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Abstract: Synthetic aperture radar (SAR) tomography (TomoSAR) has been widely used in the three-
dimensional (3D) reconstruction of urban areas using the multi-baseline (MB) SAR data. For urban
scenarios, the MB SAR data are often acquired by repeat-pass using the spaceborne SAR system. Such
a data stack generally has long time baselines, which result in different atmospheric disturbances of
the data acquired by different tracks. These factors can lead to the presence of phase errors (PEs). PEs
are multiplicative noise for observation data, which can cause diffusion and defocus in TomoSAR
imaging and seriously affect the extraction of target 3D information. In this paper, we combine the
methods of the block-building network (BBN) and phase gradient autofocus (PGA) to propose a
novel phase compensation method called BBN-PGA. The BBN-PGA method can effectively and
efficiently compensate for PEs of the MB SAR data over a wide area and improve the accuracy of
3D reconstruction of urban areas. The applicability of this proposed BBN-PGA method is proved by
using simulated data and the spaceborne MB SAR data acquired by the TerraSAR-X satellite over an
area in Barcelona, Spain.

Keywords: urban 3D reconstruction; synthetic aperture radar tomography (TomoSAR); phase error
compensation; block-building network; phase gradient autofocus

1. Introduction

With the development of the economy and society, the construction and management
of the urban environment are particularly important. The acquisition of spatial information
for urban environments, such as the 3D structure of buildings, plays an important role in
urban planning, infrastructure construction, disaster monitoring, etc. [1]. Synthetic aperture
radar (SAR) tomography (TomoSAR) technology is a three-dimensional imaging technology
developed from SAR technology. After years of development, TomoSAR technology has
been widely used in 3D imaging in urban and forest areas [2–19].

TomoSAR imaging depends on the phase of multi-baseline (MB) SAR data, which
is related to the range between scatterers and sensor [20]. In the actual situation, the MB
data can be obtained by airborne or spaceborne SAR systems. The phase errors (PEs) are
unavoidable due to the baseline measurement errors or the atmospheric delays [21–23].
For airborne MB data, time decorrelation is weak and the effect of atmospheric delay is
small, but due to the instability of aircraft movement, the baseline measurement error is
relatively large [21,22]. For the spaceborne MB SAR data, the satellite motion is relatively
stable and the baseline measurement error is small, but the atmospheric delay effect is
relatively large due to the long time baseline [20]. In the case of urban areas, the MB SAR
data are often acquired by spaceborne SAR systems. Therefore, PEs are mainly caused by
atmospheric delays. PEs can cause high sidelobes or defocus for TomoSAR imaging, which
will damage the extraction of target information [22]. Therefore, the PE compensation
operation must be performed on the MB SAR data before TomoSAR imaging.
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Many methods have been proposed to achieve PE compensation of MB SAR data.
These methods can be classified according to the data acquisition platform and can be
roughly divided into two categories: the PE compensation methods of spaceborne and
airborne MB SAR data.

For spaceborne MB SAR data, PEs are mainly caused by atmospheric delays, and the
main application scenarios of the data are urban and mountainous areas. Many methods
have been studied to compensate for the atmospheric phase. Classical methods proposed in
the earlier literature include persistent scatterer interferometric SAR (PS-InSAR) [24], Small
Baseline Subset (SBAS) [25] and other techniques, which are developed on the differential
interferometric SAR technique. These methods can obtain estimates of the atmospheric
phase. Therefore, these methods can be used for PE compensation of TomoSAR imaging.
However, the processing process of these methods is cumbersome, and the atmospheric
phase estimation is only obtained by simple space-time filtering, which is less accurate [26].
In [26], the author proposed to use the phase gradient autofocus (PGA) method to es-
timate and compensate for atmospheric phases. However, the PGA method considers
the atmospheric phase to be spatially consistent and can only be applied to small areas.
In [11], a two-tier network construction (TTNC) method was proposed to compensate the
atmospheric phase to achieve 3D reconstruction of urban buildings. However, this method
involves phase unwrapping and large matrix operations, and the computational complex-
ity is very high. Aiming at the drastically changing atmosphere in mountainous areas,
the literature [27] proposed a data-driven method to estimate the change in atmospheric
delay phase using a regression-kriging framework and used 32-strip SAR images to prove
the availability of this method. However, this method requires the use of the PS-InSAR
method for initial atmospheric phase estimation. Therefore, the processing process of this
method is heavy and complicated, and the performance of this method depends on the
accuracy of the initial atmospheric phase estimation.

For airborne MB SAR data, PEs are mainly caused by baseline errors, and the main
application scenarios of the data is forest areas. The literature [28] introduced a method
to minimize the entropy of the tomographic profile to compensate for PEs. However, this
method will introduce unwanted shifts in the elevation direction. To solve the unwanted
shifts, the literature [20] proposed a modified method based on the constrained optimization
of phase derivatives. In [23], the authors proposed a two-step calibration method to
compensate for space-varying PEs in range and azimuth directions. In [29], the authors
proposed a phase center double localization method to compensate for PEs without any
prior information. However, this method is not suitable for processing the MB SAR data
with low coherence images. In [30,31], the PGA method was used to compensate for PEs
caused by baseline errors. In [32], the authors combined the network construction (NC)
method with the PGA method to propose the NC-PGA method, which can realize the
phase error compensation in a large area.

The PGA method was originally used in SAR imaging and has strong robustness in
phase error compensation [33]. Moreover, it has been used with TomoSAR technology to
compensate for PEs of the spaceborne and airborne MB SAR data [26,30,31]. However, since
the PEs caused by atmospheric delays or baseline errors are space-variant, the PGA is not
suitable for handling large areas. In [32], the NC-PGA method was proposed to overcome
the shortcoming of the PGA method, which can realize the estimation and compensation of
spatially variable PEs in a large area. The literature [32] only verified the performance of
NC-PGA for PE compensation of the airborne MB SAR data in the forest area application.
Since both the network construction (NC) method and the PGA method can be used for
the spaceborne MB SAR data, it is not difficult to conclude that the NC-PGA method can
also be used for PE compensation of the spaceborne MB SAR data. However, the density
of permanent scatterers (PSs) in urban areas is large, and the matrix dimension required
for processing by the NC method is large, so the computational complexity is very high.
Therefore, for the 3D reconstruction of urban areas, the NC-PGA method is not suitable for
large-scale area processing. To address these problems, this paper proposes a BBN-PGA
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method to compensate for PEs in urban area tomographic imaging. The BBN-PGA method
adopted the block-building network (BBN) method to replace the NC method to estimate
the elevations of PSs in urban areas and combine the PGA method to compensate for PEs.
The main contributions are as follows.

• The BBN-PGA method can obtain estimated elevations of PSs in the whole test area
and bring these elevations into the subsequent PGA processing to compensate for PEs
of the whole area;

• The BBN method divides the entire test area into several sub-blocks for individual
network construction to form multiple permuted sub-networks, and each adjacent
sub-network overlaps. Compared with the NC method, this method can reduce the
matrix dimension and computational complexity of the algorithm while ensuring the
estimation accuracy, greatly improving the processing speed of the algorithm;

• In this paper, the applicability and effectiveness of the NC-PGA method are verified
for the first time by using the spaceborne MB SAR data in urban areas. It is also
proved that the BBN-PGA method proposed in this paper, as an improved method of
NC-PGA, can be used for the PE compensation of airborne and spaceborne MB SAR
data and can be applied to the 3D imaging of forests and urban areas.

The rest of this paper is formed as follows. Section 2 gives the tomographic SAR
model with PEs and introduces the workflow of the BBN-PGA method. Section 3 gives
the experimental results of the proposed BBN-PGA method using simulated data and the
TerraSAR-X data stack. A further discussion of the BBN-PGA method is given in Section 4.
Finally, conclusions are drawn in Section 5.

2. Methods
2.1. TomoSAR Signal Model with Phase Errors

Figure 1 shows the geometry of the spaceborne TomoSAR imaging system. Let us
assume that a SAR satellite acquired N SAR images in the same test area after N repeat
flights. One SAR image can be selected as the master image, and the other SAR images
are slave images. We can calculate the orthogonal baseline information of N images by
using the master image as a reference. As shown in Figure 1, B is the orthogonal baseline
span (i.e., tomographic aperture), and ∆B is the baseline interval for adjacent images.
The processing steps of TomoSAR technology mainly include co-registration of images,
deramping, PE compensation and tomographic imaging [2]. After the co-registration of
images and deramping steps, the TomoSAR signal model can be expressed as [7]:

gn =
∫

∆S

γ(s) exp(j2πξns)ds (1)

where gn=1,2...,N is the complex value at a pixel of the image, γ(s) is the reflectivity function
along elevation s and ∆S is the sampling range of s. ξn = 2bn/λR is the spatial frequency,
where λ is the wavelength, bn is the orthogonal baseline of the nth image and R is the slant
range between the sensor and target.

For spaceborne MB SAR data, PEs are mainly caused by atmospheric delays and
have spatially correlated and temporally uncorrelated distribution characteristics [20,26].
Moreover, the PE is commonly a low-frequency phase distortion, mainly due to spatial
inhomogeneity of atmospheric water vapor concentrations [24]. Assuming that ϕn is the
PE of the nth SAR image, and considering the presence of noise, Equation (1) can be
rewritten as:

g = Φ�AΓ + e (2)

where g = [g1, . . . , gn]T is the complex vector, Φ = [exp(jϕ1), . . . , exp(jϕN)]
T is the vector

of PEs, A is the N × M steering matrix with Anm = exp(j2πξnsm) (M is the number of
discrete samplings of ∆S), Γ = [γ(s1), . . . , γ(sM)]T is the reflectivity vector, e is the noise
vector, � represents the Hadamard product and (·)T represents transpose operation.
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Figure 1. The geometry of the spaceborne TomoSAR imaging system.

2.2. Phase Error Compensation Using the BBN-PGA Method

This subsection introduces the workflow of the BBN-PGA method. The workflow of
the BBN-PGA method is shown in Figure 2. BBN is an improved method of the NC method
to estimate elevations of PSs. Then, these elevations can be used in PGA to achieve PE
compensation for each subarea.

Figure 2. The workflow of the BBN-PGA method.

2.2.1. Applying BBN Method in the Test Area

As an improved method of the NC method, the BBN method reduces the complexity
and improves the processing efficiency by dividing the test area into sub-blocks and
constructing the network separately in each sub-block. As shown in Figure 2, the BBN
method mainly include four steps, as follows:

Firstly, PS selection. The BBN method requires the PSs in the whole area to construct
a network. The PSs can be selected based on the amplitude dispersion of the pixel [24],
which is defined by:

µ =

√√√√ 1
N

N

∑
n=1
|gn|2 −

(
1
N

N

∑
n=1
|gn|

)2/
1
N

N

∑
n=1
|gn| (3)

A threshold Tµ should be set to judge PSs. The pixel with µ < Tµ will be selected as a PS.



Remote Sens. 2022, 14, 4071 5 of 19

In the urban environment, the density of PSs is relatively large. Therefore, the number
of PSs that can be selected for a large test area is very large, which will make the calculation
complexity of the network construction method very large and the calculation time long.
To solve this problem, the BBN method proposes the idea of limiting the number of PSs,
that is, limiting the maximum number of PSs to p in an area of a certain size. Assuming
that there are a total of P PSs in a certain area, the amplitude dispersion value of the p PSs
selected in the BBN method must meet the following conditions:

µ1 ≤ µ2 ≤ · · · ≤ µp ≤ µp+1 ≤ · · · ≤ µP ≤ Tµ (4)

Secondly, sub-block division. To reduce the computational complexity, the BBN method
not only limits the number of PSs but also proposes the idea of sub-block segmentation
and overlapping network construction. We can evenly divide the test area into multiple
sub-blocks with a certain size wa ×wr (for example, 1 km × 1 km), and considering that the
elevations of PSs need to be jointly calibrated between each sub-block, adjacent sub-blocks
have overlapping areas (the width is wo). As shown in sub-plot b. in Figure 2, the test area
is divided into four sub-blocks by red lines, and the gray areas are the overlapping areas of
adjacent sub-blocks. Therefore, the size of these sub-blocks is (wa + wo)× (wr + wo).

Thirdly, network construction. The Delaunay triangulation network (DTN) is a robust
network to estimate the information of PSs [11,24]. Therefore, we can use the PSs in a
sub-block area to construct the DTN. The sub-plot c. in Figure 2 shows the result of network
construction. The networks of each sub-block are constructed separately and are not
connected, but the networks of adjacent sub-blocks have overlapping parts.

Finally, estimate the elevations of PSs. We can use the NC method introduced in [11]
and [32] to the DTN of each sub-block to estimate the elevations of PSs in each sub-block.
The NC method mainly includes the estimation of relative elevations at arcs of the DTN,
the screening of arcs and the estimation of absolute elevations of PSs. For a detailed
introduction of these steps, please refer to the literature [11,32], which is not be repeated
in this paper. After obtaining the elevations of PSs in each sub-block area, it is necessary
to use the elevations of the PSs in the overlapping area of two adjacent sub-blocks to
perform elevation calibration, so that the reference elevation of PSs in the entire test area is
consistent. We assume that there are two adjacent sub-blocks denoted as Bi and Bj. There
are I and J PSs in B1 and B2, respectively, and there are p PSs in the overlapping area of
B1 and B2. Then, the elevations of PSs in sub-block B2 can be calibrated according to the
elevations of PSs in B1 as:

sj = sj +
1
p

p

∑
k=1

(
sB1

k − sB2
k

)
, j = 1, . . . , J (5)

where sj is the elevation of jth PS in the sub-block B2, and sB1
k and sB2

k denote the elevations
of the kth PS in the overlapping area in sub-block B1 and sub-block B2, respectively.

2.2.2. Applying PGA for Each Subarea

After obtaining the elevations of PSs using the BBN method, these elevations can be
used in the PGA method to remove the linear phase term (caused by the elevation) of the PS
and better complete the estimation and compensation of PEs. As shown in Figure 2, the test
area should be first divided into multiple subareas. After that, the PE of each subarea can
be compensated by the PGA method. The size of subareas can be set according to the actual
situation, generally 50× 50 m to 100× 100 m can be selected.

Assuming that the subarea contains K PSs, the signal of the kth PS in the nth SAR
image is:

gk,n = γk exp(jϕn + j2πξnsk) + ek,n (6)

where γk is the complex reflectivity, sk represents the elevation of the kth PS and ek,n
denotes the noise component [30,31]. The BBN-PGA method considers the phase error to
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be spatially consistent within the subarea. Therefore, the phase error ϕn in Equation (6)
does not have changes along azimuth and range directions and is a fixed value within
the subarea.

Using the PGA method to estimate PEs can be roughly divided into following steps.

1. Remove the linear phase term. The linear phase 2πξnsk (shown in Equation (6)) must be
removed, then the gradient of ϕn can be estimated. After this operation, the gk,n can
be expressed as:

g′k,n = γk exp(jϕn) + e′k,n (7)

where e′k,n = ek,n · exp(−j2πξnsk) can be processed as white noise.
2. Estimate the phase gradient. The phase gradient ̂̇ϕn of ϕn can be estimated using the

maximum-likelihood estimation (MLE) kernel, the expression of which is:

̂̇ϕn = arg

{
K

∑
k=1

[(
g′k,n−1

)∗
· g′k,n

]}
, 2 ≤ n ≤ N (8)

where (·)∗ represents the conjugate operation, and arg (·) denotes the operation of
phase extraction.

3. Estimate phase errors. The PEs ϕn can be acquired by integrating the phase gradient ̂̇ϕn,
the expression of which is:

ϕ̂n =

 0, n = 1
n
∑

i=2
̂̇ϕi, n = 2, 3, . . . , N (9)

Then, the estimated PEs can be removed from the data of the subarea.

To improve the accuracy and robustness of the phase error compensation, the PGA
method adopts an iterative method for processing. A threshold Tpga can be set to determine
the convergence of the iteration, which can be expressed as [33]:

N

∑
n=1

∣∣∣ϕ̂a
n − ϕ̂a−1

n

∣∣∣2 < Tpga (10)

where a is the number of iterations, ϕ̂a
n is the estimated PEs at the ath iteration and the Tpga

is commonly set to 10−3.

2.3. TomoSAR Imaging

After the PE compensation, we can use the TomoSAR imaging method to extract the
height of scatterers by using the calibrated MB SAR data. In this paper, beamforming (BF)
is used to realize tomographic imaging. The basic idea of the BF algorithm is to design a
spatial filter with the finite impulse response, so that the spatial frequency corresponding
to the strong scatterer with a height of s can pass through without distortion, and the re-
sponse amplitude of other spatial frequencies can be weakened as much as possible [34,35].
The power of spatial spectrum estimated by using BF method as [2,36]:

P̂BF(s) =
aH(s)Ra(s)

N2 (11)

where a(s) = [exp(j2πξ1s), exp(j2πξ2s), · · · , exp(j2πξNs)]T is the steering vector, (·)H

denotes the Hermitian operator and R̂ is the covariance matrix and can be estimated over
L looks as:

R̂ =
1
L

L

∑
l=1

glgl
H (12)
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The gl=1,...,L can be selected from the pixels around a fixed pixel. [32,36]. Then,
the heights of scatterers can be estimated by detecting the peaks of P̂BF.

3. Experiments and Results

In this section, we conduct experiments with simulated and real data to evaluate the
performance of the BBN-PGA method and demonstrate its effectiveness and practicality.
Furthermore, we conducted a comparative analysis using PGA [30,31], TTNC [11], and NC-
PGA [32] methods to prove the advantages of BBN-PGA methods.

3.1. Simulated Experiments and Results

In this experiment, the parameters and baseline configurations of the TerraSAR-X data
stack (shown in Section 3.2.1) can be used to construct the simulated data. In the simulated
experiment, we simulate a 500× 500 pixels area. The characteristics of the simulated scene
are shown in Table 1. The simulated complex data uses the signal model of Equation (6),
and the signal-to-noise ratio (SNR) is set to 5 dB. Figure 3 shows the elevations and mean
amplitude of the simulated data.

Table 1. The characteristics of simulated scene.

Location Elevation [m] Size [pixels]

Top left 80 150× 150
Top right 25 150× 150

Center 5–128 150× 100
Bottom left 100 150× 150

Bottom right 45 150× 150

Figure 3. Simulated data with SNR = 5 dB: (a) the true elevation and (b) the mean amplitude.

As discussed in Section 2, the PEs caused by atmospheric delay exhibit low-frequency
distortion in space and are incoherent in the temporal dimension [24]. Therefore, in this
simulation experiment, we consider that PEs exhibit a linear change in the azimuth and
range directions. The PE ϕn can be expressed as:

ϕn(x, r) = c1 · α1,n +
c2 · α2,n

Nx
· x +

c3 · α3,n

Nr
· r (13)

where α1,n, α2,n and α3,n are uniformly distributed random numbers in [−0.5, 0.5]; c1, c2 and
c3 are constants that control the range of PE fluctuations; x and r denote the azimuth and
range coordinates of the pixel, respectively; and Nx and Nr denote the number of pixels in
the azimuth and range directions, respectively. In this experiment, the PEs are simulated
using Equation (13) by setting c1 = π radian and c2 = c3 = 2π radian.

To compensate for PEs, we first use the BBN method to obtain the elevations of PSs.
In the experiment, wet set Tu = 0.23 to select PSs and restricted it to keep 20 PSs in an area
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of size 50× 50 pixels. Figure 4 shows the simulated result of the BBN method, including
selected PSs, the networks of sub-blocks and estimated elevations of PSs. As shown in
Figure 4b, the simulated test area is divided into 4 sub-blocks to build 4 independent
networks, and adjacent networks have overlapping parts. Comparing Figures 3a and 4c, it
can be seen that the estimated elevations are basically the same as true elevations.

After obtaining the elevations of PSs, we can take these estimated elevations into
the PGA method and set the size of the subarea to 100 × 100 pixels for PE estimation
and compensation. Then, we use the BF method for TomoSAR imaging and extract the
elevation of each pixel. Figure 5 shows the comparison of the elevation estimated results of
the simulated test area. Figure 6 gives the joint distribution of the true elevation and the
estimated elevation. We also calculate the bias, root mean square error (RMSE), and the
coefficient of determination (R2) of the estimated elevations from the true elevations to
evaluate the performance of the proposed BBN-PGA method. R2 is a number that can
be used to represent the goodness of fit of the estimated value to the reference value [37].
The evaluation results are given in Table 2. From the simulated results, some conclusions
can be summarized as follows.

• The existence of PEs will seriously damage the extraction of target information, result-
ing in a large deviation of the estimated elevation (as shown in Figures 5b and 6b);

• The simulated results of the PGA method are significantly improved. The elevations
of most pixels are estimated relatively correctly. However, there are many outliers
(with larger errors of the estimated elevation) at the edges of the test area (as shown in
Figures 5c and 6c). This is because the PGA method assumes that the PEs have spatial
consistency and cannot achieve high-precision compensation of the space-variant PEs;

• As can be seen from Figures 5d–f and 6d–f, the estimated elevations of the three meth-
ods TTNC, NC-PGA and BBN-PGA are in good agreement with the true elevations,
which proves that the three methods have good PE compensation capability. Com-
bined with the evaluation results given in Table 2, the PE compensation capabilities
of the NC-PGA and BBN-PGA methods are better than the TTNC method. This is
because the NC-PGA and BBN-PGA methods are better than the TTNC method in
terms of bias, RMSE and R2.

• The PE compensation capability of methods NC-PGA and BBN-PGA is almost the
same. The elevation estimation accuracy after compensating the PEs by the two
methods is almost the same as that without PEs. This also proves that the two
methods, NC-PGA and BBN-PGA, can well compensate the space-variant PEs.

Figure 4. The simulated results of the BBN method: (a) selected PSs; (b) the networks of sub-blocks;
(c) estimated elevations of PSs.
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Figure 5. Comparison of elevation estimated results of the simulated test area: (a) PEs free data;
(b) the data with PEs; the data after PE compensation by using the (c) PGA, (d) TTNC, (e) NC-PGA
and (f) BBN-PGA methods.

Figure 6. Joint distribution of the true and estimated elevations: (a) PEs free data; (b) the data with
PEs; the data after PE compensation by using the (c) PGA, (d) TTNC, (e) NC-PGA and (f) BBN-
PGA methods.
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Table 2. Evaluation results of simulated experiments.

Method Bias (m) RMSE (m) R2

PEs free −0.002 2.099 0.9961
With PEs −44.93 65.47 –

PGA −2.497 20.83 0.6147
TTNC −2.597 5.889 0.9689

NC-PGA −0.017 2.141 0.9959
BBN-PGA −0.056 2.161 0.9959

Furthermore, we compare the computational complexity of different methods by
analyzing their running time. Table 3 gives the running time of different PE compensation
methods for processing the entire test area (a desktop with an Intel Xeon Gold 5218 16-core
processor). The BBN-PGA method takes the shortest time, and the PE compensation process
is completed in only 5.92 s, which is about 14 times faster than the NC-PGA method and
nearly 20 times faster than the TTNC method.

The above simulated experimental results demonstrate that the BBN-PGA method
can realize the compensation of space-variant PEs, and on the basis of ensuring that the
performance is similar to the NC-PGA method, the computational complexity is reduced
and the computational efficiency is greatly improved.

Table 3. Running time of different PE compensation methods.

Method Quantity (s)

PGA 9.1
TTNC 120.08

NC-PGA 87.61
BBN-PGA 5.92

3.2. Real Data Experiments and Results
3.2.1. Study Area and Data Stack

The MB SAR data is acquired by the TerraSAR-X satellite. It has 24 stripmap SAR
images acquired from July 2008 to November 2009 over Barcelona, Spain. Figure 7 shows
the study area in this experiments. The size of the study area is 1000× 2000 pixels and its
spatial dimensions are approximately 1.8× 2.4 km. Table 4 gives the basic parameters of the
TerraSAR-X data. Figure 8 shows the spatial and temporal baselines of the MB SAR data.
The span of the spatial baselines is about 246.7 m, and the span of the temporal baseline is
374 days.

Figure 7. The study area of real data experiments: (a) optical image in Google Earth; (b) the average
amplitude of 24 SAR images.
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Table 4. The parameters of the TerraSAR-X data.

Parameters Quantity

Orbit height 513 km
Wavelength 3.11 cm

Center incidence angle 35.32◦

Center slant range 618 km

Figure 8. The spatial and temporal baseline configurations of the TerraSAR-X data stack.

3.2.2. Inversion of Urban Height

In this experiment, we set the sub-block size to 500× 500 pixels and the overlapping
area width to 50 pixels for the BBN-PGA method to construct the sub-block network to
compensate for PEs of the real data stack. After compensating for PEs, we use the BF
method given by Equation (11) for tomographic imaging and extract the target height by
detecting the peak. Figure 9 shows the estimated heights of the study area. The results can
be summarized as follows.

• Before PE compensation, the height estimation results of urban buildings are very
poor, and there are many height outliers.

• After using PGA to compensate for PEs, it can be seen that the height estimation
results in the central area of the study area have been improved, and the heights
of buildings are reasonable. However, there are still many outliers (as shown in
Figure 9b). Additionally, the estimated heights of the buildings near the edge area are
poor (marked by the red ellipse in Figure 9b). This also proves that the PGA method
is not suitable for large area processing.

• After using BBN-PGA to compensate for PEs, the distribution of the estimated building
heights in the study area is reasonable, and there are very few outliers. This proves
that the proposed BBN-PGA method compensates well for PEs of the real data over a
large area.
Due to the high computational complexity of the TTNC and NC-PGA methods,
the computation for a larger area takes a long time and occupies a large amount
of memory. Therefore, in this experiment, a test area with a size of 1000× 1000 pixels
(as shown in the red box in Figure 7b) is selected to compare the performance of the
TTNC, NC-PGA and BBN-PGA methods. Figure 10 shows the estimated heights of the
test area after PE compensation. The estimated heights of the three methods are similar,
which can reflect that the PE compensation capabilities of the three methods are similar.
To evaluate the performance of the three methods more quantitatively, we chose the
high-rise building 1 (as shown in Figure 10a) for further comparative analysis.
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Figure 9. The estimated heights of the study area: (a) without PE compensation; with PE compensa-
tion using the (b) PGA and (c) BBN-PGA methods.

Figure 10. The estimated heights of the test area: (a) the corresponding SAR intensity; the estimated
heights after PE compensation using the (b) TTNC, (c) NC-PGA and (d) BBN-PGA methods.

A height model can be simulated to evaluate the accuracy of height estimation.
The height model contains the true height of scatterers covering building 1. The model
height increases linearly from the bottom to the top of building 1. Figure 11 shows the joint
distribution of the model height and the estimated height. It can be seen that the estimated
heights of most scatterers agree well with the model height. However, there are some
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scatteters in the red elliptical area in Figure 11 that do not match the linear model height,
which is caused by the overlapping of the roof and the wall of building 1. We calculate the
bias, RMSE, and R2 of the estimated heights from the model heights. It should be noted that
the overlapped region no longer satisfies the linear height model (which matches the actual
situation). Therefore, we remove the overlapped part shown in Figure 11 when calculating
the evaluation indicators to ensure the accuracy of the evaluation results. We also use the
same computer (a desktop with an Intel Xeon Gold 5218 16-core processor) to count the
running time of the three methods, TTNC, NC-PGA and BBN-PGA, to complete the PE
compensation in the test area. Table 5 shows the elevation results of this experiments. It can
be seen that in the term of PE compensation, the methods NC-PGA and BBN-PGA have
similar performance and are superior to the TTNC method. This is because the evaluation
indicators of NC-PGA and BBN-PGA are less different and better than the TTNC method.
In terms of processing speed, the BBN-PGA method takes the shortest running time, and its
processing speed is more than 110 times faster than the NC-PGA and TTNC methods.

Figure 11. Joint distribution of the model height and estimated height of building 1: (a) TTNC,
(b) NC-PGA and (c) BBN-PGA.

Table 5. Evaluation results of real data experiments.

Method Bias (m) RMSE (m) R2 Running Time (s)

TTNC −1.34 7.84 0.9111 3191.3
NC-PGA 0.26 4.35 0.9416 3081.8

BBN-PGA 0.31 3.64 0.9510 27.6

The above simulated and real data experimental results demonstrate that the BBN-
PGA method can realize the compensation of space-variant PEs over urban areas, and its
performance is better than that of the PGA and TTNC methods. Moreover, the proposed
BBN-PGA method can reduce computational complexity and greatly improve computa-
tional efficiency while keeping the performance similar to the NC-PGA method.

4. Discussion

The computational complexity and generality of the BBN-PGA and NC-PGA methods
are discussed in this section.

4.1. Computational Complexity

We contrast the NC-PGA and BBN-PGA methods through an analysis of the most
computationally complex step. The NC-PGA method uses the weighted least square (WLS)
estimators to estimate elevations of selected PSs, which can be expressed as [38]:

X =
(

DTWD
)−1

DTWS (14)
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where X = [x1, . . . , xP]
T is a P× 1 vector that contains the absolute elevations of selected

PSs (P is the number of selected PSs), S = [s1, . . . , sQ] is a Q× 1 vector that contains the
relative elevations at arcs (Q is the number of the retained arcs in DTN), W is a Q×Q is a
diagonal matrix with weighted values diagonally (the weighted values can be determined
according to the literature [11]) and D is a Q× P matrix, that is [32]:

D =


1 · · · −1 · · · 0 · · ·
...
· · · 1 0 · · · −1 · · ·

...

 (15)

where −1 represents the start PS, and 1 represents the end PS of one arc in the DTN, respec-
tively. Equation (14) involves the matrix multiplication and matrix inversion operations
of the large matrices D and W, and its computational complexity is very high. Moreover,
the dimensions of matrices D and W are related to the number of PSs and arcs. Therefore,
the computational complexity depends on the number of PSs (P) and the number of arcs
(Q) in the DTN.

We assume that the NC-PGA method selects P1 PSs in the entire test area, and the
DTN has Q1 arcs, then, the computational complexity of the WLS estimator in the NC-PGA
method is about:

O(P1Q1 + 2P1Q1
2 + 2Q1P1

2 + P1
3) (16)

For the same test area, it is assumed that the BBN-PGA method selects P2 PSs, and the
corresponding number of DTN arcs is Q2. We assume that the BBN method divides the
test area into L sub-blocks evenly, and each sub-block contains P2/L PSs and about Q2/L
arcs, then, the computational complexity of the WLS estimator in the BBN-PGA method is
about:

O(
P2Q2

L
+

2P2Q2
2 + 2Q2P2

2 + P2
3

L2 ) (17)

Therefore, the computational complexity of the BBN method is not only related to
the number of PSs and arcs but also inversely proportional to the number of sub-blocks.
In addition, considering the overlapping area between sub-blocks, the computational com-
plexity of the WLS estimator in the BBN-PGA method is slightly larger than Equation (17).
Comparing Equations (16) and (17), when P1 = P2, the computational complexity of BBN-
PGA is about L to L2 times lower than that of NC-PGA. Moreover, BBN-PGA also limits
the number of PSs, that is, P2 < P1, so the computational complexity of BBN-PGA is much
lower than that of NC-PGA.

The analysis of the results of the experiments with simulated and real data is given
below to verify the above discussion.

• In the simulated experiments, we set Tµ = 0.23 to select PSs. The NC-PGA method
preserves 9793 PSs and 29, 297 arcs in DTN. While the BBN-PGA method retains
[720, 600, 600, 500] PSs and [2135, 1778, 1780, 1478] arcs in the four sub-block DTNs, re-
spectively. Figure 12 show the DTN of NC-PGA and BBN-PGA methods. The running
time of the WLS step for NC-PGA and BBN-PGA is 68.69 s and 0.17 s, respectively.
In the processing speed of the WLS step, the BBN-PGA method is about 405 times
faster than the NC-PGA method, which is consistent with the above analysis. Table 3
shows the overall running time comparison of NC-PGA and BBN-PGA. The results
show that BBN-PGA takes 5.92 s and NC-PGA takes 87.61 s. The BBN-PGA method is
about 14 times faster than the NC-PGA method.
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Figure 12. The DTN of the (a) NC-PGA and (b) BBN-PGA methods in the simulated experiment.

• In the real data experiments, we set Tµ = 0.23 to select PSs. The NC-PGA method
preserves 32937 PSs and 98663 arcs in DTN. While the BBN-PGA method retains
[2327, 2115, 1882, 1913] PSs and [6949, 6314, 5598, 5713] arcs in the four sub-block DTNs,
respectively. Figure 13 show the DTN of NC-PGA and BBN-PGA methods. The run-
ning time of the WLS step for NC-PGA and BBN-PGA is 2971.83 s and 3.99 s, re-
spectively. In the processing speed of the WLS step, the BBN-PGA method is about
744 times faster than the NC-PGA method, which is consistent with the above analysis.
Table 5 shows the overall running time comparison of NC-PGA and BBN-PGA. The re-
sults show that BBN-PGA takes 27.6 s and NC-PGA takes 3081.8 s. The BBN-PGA
method is about 110 times faster than the NC-PGA method.

Figure 13. The DTN of the (a) NC-PGA and (b) BBN-PGA methods in the real data experiment.

To sum up, the BBN method reduces the number of PSs and arcs involved in the opera-
tion of Equation (14) by limiting the number of PSs and dividing the sub-blocks, which can
significantly reduce the computational complexity and improve the processing efficiency.

4.2. Generality

In this paper, we demonstrate that the NC-PGA method can achieve the estimation
and compensation of PEs caused by atmospheric delays. Furthermore, in [32], the authors
have proved the good ability of the NC-PGA method in compensating for PEs caused
by baseline errors. Therefore, the NC-PGA method has the capability of estimating and
compensating the PEs of the spaceborne and airborne MB SAR data stacks and is suitable
for TomoSAR processing in urban and forest areas. As an improved method of NC-PGA,
in this paper, the proposed BBN-PGA method was proven to have a performance close to
that of NC-PGA in the PE compensation of spaceborne MB SAR data acquired over urban
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areas. We have reason to believe that the BBN-PGA method also has PE estimation and
compensation ability for airborne MB SAR data and can be applied to forest areas.

Here, we conduct experiments with airborne MB SAR data to verify the generality of
the BBN-PGA method. The MB SAR data was acquired by the ONERA SETHI airborne
system in the frame of the European Space Agency’s campaign TropiSAR [39]. Figure 14
shows the SAR image of the test forest area. The test area is located in French Guiana,
and its introduction can be found in [20,32]. Figure 15 shows tomographic imaging results
along a line (marked by the red line in Figure 14). Obviously, the TomoSAR profiles of
the data after PE compensation using the BBN-PGA method are well focused, and the
sidelobes of profiles are well suppressed, which are highly similar to those of NC-PGA.

Figure 14. The SAR image of the forest area.

Figure 15. Tomographic imaging on a line. From top to bottom: without PE compensation and with
PE compensation using NC-PGA and BBN-PGA methods.

In summary, the BBN-PGA method and the NC-PGA method have similar PE compen-
sation performance. Both methods can achieve good compensation for PEs of spaceborne
and airborne MB SAR data stacks and are suitable for tomographic processing in urban
and forest areas. Therefore, both BBN-PGA and NC-PGA methods have good practicability
and generality.

5. Conclusions

To realize the 3D reconstruction of urban areas, a novel BBN-PGA method is proposed
in this paper. The BBN-PGA method combines the BBN method and the PGA method to
compensate for PEs in a large urban area using spaceborne MB SAR data. The BBN method
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can estimate the accurate elevation of PSs in the whole area, which can be used in PGA
to complete PE compensation. Furthermore, the BBN method reduces the computational
complexity by limiting the number of PSs and dividing the sub-blocks, which greatly
improves the processing efficiency of the method.

This paper has demonstrated the effectiveness and applicability of the proposed BBN-
PGA method by using simulated data and the TerraSAR-X data stack. The experimental
results show that the BBN-PGA method can well realize PE compensation of the spaceborne
MB SAR data, so that the TomoSAR technology can better and more accurately extract the
height of urban buildings. Compared with the PGA and TTNC methods, the PE compen-
sation performance of the BBN-PGA method is better, and it can achieve more accurate
estimated heights of scatterers. Compared with the NC-PGA method, the performance of
the BBN-PGA method is similar to that of the NC-PGA method, but the computational
complexity of the BBN-PGA method is lower, and its processing efficiency is greatly im-
proved (as shown in Tables 3 and 5, the processing speed of BBN-PGA is about 14 times
and 110 times faster than that of NC-PGA). Furthermore, this paper is the first time the
capability of the NC-PGA method in PE compensation of spaceborne MB SAR data has
been verified. We also demonstrate that the proposed BBN-PGA method can achieve PE
(caused by atmospheric delays or baseline errors) compensation for both spaceborne and
airborne MB SAR data for tomographic processing in urban and forested areas. These
experiments are sufficient to demonstrate the effectiveness, practicability and generality of
the proposed BBN-PGA method in PE compensation.

Of course, the analysis of the BBN-PGA method in this paper is not comprehensive
enough. In the future, we will focus on the impact of the size of sub-blocks and the number
of PSs on the performance of the BBN-PGA method to improve the robustness of this
method, so that the BBN-PGA method can be applied to more scenes such as mountains
and glaciers.
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