile can be measured and calibrated
automatically, and the SAO data of digisonde can be generated. In this work, the SAO
data of ionospheric digisonde were used as validation data, which was obtained from the
Chinese Meridian Project [23]. The SAO file records the ionospheric characteristic scalar,
which can be used to obtain information, such as the height, electron density and critical
frequency of the ionosphere. The distribution of the digisonde stations is shown in Figure 4.
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4. Results

In this work, a complete 3D electron density nowcast model for China and its adjacent
regions was constructed based on the CL Kalman filter and sparse matrix technique. The
background field was calculated by using the IRI model, which can be used to calculate the
complete three-dimensional regional distribution of electron density. The original observa-
tion data were provided by CMONOC. Different from the background field data, GNSS
cannot observe the vertical structure of the ionosphere, but it can obtain the ionospheric
delay by phase- and pseudo-distance and then obtain the VTEC of the ionosphere. The
observation stations have obvious discreteness and uneven distribution, so the observation
field is a discrete incomplete VTEC map. In order to verify the effect of the assimilation
inversion, the VTEC maps and electron density profiles of China and its adjacent regions
are illustrated in this work. In the first part, we compared the performance of our covari-
ance modeling method with that of traditional modeling methods. In the second part,
we integrated the electron density of the background field and the assimilated electron
density in the vertical direction, respectively, to obtain the background-field VTEC map
and the assimilated VTEC map and compare them with the observation VTEC map. In
the last part, the assimilation results were compared with the digisonde data of Zuoling in
Wuhan, Changping in Beijing, Mohe in Heilongjiang and Fuke in Hainan. The three parts
are described as follows:

(1) We only modeled the ionospheric horizontal correlation coefficient under different
conditions. Due to the lack of relevant observation data, the vertical direction correlation
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refers to the previous research experience. Therefore, in order to discuss the difference, we
ignored the height direction and compared the TEC results after the assimilation caused by
the different covariance modeling methods. Figure 5a is the comparison curve of TEC for
the different covariance modeling methods, which were observed and modeled for one
day at 25◦N, 90◦E. The red curve is the simulation result of the model, the orange curve is
the calculation result of statistical covariance modeling, the blue is the calculation result of
the Gaussian model, and the green is the observation. Figure 5b is the TEC error statistical
results of the different modeling methods in one day. It can be seen that our model will be
improved compared with the Gaussian model in most cases. The absolute average error is
smaller, and the error is reduced by 0.3 TECU.
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(2) We pre-processed the observation data before assimilation. In the time window
(30 min), a large number of data fall on the same grid point. For all observations in the
same grid, we eliminated the data with a large deviation from the average value and
then adopted the average value of the remaining observations as the value of the grid.
Because the observation and background fields have different dimensions, the assimilation
result was consistent with the background field dimension. In order to compare with the
observation field, the 3D background field data and assimilation results were reduced
in dimension. That is, the vertical integration was carried out to obtain the 2D VTEC
distribution of China and its adjacent regions. Figure 6 shows the comparison of the
assimilation results at 00:00 on 1 January 2015: (a) is the IPP TEC distribution by GNSS;
(b) is the electron density map; (c) is the IRI TEC map; (d) is the TEC map after assimilation.
We can see from Figure 6 that the TEC after assimilation is more detailed than the TEC
calculated by the IRI. As shown in Figure 6a, the TEC is abnormal within the longitude and
latitude zones of 15◦–20◦N and 110◦–120◦E and the total electron content increases sharply
in this region, which cannot be simulated by the IRI model. However, the TEC performance
in this region can be clearly seen in the TEC map after assimilation, as presented in Figure 6d.
Through data assimilation, TEC anomalies in this abnormal region are assimilated into
the electron density distribution. As shown in Figure 6b, the maximum electron density
appeared near 120◦E. This indicates that data assimilation can effectively assimilate 2D
observation data into a 3D background model to improve the accuracy of the background
model. However, due to the lack of GNSS observation stations in low and high latitudes of
China, the electron density distribution in these regions can only be corrected by nearby
observations. When the distance is greater than the localization radius, the two points
in space will not be correlated, and the observation has only weak or no effect on the
model. This means that the spatial and temporal distribution of the electron density in
these regions can only be obtained through the background model.
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(3) Although the VTEC maps can describe the horizontal distribution of ionospheric
electrons, they cannot accurately describe the internal vertical structure of the ionosphere.
The electron density profile can present the internal structure of the ionosphere effectively
and show the peak concentration and height information of the electron density in the E, F1
and F2 layers. Additionally, it can indirectly give the critical frequency of the ionosphere,
foF2. In Figure 7, the first and second rows are the electron-density profile contrast diagrams
at 00:00 UT and 06:00 UT on 1 January 2015, respectively. The third and fourth rows show
the electron-density profile contrast diagrams at 00:00 UT and 06:00 UT on 17 March 2015,
respectively. The assimilation and IRI results are compared with the digisonde observations
at Changping (CP) in Beijing, Mohe (MH) in Heilongjiang, and Zuoling (ZL) in Wuhan
and Fuke (FK) in Hainan. The green curve is the observational result of digisondes,
the blue curve is the IRI modeling results, and the orange curve shows the assimilation
results. As shown in Figure 7, the difference between the peak value of electron density
after assimilation and the digisonde observation is smaller in most cases, which indicates
that the algorithm can effectively assimilate the observation data into the background
field. However, the peak heights of the electron density profile after assimilation are still
consistent with the IRI model, which indicates that the peak height accuracy of electron
density cannot be improved effectively. This is because the GNSS observation can only
obtain TEC (the electron density integral), while it cannot supply the vertical structure of
the ionosphere. Thus, the assimilation model depends on the ionospheric vertical structure
information from the background model. In addition, the assimilation results are closer to
the digisonde measurements below the F2 peak electron density, while large differences are
found above the F2 peak electron density. This may be because the digisonde can only detect
the structure below the F2 peak ionospheric electron density but cannot directly obtain
the information above the F2 peak value. The profile above the F2 peak of the digisonde
is obtained by software extrapolation, which may introduce errors. Moreover, the TEC
observed by GNSS is from the ground to the satellite altitude, while the ionospheric model
can only calculate several thousand kilometers. This leads to the model overestimating the
electron density above F2.
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at 00:00 UT and 06:00 UT on 1 January 2015, respectively. The third and fourth rows show the
electron-density profile contrast diagram at 00:00 UT and 06:00 UT on 17 March 2015, respectively.

The foF2 is an important parameter in the ionosphere, and it is related to the peak
electron density. In order to illustrate the influence of the assimilation model on peak
electron density, Figure 8 shows the comparison of the foF2 variation at CP (a) and ZL
(b) on 1 January 2015, and at MH (c) and FK (d) on 17 March 2015. Compared with the
digisonde observations at these four stations, the RMSE (root mean square error) of the IRI
model is 1.63 MHz, 1.28 MHz, 1.33 MHz, and 3.25 MHz, while the RMSE of the assimilation
results is 0.84 MHz, 0.98 MHz, 1.12 MHz, 2.76 MHz, respectively, whose average RMSE is
decreased by 0.44MHz. As presented in Figure 8, foF2, after assimilation, is closer to the
digisonde observations. The changing trend of the IRI modeling results is consistent with
the digisonde observations; however, it cannot accurately describe the changed details of
the foF2. This result demonstrates that the assimilation model can effectively improve the
accuracy of the electron density peak of the background model and can obtain more details.
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5. Conclusions

In the present work, we analyzed the feasibility of the Kalman data assimilation
algorithm to reconstruct the ionospheric electron density distribution in China and its
adjacent areas. Based on the 15 years of IGS data from 2003 to 2018, the errors of the
IRI model in different solar and geomagnetic conditions, seasons and local time were
estimated, and the correlation coefficient model, adapted to different conditions, was
formed. Using the correlation coefficient model and 261 GPS stations from the Crustal
Movement Observation Network of China (CMONOC), we constructed an ionospheric
electron density nowcast model. Through the analysis, we found that the electron density
of a grid point in space has a strong correlation with its nearby grid; the farther the distance
is, the smaller the correlation is, and its value tends toward 0. In order to obtain a more
sparse background field covariance matrix, it was necessary to set the correlation coefficient
threshold. Generally, the correlation coefficient of the point is 0 when the correlation is less
than the threshold, and the covariance is 0, as well. In previous studies, many researchers
directly truncate the covariance matrix by the correlation coefficient. This may cause the
truncated matrix to cease to be a non-negative-definite matrix, which makes the Kalman
filter divergent. In this work, the localization function was used to truncate the covariance
matrix. Using the CL to sparse the covariance matrix can ensure that the truncated matrix
is still a positive-definite matrix. When the sparse covariance matrix is stored in the sparse
matrix format, its memory is only about 1.5% of the original matrix, which greatly reduces
the requirements for the performance of the working computer, and the single calculation
time is also greatly reduced. The calculation time on a personal laptop is only a few
minutes, which greatly facilitates the application of the data assimilation algorithm in
practical engineering.

The data assimilation algorithm can assimilate the two-dimensional observation data
to the three-dimensional background field, which helps to obtain a more accurate iono-
spheric electron density distribution. By comparing the IRI modeling and assimilation
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results with observations, we found that the assimilation algorithm effectively improves
the peak accuracy of ionospheric electron density and improves the accuracy of ionospheric
critical frequency. Compared with the background field, the TEC distribution and electron
density distribution, after assimilation, successfully reproduced the ionospheric details.
However, the assimilation algorithm does not significantly improve the peak height of
electron density, which is mostly due to the fact that ground-based GNSS observation
VTEC data cannot provide the vertical structure information of the ionosphere. We propose
that by adding other observations to the model, such as digisonde, GNSS occultation and
other data with ionospheric vertical structure information, the peak height accuracy of
electron density should effectively improve. In addition, the assimilation results deviate
from the observation in some cases, which may be owing to the ionospheric structure
information provided by the ionospheric background model being quite different from the
real ionospheric structure. Thus, the assimilation model cannot obtain accurate ionospheric
structure information, leading to a deviation of the analysis from the actual observation.
Therefore, constructing an accurate ionospheric background model is also a key to data
assimilation.
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