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Abstract: Live fuel moisture content (LFMC) is an important index used to evaluate the wildfire
risk and fire spread rate. In order to further improve the retrieval accuracy, two ensemble models
combining deep learning models were proposed. One is a stacking ensemble model based on LSTM,
TCN and LSTM-TCN models, and the other is an Adaboost ensemble model based on the LSTM-TCN
model. Measured LFMC data, MODIS, Landsat-8, Sentinel-1 remote sensing data and auxiliary data
such as canopy height and land cover of the forest-fire-prone areas in the Western United States,
were selected for our study, and the retrieval results of different models with different groups of
remote sensing data were compared. The results show that using multi-source data can integrate the
advantages of different types of remote sensing data, resulting in higher accuracy of LFMC retrieval
than that of single-source remote sensing data. The ensemble models can better extract the nonlinear
relationship between LFMC and remote sensing data, and the stacking ensemble model with all
the MODIS, Landsat-8 and Sentinel-1 remote sensing data achieved the best LFMC retrieval results,
with R2 = 0.85, RMSE = 18.88 and ubRMSE = 17.99. The proposed stacking ensemble model is more
suitable for LFMC retrieval than the existing method.

Keywords: live fuel moisture content; deep learning; ensemble learning; multi-source remote sensing

1. Introduction

Live fuel moisture content (LFMC) is the ratio of vegetation water content to its dry
weight [1]. The research shows that there is a clear correlation between the probability of
fire and LFMC [2,3], which is an important index affecting the occurrence probability and
propagation rate of forest wildfire. To put it another way, accurate and dynamic retrieval
of LFMC is extremely valuable to realize the fire risk assessment and spatial modeling of
fire behavior [4]. Remote sensing satellite can provide large-scale, multi-band and near-
real-time image data, which makes remote sensing technology one of the main methods
to estimate LFMC on a large scale [5]. The method of estimating LFMC based on optical
remote sensing data is the most widely studied [6–8]. MODIS optical remote sensing data
are commonly used in the early stage. Myoung et al. [9] developed an empirical model
function of LFMC using an aqua-enhanced vegetation index based on MODIS satellite
data for wildfire risk assessment in Southern California. Carmine et al. [10] developed a
new spectral index, the perpendicular moisture index (PMI), which is sensitive to LFMC
based on MODIS satellite data. The experimental results show that PMI had a linear
relationship with LFMC, and the highest R2 was 0.87. Landsat-8 can provide higher spatial
resolution than MODIS, which has been introduced to estimate LFMC in recent years.
Considering the complexity of upper tree canopy and lower grass canopy, Quan et al. [11]
predicted the forest FMC of a two-layer canopy structure in Southwest China by coupling a
radiative transfer model and a Landsat-8 product. Mbulisi et al. [5] used Landsat-5 and
Landsat-8 data to quantitatively retrieve vegetation canopy FMC in six study areas based
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on PROSAIL and PROGeoSAIL radiative transfer models. These methods based on optical
remote sensing depend on the absorption characteristics of leaf water at near-infrared
(NIR) or short-wave infrared (SWIR) wavelengths [12]. Optical and infrared reflectance are
highly sensitive to vegetation characteristics such as canopy structure [13] and leaf area
index [14,15], and so these models are often only applicable for very specific sites, and the
generalization ability of different regions is limited [16,17].

The wavelength of microwave remote sensing is longer than that of optical remote
sensing by four orders of magnitude. Microwaves can penetrate the clouds and en-
ter the vegetation canopy, which enables microwave remote sensing to acquire the dy-
namic changes in vegetation moisture better than optical remote sensing [18–20]. In re-
cent years, the prediction ability of active microwave remote sensing technology repre-
sented by synthetic aperture radar (SAR) for fire-related variables has been verified [21,22].
Wang et al. [20] coupled the soil backscatter linear model with the vegetation backscatter
water cloud model, achieving forest FMC retrieval based on Sentinel-1 SAR data and a
better performance than that obtained using Landsat-8 data and empirical methods.

Different remote sensing data have different sensitivities to vegetation water and
biomass, and the effect of single-source remote sensing data retrieval of LFMC is limited.
Using multi-source remote sensing data to estimate LFMC can avoid the limitations of
single-source remote sensing data and provide more comprehensive data for extracting
the parameters required for LFMC retrieval [23]. Deep learning can approach the complex
nonlinear relationship between various biological, geophysical parameters and remote
sensing data through multi-layer learning [24,25], which provides a data-driven alternative
for large-scale LFMC retrieval. Rao et al. [19] performed LFMC retrieval based on a
long short-term memory (LSTM) network with fused data, i.e., Landsat-8 data, SAR data,
terrain, slope and other auxiliary variables. The retrieval of fused data achieved R2 = 0.63,
RMSE = 25%, which is better than that of single-source remote sensing data (R2 = 0.44,
RMSE = 31.8%). Zhu et al. [26] proposed the LFMC retrieval architecture TempCNN-LFMC
based on temporal convolutional networks (TCNs). With MODIS, altitude, slope and other
auxiliary data as the input fused data, the retrieval achieved R2 = 0.64, RMSE = 22.74%.
The above research shows that the fused data are helpful in improving the performance of
LFMC retrieval.

A single model cannot completely extract the features of remote sensing variables in
LFMC. To improve the accuracy of LFMC retrieval, it is worthwhile to combine multiple
models to extract the features of multi-source remote sensing in time and space dimensions
at the same time [25]. Therefore, based on deep learning and ensemble learning methods,
this study discusses the LFMC retrieval performance using multi-source remote sensing
data. The contents of this study include the following aspects:

(1) We explore the advantages of LFMC retrieval utilizing multi-source remote sensing
data obtained from combing MODIS, Landsat-8, Sentinel-1 and auxiliary data such as
canopy height and land cover as data sources, which can provide more comprehensive
data and avoid the limitations of single-source remote sensing data.

(2) We propose a LFMC retrieval model integrating the LSTM and TCN, which exploits
the long-time memory capability of LSTM and the superior feature extraction capabil-
ity of TCN, and finally performs better than LSTM and the TCN alone.

(3) Based on LSTM, TCN and TCN-LSTM models, two ensemble models (the stacking and
Adaboost ensemble models) are designed, and the advantages of stacking ensemble
model are confirmed by comparative experiments.

2. Data and Methods
2.1. Study Area

The Western United States was selected as the study area (shown in Figure 1), where
wildfires occurred frequently. This area covers more than 3.7 million square kilometers,
containing different climates and terrains. The vegetation types are abundant, including
broadleaf deciduous forests, needleleaf evergreen forests, shrublands, grasslands and
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sparse vegetation areas, which made it an ideal area for studying LFMC prediction methods.
Considering the integrity and generality of the data, the selected study period was from
1 January 2015 to 31 December 2018.
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2.2. Research Data
2.2.1. LFMC Data

The National Fuel Moisture Database (NFMD) [27] is a web-based query system. There
have been over 200,000 actual measurements of fuel moisture data since 1977. The database
regularly updates monitored fuel moisture data, covering 976 samples mainly located
in the Western United States, each covering an area of 5 acres. The measurements were
taken in the mid-afternoon and on dry days with no dew or precipitation. In this paper,
133 representative samples were selected, and the specific location is marked by circular
points in Figure 1. During the study period, the value of LFMC varied from 16% to 320%,
which covers the common water state of live fuels.

2.2.2. MODIS Data

The MODIS data came from MODIS Terra and Aqua joint observation of the MCD43A4
product [28]. The product was the nadir bidirectional reflectance distribution function
(BRDF)-adjusted reflectance (NBAR) data, the spatial resolution of which is 500 m. BRDF
was fitted using 16-day Terra and Aqua MODIS data and applied to the original reflectance
to obtain NBAR. In this study, Band1–Band7 of NBAR reflectivity data were selected as the
model input.

In addition, snow cover will lead to abnormal reflectivity. Thus, the snow pixels
need to be deleted. The MODIS snow product (MOD10A2-V6) [29] was used to determine
whether there was snow. MOD10A2 is a snow cover product synthesized every eight days
from the first day of each year. In MOD10A2, if a pixel is classified as snow on any day of
the eight days, the pixel is identified as snow.

2.2.3. Landsat Data

Landsat data came from the 16-day surface reflectance data of Landsat-8 [30], which
are Level 1T products with a spatial resolution of 30 m. There is a strong correlation between
the normalized difference water index (NDWI) and LFMC [31]. Considering that water
mainly absorbs the energy of near-infrared (NIR) and short-wave infrared (SWIR) spectral
regions, the original band reflectances of red, green, blue, near-infrared and short-wave
infrared channels were selected to directly reflect the change in water [32]. The normalized
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difference vegetation index (NDVI) is a simple, effective and empirical measurement of
surface vegetation, and it is also a key factor affecting the prediction of LFMC [33]. The
near-infrared vegetation index (NIRV) is an indicator of vegetation biomass level because it
is related to carbon assimilation of photosynthesis, so it may help to separate the effects of
biomass and LFMC on Sentinel-1 backscattering [34]. To sum up, three vegetation indexes,
NDWI, NDVI and NIRV, and the original band reflections of red, green, blue, near-infrared
and short-wave infrared channels were selected from Landsat-8 data.

2.2.4. Sentinel-1 Data

Sentinel-1 is a 5.4 GHz C-band synthetic aperture radar (SAR) with a 12-day revisit
cycle in the Western United States. The Sentinel-1 data used in this study were derived
from the ground-range detector (GRD) data of Sentinel-1, and the data were collected
in the wide-strip mode of interferometric measurement with vertical–vertical (VV) and
vertical–horizontal (VH) polarization on land [35]. Since the microwave signal has a longer
wavelength, is less sensitive to atmospheric conditions, is not susceptible to cloud pollution
and can detect deeper vegetation canopy, the microwave remote sensing data can provide
more continuous global observation [36]. At the same time, the absorption and scattering of
the microwave signal by the surface (including vegetation and soil) is mainly determined
by the microwave backscatter σ [37], and microwave backscatter is mainly affected by the
moisture content, so the microwave signal is sensitive to vegetation water content [38].
Therefore, in this paper, σVV , σVH and σVV − σVH were used as the microwave input for
the model.

2.2.5. Auxiliary Data

Seven kinds of static auxiliary data were chosen to help the model learn the radiative
transfer process between time-varying input and LFMC. The specific data can be divided
into the following three categories:

The first category is soil data, including silt, sand and clay content, which was used to
control the sensitivity of microwave backscattering to soil moisture, so that the retrieval
model could separate vegetation-related information from microwave backscattering. The
soil data come from the North American soil map of Liu et al. [39].

Vegetation canopy water content has a certain sensitivity in the near-infrared and short-
wave infrared bands [5], and the sensitivity of different vegetations to remote sensing data is
also different. The canopy height measured by the Global Laser Altimeter System lidar [40]
and the land cover information of 300 m spatial resolution obtained by GLOBCOVER [41]
were selected as the second auxiliary data.

The third category is terrain data; considering that the local incidence angle will affect
the parameterization of backward scattering on vegetation water [37], it was necessary
to use the elevation and slope of the National Elevation Dataset [42] to help the model
calibrate the local terrain.

Table 1 summarizes all the inputs used in the model.

Table 1. Input variables of LFMC retrieval model.

MODIS Landsat-8 Sentinel-1 Auxiliary Variables

Band1 red σVV Silt content
Band2 green σVH Sand content
Band3 blue σVV − σVH Clay content
Band4 NIR Canopy height (m)
Band5 SWIR Land cover
Band6 NDWI Altitude (m)
Band7 NDVI Slope (◦)

NIRV



Remote Sens. 2022, 14, 4378 5 of 15

2.3. Data Process

Given the presence of numerous vegetation species at certain sample points and the
lack of information on the abundance of these species, directly averaging the LFMCs of
different species will result in significant inaccuracies. We adopted the same strategy as [19],
excluding sampling points with multiple species unless the LFMCs of multiple species
were similar during the research period (Pearson r between any two species ≥ 0.5). Thus,
2934 samples from 133 sampling points were included in total (shown in Figure 1).

Because the spatial and temporal resolutions of MODIS, Landsat-8 and Sentinel-1
are not the same, spatial and temporal consistency processing was needed. The remote
sensing variable data of the sample points were extracted by the Google Earth Engine
(GEE) according to the latitude and longitude coordinates. According to the latitude and
longitude coordinates, the spatial synchronization of ground data and remote sensing data
could be realized. The remote sensing data were unified to the resolution of 250 m using
bilinear interpolation.

The sampling period of live fuel samples in each location was roughly one month, so
the time series input was linearly interpolated to the end of each month to ensure that the
data had the same time phase. The maximum changes in MODIS, Landsat-8 and Sentinel-1
data were only 2.3%, 6.7% and 3.0%, respectively. It can be considered that the interpolation
operation had little effect on the input data.

2.4. Dataset

In this work, three-fold cross-validation was used to test the model. To ensure that the
performance of the model was tested on samples that were completely different from the
training sample points by separating data by sample points, the data were first stratified
randomly sampled into training and test sets by a ratio of 2:1 to ensure that the distribution
of land cover types in the training and test sets remained the same. This implies that
the training set was made up of data from two-thirds of the locations (89 sample points),
while the test set was made up of data from the remaining one-third (44 sample points).
In addition, the training set was divided into three folds, two for training and one for
validation. Finally, the results presented in the paper were calculated based on the estimated
value of the test set.

2.5. LFMC Retrieval Models
2.5.1. TCN-LSTM Model

LSTM can effectively deal with the dynamic dependence of complex long-term time
series. The TCN has simple structure and strong feature extraction ability. Combined with
the ability of TCN feature extraction and LSTM long-time series memory, the TCN-LSTM
network is designed to predict the LFMC. The structure of the TCN-LSTM network is
shown in Figure 2.
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The retrieval process is as follows:

(1) Firstly, the LFMC data and selected input variables (x1, . . . , xn) are fed into the TCN.
The features of remote sensing variables and LFMC are extracted through the causal
convolution layer contained in the TCN.

(2) Then, multiple LSTM layers combined with the dropout mechanism are used for
prediction, which can prevent over fitting.

(3) Through the flatten layer, the output matrix is compressed into one dimension to
facilitate the connection of the later dense layer.

(4) The nonlinear relationship is mapped to the output space through the dense layer to
achieve the LFMC prediction results.

2.5.2. Stacking Ensemble Model

In order to further improve the performance of LFMC retrieval, a two-layer stacking
ensemble model integrating LSTM, TCN and TCN-LSTM was further proposed. The model
structure is shown in Figure 3.
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The first layer extracts the features from the original split dataset through three basic
learners. The basic learners of the stacking model should be “accurate but different”, that is,
the prediction accuracy of each basic learner is required to be high, and the types of basic
learners should also be diverse. So, LSTM, the TCN and TCN-LSTM were introduced as
the base learners. In order to avoid over fitting, a simple linear regression (LR) was selected
as the meta-learner of the second layer.

2.5.3. Adaboost Ensemble Model

Unlike stacking ensemble, Adaboost ensemble trains several weak learners based on
different training subsets randomly selected from the original training dataset. Adaboost
ensemble is based on homogeneous integration, which is composed of the same type of
basic learners. In this work, the TCN-LSTM model was selected as the weak learner to
construct the Adaboost ensemble model. Figure 4 shows the structure of the Adaboost
ensemble model.

In each training process, the initial weights are assigned to the samples at first, and
the weights are updated after each iteration. The samples with a high error rate obtain
higher weights, which makes the algorithm focus on the samples that are more difficult
to learn. The sample weight is adjusted to Dn, and passed to the next weak learner Gn
for better prediction. Therefore, the features extracted by G1 are transmitted to G2, and
then the features estimated with high error can be corrected in the transmission process,
which is helpful to improve the prediction accuracy. At last, the weighted average method
is utilized to obtain the strong learner HM, the output of which is the final prediction result.
Considering the computational efficiency, the number of TCN-LSTM, that is, the number of
iterations t, was set to 3.
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2.5.4. Model Settings

There are three basic models, LSTM, the TCN and TCN-LSTM. Table 2 lists the archi-
tectures of these models. In the ensemble models, the same architectures were used. All the
proposed models estimated LFMC for each month using input variables of three previous
months. Although predicting one month averaged LFMC value can be error-prone due
to the variations in LFMC, we were constrained by the temporal resolution of the remote
sensing data.

Table 2. The architectures of the used basic prediction models.

LSTM TCN TCN-LSTM

Layer Output Shape Layer Output Shape Layer Output Shape

LSTM (32,4,10) Conv1D (32,365,64) Conv1D (32,4,32)
LSTM (32,4,10) AvgPool (32,182,64) Conv1D (32,4,32)
LSTM (32,10) Conv1D (32,182,64) MaxPool (32,2,32)
Dense (32,1) AvgPool (32,60,64) Flatten (32,64)

Conv1D (32,60,64) RepeatVector (32,1941,64)
MaxPool (32,15,64) LSTM (32,1941,10)
Flatten (32,960) LSTM (32,1941,10)
Dense (32,256) LSTM (32,10)
Dense (32,1) Dense (32,1)

3. Experiments and Results
3.1. Experimental Setup

The hardware environment of the experiments was: CPU: Intel (R) Core (TM) i7-8565U,
Memory: 8 GB. The software environment was: Windows 10 64 operating system, deep
learning framework Tensorflow2.3.0 and python 3.7. Adam optimizer was used, and the
parameters were the default values. The batch size was 32, the learning rate was 0.01, and
the epoch was 300. In order to avoid over fitting, early stopping based on the loss of the
validation set was used [43], and patience was 30.

3.2. Evaluating Indicator

Bias, determination coefficient R2, root mean square error (RMSE) and unbiased root
mean square error (ubRMSE) between estimated and measured LFMCs were chosen to
quantitatively evaluate the performance of the models. When R2 was closer to 1 and the
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RMSE value was lower, the model accuracy was higher and the model was more accurate.
The calculations of RMSE and ubRMSE are shown in Formulas (1) and (2):

RMSE =

√√√√ 1
N

N

∑
i
(LFMCi,m − LFMCi,e)

2 (1)

ubRMSE =

√√√√ 1
N

N

∑
i
(LFMCi,m − LFMCi,e −

(
LFMCm − LFMCe

)
)

2 (2)

where N is the number of measurements; LFMCi,m and LFMCi,e are the ith measured
and estimated LFMC, respectively; LFMCm and LFMCe are the averages of measured and
estimated LFMC, respectively.

3.3. Comparison of Different Deep Learning Models

The performances of three different models, LSTM, the TCN and TCN-LSTM, with
different remote sensing data were compared. The retrieval results are shown in Figure 5.
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By comparing and analyzing the results in Figure 5 and Table 3, it can be concluded that:

Table 3. Evaluation results of LFMC retrieval results based on LSTM, TCN and TCN-LSTM.

Data Model Bias (%) R2 RMSE (%) ubRMSE (%)

S
LSTM −9.39 0.38 37.07 35.86
TCN −7.42 0.42 35.97 35.2

TCN-LSTM −5.93 0.44 34.81 34.3

L
LSTM −3.93 0.51 32.67 32.43
TCN −3.8 0.54 31.58 31.35

TCN-LSTM −3.12 0.60 25.83 25.64

M
LSTM −7.39 0.52 33.01 32.17
TCN −5.04 0.55 31.39 30.98

TCN-LSTM −4.74 0.62 25.11 24.66

L+S
LSTM −7.06 0.60 26.32 25.35
TCN −4.83 0.67 23.05 22.54

TCN-LSTM −4.81 0.72 22.78 22.31

M+S
LSTM −4.76 0.62 25.33 24.88
TCN −4.53 0.68 22.43 21.97

TCN-LSTM −4.05 0.75 22.21 21.71

M+L+S
LSTM −6.53 0.73 24.39 23.5
TCN −5.03 0.76 23.03 22.48

TCN-LSTM −4.66 0.81 21.73 19.93

(1) The bias of all the three models was negative, indicating that all the models under-
estimated LFMC as a whole. The TCN-LSTM model had the lowest bias among all
the models on the same dataset. The bias of Sentinel-1 was the largest, and that of
Landsat-8 was the lowest. Although microwave remote sensing (Sentinel-1) is more
penetrating due to its high sensitivity to surface moisture, it is difficult to distinguish
between vegetation and bare soil backscatter only using microwave remote sensing
data, which leads to higher bias. The multi-source remote sensing data fuse the mi-
crowave remote sensing and optical remote sensing together, which can be essentially
seen as the integration of the microwave backscattering characteristics and optical
characteristic. Therefore, the retrieval performances of multi-source remote sensing
data were higher than those of the single-source remote sensing data.

(2) The R2, RMSE and ubRMSE of the TCN-LSTM model were also better than those of
the LSTM and TCN models. The retrieval accuracy of the TCN-LSTM model with all
three kinds of remote sensing data was the highest at R2 = 0.81, RMSE = 21.73 and
ubRMSE = 19.93, which means that TCN-LSTM can incorporate the advantages of
LSTM and the TCN and effectively extract the features of multi-source remote sensing.

A comparison with the retrieval results of references is shown in Table 4; the TCN-
LSTM model with multi-source remote sensing achieved the best results for LFMC retrieval.
Compared with the best results of the existing method [20], R2 and RMSE were improved
by 26.56% and 4.44%, respectively.

Table 4. Comparison of different LFMC retrieval methods.

Method R2 RMSE (%)

LSTM (Landsat+SAR) [19] 0.63 25
TempCNN-LFMC (MODIS+Auxiliary data) [20] 0.64 22.74

TCN-LSTM model 0.81 21.73
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3.4. Comparison of Different Ensemble Learning Models

Table 5 shows the performance comparison of different ensemble learning models with
different remote sensing data. It can be seen that the performances of two ensemble learning
models with all three kinds of remote sensing data were better than with other data. The
retrieval results for LFMC based on the stacking ensemble model with MODIS, Landsat-8
and Sentinel-1 are the best. This is mainly due to the integration of the advantages of three
different models. While the Adaboost ensemble model only uses one kind of basic learner,
its performance was poorer than that of the stacking ensemble model.

Table 5. Performances of different ensemble learning models.

Data

Stacking Adaboost

Bias
(%) R2 RMSE (%) ubRMSE (%) Bias

(%) R2 RMSE (%) ubRMSE (%)

S −5.75 0.53 31.87 31.35 −4.59 0.53 31.62 31.29
L −3.35 0.7 23.26 23.21 −1.65 0.65 23.6 23.54
M −4.55 0.74 23.82 23.39 −4.16 0.68 22.53 22.14

L+S −1.55 0.81 19.96 19.95 −2.61 0.76 22 21.31
M+S −1.43 0.81 19.86 19.81 −2.7 0.8 20.5 20.32

M+L+S −0.542 0.85 18.88 17.99 −0.563 0.83 19.7 18.8

Together with Table 3, it was found that with different groups of remote sensing data,
the trend in the performances of the single model and the ensemble model was almost the
same. The more data used, the better the performance. Additionally, based on multi-source
data (M+L+S), compared with the TCN-LSTM model, the R2, RMSE and ubRMSE of the
stacking ensemble model realized an improvement of 4.9%, 15.1% and 10.8%, respectively.

4. Discussion
4.1. Explanation of Estimated LFMC Value

In general, when using Landsat-8, Sentinel-1 and MODIS for LFMC retrieval, the
estimated value is higher than the measured value, and the linear fitting is good when the
LFMC is low. With the increase in LFMC, the estimated value is lower than the actual value,
the points are discrete, and the overall correlation is high [44]. Figure 6 shows the LFMC
retrieval results and measured values based on two ensemble learning models combined
with MODIS, Landsat-8 and Sentinel-1. We can see that two proposed ensemble learning
models underestimated high LFMC values (>120%), and there was a systematic bias for
phenological periods with high LFMC values. This can be partly explained by the limited
sensitivity of the optical sensing data to wet vegetation and the tendency of the proposed
method to globally optimize the solution at the cost of underestimation at high values.
Similar underestimations have been observed in other studies using physical or data-driven
methods [45]. However, such underestimation is not significant when considering the cause
of the fire hazard or behavior [46]. Experience has shown that when LFMC is high (>120%),
the probability of fire occurrence is comparatively low, or fire movement through this area
is limited, so this has less of an impact on fire managers, who might use this model to
assess LFMC.

The proposed models also overestimated low values (<30%), which may have been due
to the presence of dead combustibles, such as grass fuel [47] and leaf litter. Nevertheless, the
magnitude of the positive bias was very small (as shown in Figure 6). Moreover, when the
LFMC value is lower than 60%, the likelihood of fire occurrence increasing dramatically [48].
So, if the LFMC value is less than 30%, fire managers will be more aggressive with the
estimated results. The impact introduced by the minor error on fire managers who may
use the model is limited to the extent that this is overestimated in the range (<30%).
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4.2. Advantages of Multi-Source Remote Sensing Data and Ensemble Learning

Due to the different shortcomings of different remote sensing data, as expected, the
LFMC retrieval results with all the Landsat-8, Sentinel-1 and MODIS remote sensing data
are much higher than those of other data when using the same model, which can be
attributed to the fact that multi-source remote sensing data can reduce the uncertainty of
single-source data and provide more valuable features derived from the complementarity
of different data.

Furthermore, the ensemble learning method comprises several basic learners together
to obtain better performance. The Adaboost ensemble model is a sequential ensemble
technique, in which the final prediction is based on the weighted average results of three
weak learners (TCN-LSTM) trained on different training subsets, while the stacking en-
semble model combines three parallel basic learners (LSTM, TCN and TCN-LSTM) in the
first layer to extract abundant features, and then concatenates straightforward logistic
regression as the second learner. Three different basic learners combined with sequential
concatenation operation produced better features and an improved retrieval performance
over the Adaboost ensemble model.

To summarize, the combination of multi-source data fusion and ensemble learning
can significantly improve retrieval performance and provide considerable potential for
accurate LFMC estimation.

4.3. Limitations of the Proposed Method with Processed Data

As we all know, the estimation of LFMC using remote sensing data (such as optical
and microwave data) has the same issue since remote sensing data are dependent not only
on LFMC but also on other bio- and geophysical characteristics [26]. Previous studies tried
to find the empirical relationships or physical models between LFMC and other factors. De-
spite the satisfactory results of these methods, carefully handcrafted input variables chosen
based on our understanding of radiative transfer processes must be selected; additionally,
corresponding field data are needed, making these models challenging to generalize and
operationalize on large-scale sites.

In our work, we introduced deep learning to capture the complicated nonlinear
relationship among the LFMC and the remote sensing data, hoping to avoid the selection of
carefully handcrafted input variables and the collection of corresponding field data, making
it easier to realize large-scale LFMC estimation. The results demonstrate that this method
performs admirably in large-scale sites (133 sampling points) with diverse vegetations,
while during the data processing, considering the time resolution of remote sensing data
and the frequency of measured LFMC, we interpolated the data to the end of each month,
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which means the time resolution was one month, resulting in the misrepresentation of daily
or weekly fluctuations in LFMC. However, this limitation would be solved by gathering
data with a smaller resolution.

Furthermore, we are all aware that the kind of vegetation has a direct impact on
various remote sensing data [19,26]. Here, we simply delegated the task of classifying
vegetation types implicitly to the deep learning model. Figure 7 presents the RMSEs of
LFMC retrieval results of different vegetations, demonstrating that the RMSEs of four
single-vegetations are often lower than that of mixed vegetations. In particular, the worst
predictions were made for mixed shrub–grassland. This suggests that our previous strategy
of selecting sample points makes sense, and that using the selected samples to train the
model is beneficial in improving the accuracy of the predictions. Nevertheless, a fully
data-driven model would very likely result in mistakes if detailed vegetation distribution
data were not included. In practical application, a feasible option is to collect more data
and then create more advanced models.
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Finally, while it is widely acknowledged that deep learning is a data-driven nonlinear
model with high automated learning and generalization capabilities that have the potential
to be applied to other regions, the efficacy of its application in other locations requires more
data for validation.

5. Conclusions

In this study, a TCN-LSTM model was firstly designed to improve the effect of feature
extraction, and further, two ensemble models were proposed based on the TCN-LSTM
model to achieve more accurate retrieval of LFMC. Considering the different shortcomings
of separate Landsat-8, Sentinel-1 and MODIS remote sensing data, all the three data were
utilized together to obtain higher performance. The results of the experiments on the LFMC
data from the Western United States show that the stacking ensemble model with all three
remote sensing data achieved the best performance. The proposed stacking ensemble
model was trained on historical data, which can automatically extract the nonlinear corre-
lation between remote sensing data and LFMC. This enabled the proposed model’s good
generalization ability. Our model is data-driven, which means it has the potential to realize
significant accuracy in LFMC estimation for other locations with appropriate training data.
Meanwhile, our results reveal that our proposed models had a mixture of predictions with
low and high amounts of bias. We believe this is because different vegetations are not
explicitly considered. We will study and improve our model on more available data in
the future.
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