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Abstract: SPAD value was measured by a portable chlorophyll instrument, which can reflect the rela-
tive chlorophyll content of vegetation well. Chlorophyll is an important organic chemical substance
in plants that acquires and transmits energy during photosynthesis. The continuous spectral curve of
winter wheat can be obtained rapidly in a specific band range by using hyperspectral remote sensing
technology to estimate the SPAD value of winter wheat, which is of great significance to the growth
monitoring and yield estimation research of winter wheat. In this study, with winter wheat as the
research object, the spectral data and corresponding SPAD value in different growth stages were used
as the data source, 20 kinds of data preprocessing spectra and sensitive spectral indices set the data
as model input values, the partial least square regression (PLSR) model was established to estimate
the SPAD value, and the model estimation results of different model input values at different growth
stages were compared in detail. The results showed that the set of sensitive spectral indices selected
in this study as input values can effectively improve the accuracy and stability of the PLSR model. In
addition, the effects of 20 spectral data pretreatment methods on the estimation results of the SPAD
value were compared and analyzed in different growth stages. It was found that the spectral data
pretreated by the combination of wavelet packet denoising, first-order derivative transformation and
principal component analysis can improve the accuracy and stability of PLSR model, and it is suitable
for all growth stages. The results also showed that the estimation model is highly sensitive to the
standard deviation of the SPAD value (STDchl) in sample sets. When the standard deviation is greater
than 5.5 SPAD, the larger the STDchl is, the higher the model estimation accuracy is, and the more
stable the model is. At this time, the model estimation accuracy is higher (R2

V is greater than 0.5,
ratio of performance to deviation is greater than 1.4), which can meet the estimation requirements of
the SPAD value.

Keywords: hyperspectral remote sensing; partial least squares regression; chlorophyll content;
SPAD value

1. Introduction

Chlorophyll is the main pigment in plants that aids in photosynthesis and plays a
great role in the acquisition and transmission of energy in plants [1,2]. As an important
index to evaluate the healthy growth of vegetation, it is important to obtain the chlorophyll
content quickly and nondestructively [3,4]. A portable chlorophyll instrument is used to
measure a relative chlorophyll content, which has real-time, rapid, and non-destructive
advantages [5].

At present, hyperspectral remote sensing technology has been widely studied and
applied in agriculture, including spectral feature analysis of crop leaves or canopy, mon-
itoring and inversion of some physiological and biochemical parameters in crops, crop
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identification and classification, pest monitoring, etc. [6–8]. This technology can quickly
obtain the continuous spectral curve of crops, and its small difference can reflect different
characteristics such as crop growth. The visible range band (400–780 nm) of the spectrum
is the strong absorption band of pigment [9]. The change of visible spectrum waveform is
closely related to the content of chlorophyll in leaves. Jin et al. analyzed the spectrum of
rice leaves and the corresponding chlorophyll content and found that the sensitive bands
related to the chlorophyll content of rice leaves were 450–686 and 750–780 nm [10]. Lu et al.
analyzed the correlation between the spectrum of cherry leaves and chlorophyll content
after making various changes [11]. Using stepwise linear regression analysis, it was found
that the variable log(1/R741) was highly correlated with the chlorophyll of cherry leaves.
Zhang et al. conducted a variety of typical changes in the original winter wheat spectrum
and found that the spectral change data based on the second derivative R′′ can accurately
estimate the chlorophyll content under low temperature stress [12]. In the range of red
light, the research of red edge parameters is also the focus of many researchers. Bonham
Carter et al. defined the red edge position as the wavelength value corresponding to the
first-order differential maximum in the red band and then analyzed its relationship with
leaf chlorophyll content in detail [13]. Yang Jie et al. compared the reflectance of any two
bands in the spectrum of rice leaves from 350 to 2500 nm and calculated its normalization
index [14]. They proposed that the band ratio SR(R724, R709) and normalization index
ND(R780, R709) are the two spectral indices most closely related to the chlorophyll content
of rice leaves, and the determination coefficients are above 0.9. To extract sensitive bands,
Wang et al. employed the elastic net approach to minimize the dimensionality of hyper-
spectral data and then retrieved the chlorophyll content of winter wheat [15]. Qiu et al.
applied the SPAD value and spectral techniques to study the change of nitrogen during
rape growth [16].

Because the spectral data obtained by the instrument has a certain noise, most re-
searchers will preprocess the spectral data in the estimation of chlorophyll content of winter
wheat [10–14]. However, single or two or three kinds of preprocessed spectral data or some
spectral indices are generally used as a model input to estimate winter wheat chlorophyll
content, and different preprocessing methods are used in different studies [11,12,14]. Few
studies compare the effects of these common preprocessing or spectral indices on the
results of a winter wheat leaf green content estimation model. Therefore, it is necessary
to select some common preprocessed spectral data and select some spectral indices with
high correlation with chlorophyll content as input values, and compare and analyze the
model accuracy under various input values. In addition, for the remote sensing monitoring
of winter wheat chlorophyll content, most researchers perform research based on the sam-
ple data of a certain growth period [17], which lacks universality for all growth periods.
Therefore, it is necessary to consider the whole growth period of winter wheat and find a
chlorophyll estimation model suitable for the whole growth period.

Therefore, this study will collect the spectral data of Winter Wheat in multiple growth
stages (from jointing stage to maturity stage), take different combinations of preprocessed
spectral data and spectral indices data [18] as input values, respectively, and model to
estimate the SPAD value. In addition, PLSR [19,20] will be used to compare and analyze
the estimation results of different models and explore the influencing factors of model
accuracy and stability. It has certain application value for estimating the SPAD value
in different growth stages and provides a theoretical basis and data preprocessing refer-
ence for estimating the chlorophyll content of vegetation from spaceborne hyperspectral
satellite images.

2. Experiments and Methods
2.1. Study Area

The study area is located in the international agricultural high tech Industrial Park of
Chinese Academy of Agricultural Sciences in Langfang City, Hebei Province. The geographical
coordinates are 116◦35′34′′E–116◦35′36′′E and 39◦35′50′′N–39◦35′53′′N (Figure 1). The average
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annual temperature is 13.9 ◦C, and the average annual precipitation is 393.4 mm, belonging to
the warm temperate continental monsoon climate. The total area of the test area is 1200 m2

(20 m wide and 60 m long). The soil texture is mainly loamy, and the soil types are mainly
brown soil, moisture soil and cinnamon soil, with a unit weight of 1.5 g/cm3. The winter
wheat variety selected in the experiment is Jingdong 12, and the fertilization level is consistent
with the field fertilization level in this area (pure nitrogen (N) 256.5 kg·hm−2, phosphorus
pentoxide (P2O5) 240 kg·hm−2, all input at one time during sowing).
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2.2. Spectral and SPAD Value Data Acquisition

The data used in the study mainly include the spectral data of winter wheat leaves at
various growth stages and the corresponding SPAD value.

The spectral data of winter wheat leaves were measured by portable ground object
spectrometer ASD FieldSpec4. The wavelength range of the spectrometer is 350–2500 nm, the
spectral sampling interval is 1.4 nm (350–1000 nm), 2 nm (1001–2500 nm) and the spectral
resolution is 3 nm (700 nm), 8 nm (1400, 2100 nm). The spectra of winter wheat leaves were
measured from 10:30 to 13:30 Beijing time when the weather was sunny, cloudless or light
cumulus, windless or wind speed lower than 1 m/s. Before measurement, the optical fiber
probe is vertically aligned with the standard reference plate (whiteboard) for calibration. The
winter wheat spectrum measurement is re-calibrated with the whiteboard every 15 min to
prevent the influence caused by the drift of the sensor response system and the change of the
solar incidence angle [21]. During the measurement, the measurer was dressed in dark color,
facing the vertical direction of the sun (perpendicular to the main plane direction), holding a
pistol, and the optical fiber probe was vertically pointing downward at the no shadow in the
front leaf of the top leaf of winter wheat. The spectral measurement position of winter wheat
was selected at the place with less stem veins and more mesophyll. The vertical distance
between the optical fiber probe and the blade is 1 cm. The spectral curves of each leaf sample
are measured repeatedly, and 5 spectral curves are collected, and the average value of the
5 spectral curves is taken as the final spectral reflectance of the sample. The spectrum of green
vegetation is mainly affected by pigment content in the range of 400–900 nm, and it will show
obvious peak and valley characteristics, which is a representative band range distinguished
from non-green vegetation [22]. The study only makes correlation analysis on the spectral data
in the range of 400–900 nm. The SPAD value was measured by portable chlorophyll meter
SPAD-502 and replaced by a SPAD value. After the leaf spectrum is measured, a portable
chlorophyll meter is used to evenly measure five values at the spectral measurement points
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immediately and the average value is calculated as the SPAD value sample. Each growth
stage was randomly sampled in the experimental area.

Spectral data and SPAD data were collected at the jointing stage, heading stage,
flowering stage, grain filling stage, milk ripening stage and mature stage. The data of the
whole growth period include the data of six single-growth periods. The set aside method is
used to divide the training set and the verification set, in which 4/5 of the samples are used
for training, and the remaining 1/5 are reserved for verification. In order to make the types
of samples in the training set and the verification set as balanced as possible, the samples in
each growth period are sorted from small to large according to the SPAD value, and then,
one sample from every four is taken into the verification set according to the approximate
ratio of 4:1 between the training set and the verification set, and the remaining samples
are put into the training set. The data set size and SPAD value information of each growth
period are shown in Table 1.

Table 1. The introduction of winter wheat sample sets on each growth stages.

Growth Stages Data Collection Data Sample Set Number of Samples
SPAD Value

Maximum Minimum Average Standard
Deviation

Jointing stage 26 April 2019
Training set 132 55.5 25.2 43.645 5.632

Validation set 32 56.8 35.5 46.350 5.481
Total sample set 164 56.8 25.2 44.173 5.722

Heading stage 9 May 2019
Training set 156 67.2 45.9 54.341 3.511

Validation set 44 68.9 49.7 55.823 3.652
Total sample set 200 68.9 45.9 54.667 3.604

Flowering stage 13 May 2019
Training set 78 60.7 46.4 53.304 2.652

Validation set 20 65.1 51.7 56.585 3.196
Total sample set 98 65.1 46.4 53.973 3.087

Filling stage 22 May 2019
Training set 156 70.1 46.6 55.112 3.187

Validation set 39 61.4 43.8 54.754 3.133
Total sample set 195 70.1 43.8 55.041 3.180

Milk ripening stage 28 May 2019
Training set 156 65.3 27.0 50.796 6.558

Validation set 44 62 17.3 49.584 8.125
Total sample set 200 65.3 17.3 50.529 6.969

Maturity stage 31 May 2019
Training set 156 63.6 3.2 43.013 12.580

Validation set 39 58 2.5 42.236 13.099
Total sample set 195 63.6 2.5 42.857 12.722

Whole growth stage
Training set 842 76.8 17.3 51.702 6.432

Validation set 210 63.6 2.5 43.578 12.592
Total sample set 1052 76.8 2.5 50.079 8.694

2.3. Spectral Index Collection

Affected by pigments, plant leaves have strong absorption characteristics in visible
light band, especially in red band, and strong reflection characteristics in near-infrared band,
which is the physical basis of remote sensing monitoring of green plants [23]. Through the
reflectivity value of each band of visible light and near infrared, different vegetation indices
can be obtained by different combinations of derivative values. 62 spectral indices related
to the inversion of plant chlorophyll content in the published literature were collected and
sorted out (Table 2). By analyzing the correlation between these spectral indices and the
SPAD value, the sensitive spectral indices set will be selected to predict the SPAD value of
winter wheat.
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Table 2. Spectral indices used to estimate the vegetation physiological and ecological parameters.

Number Spectral Indices Formula Reference Number Spectral Indices Formula Reference

V1 NDVI R800 − R670
R800 + R670

[24] V2 CI R750
(R700 − R710)− 1

[25]

V3
GI R554

R677
[26] V4 SIPI (680) R800 − R455

R800−R680
[27]

V5
VI(700) R700 − R670

R700 + R670
[28] V6 RDVI (R800 − R670)√

(R800 + R670)
[29]

V7
SR R800

R680
[30] V8 SR2 R700

R670
[31]

V9
MNDVI8 (R755 − R730)

(R755 + R730)
[32] V10 DPI D688 ∗ D710

D697
2

[33]

V11
D2-C D705

D722
[33] V12 D1-CF D730

D706
[33]

V13
NDVI2-LS,Ca

R750 − R705
R750 + R705

[34] V14 Gitelson-
LS,CTotal

1
R700

[35]

V15
Datt4-LS,C R754

R704
[36] V16 Datt1-LS,Cb

R672
R550

[37]

V17
SIPI R800 − R445

R800 − R680
[27] V18 SR5 R752

R690
[38]

V19
SR3-LS,S R440

R690
[39] V20 Vogelmann-LS,C R740

R720
[40]

V21
Boochs1 D703 [41] V22 Boochs2 D720 [41]

V23
SOFDR (625–795) ∑795

625 D [42] V24 CI R800 − R550
R800

[43]

V25
MSR R800 − R445

R680 − R445
[44] V26 REP Max(D680, D760) [45]

V27
BGI R450

R550
[46] V28 SIPI (705) R800 − R455

R800 + R705
[47]

V29
ZM R750

R710
[46] V30 Datt-LS,C R850 − R710

R850 − R680
[36]

V31
SR6 R750

R550
[38] V32 MNDVI1 R755 − R745

R755 + R745
[32]

V33
D690_red D690 [47] V34 NDVI3 R682 − R553

R682 + R553
[48]

V35
Maccioni-LS,C R780 − R710

R780 − R680
[49] V36 MTCI R754 − R709

R709 − R681
[50]

V37
NPCI R680 − R430

R680 + R430
[27] V38 GNDVI-Ca

R800 − R550
R800 + R550

[51]

V39
Datt3-LS,C R850

R710
[36] V40 Datt5-LS,Ca,total

R672
R550 ∗ R708

[36]

V41
Datt2-LS R860

R550 ∗ R708
[37] V42 SR4 R750

R700
[38]

V43
SR1-LS,Ca

R675
R700

[52] V44 SRPI R430
R680

[27]
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Table 2. Cont.

Number Spectral Indices Formula Reference Number Spectral Indices Formula Reference

V45 Vogelmann2-LS,C R715
R705

[40] V46 Vogelmann3-LS,C R734 − R747
R715 + R726

[40]

V47
SOFDR (680–780) ∑780

680 D [45] V48 Carter-I R695
R760

[53]

V49
DVI R800 − R670 [30] V50 PSSRC R800

R680
+

R800
R635

[54]

V51
Gitelson-RG R800

R550
− 1 [55] V52 BI R800+R670 +

R550√
3

[43]

V53
TCARI 3 ∗

(
(R700 − R670)− 0.2 ∗ (R700 − R550) ∗

(
R700
R670

))
[56]

V54
MCARI1 1.2 ∗ [2.5 ∗ (R800 − R670)− 1.3 ∗ (R800 − R550)] [57]

V55
MCARI [(R700 − R670)− 0.2 ∗ (R700 − R550)](

R700
R670

) [58]

V56
TVI 0.5 ∗ [120 ∗ (R750 − R550)− 200 ∗ (R670 − R550)] [59]

V57
MCARI2 1.5 ∗ [2.5 ∗ (R800 − R670)]− 1.3 ∗ (R800 − R550)√

(2 ∗ R800 + 1)−
(
6 ∗ R800 − 5 ∗

√
R670

)
− 0.5

[57]

V58
EVI 2.5 ∗

(
R800 − R670

R800 − (6 ∗ R670)− (7.5 ∗ R475) + 1

)
[60]

V59
TCARI2-Wu 3 ∗

(
(R750 − R705)− 0.2 ∗ (R750 − R550) ∗

(
R750
R705

))
[61]

V60
DD (R749 − R720)− (R701 − R672) [62]

V61
MND (705) (R750 − R705)

(R750 + R705 − 2R445)
[44]

V62
MNDVI (R800 − R680)

(R800 + R680 − 2R445)
[36]

2.4. Spectral Preprocessing Methods

Denoising, data form transformation and dimension reduction single preprocessing
were applied to the original winter wheat spectral data in turn (Table 3). Two different
denoising approaches are no denoising (ND) and wavelet packet denoising (WPD) [63–65].
Five different mathematical forms of transformation are the original spectral reflectance
data R, reciprocal 1/R, log(R), first derivative R’ and reciprocal first derivative (1/R)’ [66].
Two different dimensionality reduction approaches are no dimension reduction (NDR) and
principle component analysis dimension reduction (PCADR) [67–70].

Table 3. Combination pretreatment.

Preprocessing Name

Denoising ND, WPD
Data form transformation R, R’, (1/R)’, 1/R, log(R)

dimension reduction NDR, PCADR
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Denoising, data form transformation, and dimension reduction single preprocessing
are combined to form a total of 20 combined preprocessing methods. The model’s input
value is various combinations of preprocessed spectral data, and the model estimation is
established by PLSR.

2.5. Partial Least Squares Regression

The link between vegetation spectrum and vegetation chlorophyll concentration can
be studied using partial least squares regression (PLSR). This method can estimate the
dependent variable through the linear combination of independent variables [71]. It is a
multiple independent variables to multiple dependent variables linear regression modeling
technique. When the sample size is small and there are multiple correlations between
variables, the PLSR method has more advantages than the traditional regression model [71].
Due to the possible strong correlation between independent variables, it is easy to lead
to overfitting of the problem when solving the linear regression problem of multiple
independent variables to multiple dependent variables. However, the PLSR technique will
identify several linear independent new variables to substitute the previous independent
variables, allowing the diversity between independent variables to be maximized and the
overfitting problem to be alleviated.

In this paper, the preprocessed spectral data and the sensitive vegetation indices with
high correlation with winter wheat chlorophyll are used as the input values of the model,
and the PLSR method is used to estimate and analyze the SPAD value of winter wheat.

2.6. Model Performance Evaluation Indices

The root mean square error of the training set (RMSET), the root mean square error of
the validation set (RMSEV), the determination coefficient of the training set R2

T, the deter-
mination coefficient of the verification set R2

V, and the ratio of performance to deviation
(RPD) were all used to carefully consider the model’s effectiveness in the research.

The determination coefficient R2 is the second power of the correlation coefficient R.
The calculation formula of the correlation coefficient R is shown in Formula (1).

Ri =
cov(x, y)√
D(x)

√
D(y)

=

N
∑

n=1
(xni − xi)(yn − y)√

N
∑

n=1
(xni − xi)

2 N
∑

n=1
(yn − y)2

(1)

In Formula (1), the Ri is the correlation coefficient between the winter wheat leaf spectral
reflectance in band i and the winter wheat leaf SPAD value, N is the total number of
samples, xni is the spectral reflectance of winter wheat leaves in band i of the nth sample, xi
is the average spectral reflectance of winter wheat leaves in band i of all samples, yn is the
SPAD value of winter wheat leaves in the nth sample, and y is the average SPAD value of
winter wheat leaves in all samples. The value of determination coefficient is equal to R2.

The calculation formula of root mean square error (RMSE) is shown in Formula (2).

RMSE =

√√√√√ N
∑

n=1

(
ynt − ynp

)2

N
(2)

In Formula (2), RMSE is root mean square error, N is the total number of samples, ynt is
the measured value of winter wheat leaf SPAD value, ynp is the estimated value of winter
wheat leaf SPAD value.

The calculation formula of RPD is shown in Formula (3).

RPD = SD/RMSEV (3)
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In Formula (3), RPD is the ratio of performance to deviation, SD is the standard deviation
of SPAD value of winter wheat leaves in the validation set.

Generally speaking, the higher the value of the R2, the higher the correlation between
the predicted value and the real value. The RMSE value should be as low as possible.
The stronger the model’s stability, the closer the RMSET and RMSEV are. RPD can be
categorized into three categories: The model is useful for accurately predicting the SPAD
value of winter wheat when RPD is equal to or greater than 2.0. The model’s reliability can
be enhanced by fine-tuning when the RPD is below 2.0. The model is unstable when RPD
is equal or falls below 1.4 [72].

3. Result
3.1. Sensitive Spectral Indices Screening

By analyzing the correlation between these spectral indices and SPAD value, the
sensitive spectral indices set was selected to predict the SPAD value of winter wheat.

Figure 2 shows the changes of 62 spectral indices and correlation coefficient of leaf
SPAD value in jointing, heading, flowering, filling, milk maturity, maturity and whole
growth stage of winter wheat. Each vertical line in the figure corresponds to a spectral
index. The seven points on the vertical line represent six single growth periods and whole
growth periods. The length of the vertical line is the maximum and minimum difference
between spectral index and correlation coefficient of chlorophyll concentration in six single
growth periods and whole growth periods. The association between each spectral index
and SPAD value is more or less affected by different growth periods, as seen in the figure.
The association between spectral index V11 and chlorophyll concentration at heading
stage is −0.11594, but the association between spectral index V11 and leaf SPAD value at
maturity stage is as high as −0.919, which fluctuates greatly. We found that the vertical line
length corresponding to each spectral index ranges from 0.1 to 1.1. The sensitive spectral
indices selected by comprehensive consideration can reflect the differences of different
growth periods, and it is applicable to all growth periods. It is based on the spectral indices
corresponding to the maximum value of positive correlation coefficient and the minimum
value of negative correlation coefficient between each growth period and SPAD value, to
screen the sensitive spectral indices.
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Table 4 lists the spectral indices and correlation coefficients corresponding to the maxi-
mum positive correlation coefficient and the minimum negative correlation coefficient of
the SPAD value in different growth periods. The maximum positive and negative correla-
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tion coefficients at jointing, milk maturity, maturity and whole growth stages are higher,
above ±0.7, but the maximum positive and negative correlation coefficients at heading and
filling are slightly smaller, basically below ±0.5. According to Table 3, 11 spectral indices
V7, V8, V13, V24, V25, V26, V27, V35, V42, V49 and V50 are finally selected as sensitive
spectral indices. The bands involved in these sensitive spectral indices are basically in the
range of 670–755 nm, which are concentrated near the red edge, and some spectral indices
also involve the 550 nm green peak band. This shows that the SPAD value has a great
correlation with the red edge information and green peak information. The hyperspectral
differences of winter wheat leaves at various growth stages are also mainly reflected in the
vicinity around the green peak and red edge.

Table 4. Sensitive spectral indices.

Growth Stages
Highest Positive

Correlation Spectral
Indices

Highest Positive
Correlation
Coefficient

Lowest Negative
Correlation Spectral

Indices

Lowest Negative
Correlation
Coefficient

Jointing stage V7 0.795 V26 −0.742
Heading stage V24 0.415 V42 −0.400

Flowering stage V25 0.553 V35 −0.521
Filling stage V27 0.413 V35 −0.380

Milk ripening stage V49 0.720 V26 −0.717
Maturity stage V13 0.919 V8 −0.919

Whole growth stage V50 0.830 V8 −0.799

3.2. Estimation of SPAD Value Based on Sensitive Spectral Indices Set

The value range of each sensitive spectral index is quite different. In the first place,
the normalized spectral indices are employed as the input value of the PLSR model to
complete the subsequent SPAD value estimation. Table 5 shows the estimated findings of
PLSR chlorophyll concentration for each growth period. Figures 3–9 demonstrate a scatter
diagram of the estimation results of the SPAD value in various growth phases, in which
figure (a) is the estimation results of training set and figure (b) is the estimation results
of the validation set. The results showed that the estimation results of the heading stage,
flowering stage and filling stage were poor, with RPD value less than 1.4 and R2

V value less
than 0.1. The estimation results of the jointing stage and milk ripening stage were better,
RPD value was greater than 1.5 and R2

V value was greater than 0.6. The estimation results
of the mature stage and whole growth stage are the best, RPD value is basically above 2,
and especially in the mature stage, the R2

V value was up to 0.974.

Table 5. Estimation results of chlorophyll concentration in various growth stages with spectral indices
set as input value.

Growth Stages RMSET (SPAD) RMSEV (SPAD) RPD R2
T R2

V

Jointing stage 3.204 3.473 1.578 0.687 0.706
Heading stage 2.906 3.894 0.938 0.319 0.010

Flowering stage 2.215 3.609 0.885 0.310 0.002
Filling stage 2.646 3.214 0.975 0.315 0.063

Milk ripening stage 4.422 5.136 1.582 0.552 0.634
Maturity stage 4.517 3.624 3.615 0.882 0.974

Whole growth stage 3.894 6.399 1.956 0.634 0.792
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3.3. Estimation of SPAD Value Based on Different Pretreatment Approaches

There are great differences between the estimated results of the preprocessed spectral
data model in different growth stages. Table 6 lists the best model’s estimation findings
under 20 kinds of combined pretreatments in different growth periods. Figures 10–16
are scatter plots of the estimation results of the preprocessing optimal model in six single
growth stages, as well as the entire growth stage. R2

V growth value and RDP growth value
in Table 6 refer to the growth values of R2

V and RDP, respectively, compared with the
model estimation results of the original spectral data.

Table 6. The optimal estimation results under the data preprocessing of each growth stages.

Growth
Stages

Pretreatment
Method

RMSET
(SPAD)

RMSEV
(SPAD) RPD R2

T R2
V

R2
V Growth
Value

RPD Growth
Value

Jointing WPD-(1/R)’-PCADR 3.377 3.453 1.587 0.650 0.734 0.318 0.578
Heading WPD-1/R-PCADR 2.616 3.532 1.034 0.450 0.180 0.178 0.405

Flowering WPD-(1/R)’-PCADR 0.545 3.948 0.809 0.983 0.092 0.071 0.220
Filling ND-(1/R)’-PCADR 2.777 2.616 1.198 0.244 0.340 0.330 0.225

Milk ripening WPD-(1/R)’-PCADR 4.881 6.266 1.297 0.452 0.512 0.005 0.101
Maturity WPD-R’-PCADR 4.143 3.734 3.508 0.903 0.970 0.109 1.170

Whole growth WPD-R’-PCADR 2.844 6.107 2.062 0.806 0.785 0.044 0.180
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Table 6 and Figures 10–16 demonstrate that the chlorophyll estimation results of
the optimal model in different growth periods are basically obtained by preprocessing
WPD-R’-PCADR or WPD-(1/R)-PCADR, and the R2

V value can be up to 0.970, indicating
that the combination of WPD denoising, PCA dimensionality reduction and first deriva-
tive mathematical form transformation can well increase the PLSR SPAD value estimate
model’s accuracy. This is because the first derivative transformation can highlight useful
information, denoising can decrease the noise in the original spectral information, and
dimensionality reduction can better select useful information and avoid overfitting in
model training due to data redundancy. In addition, the chart also shows that the RPD
value in the maturity stage and the whole growth stage is greater than 2, and the model R2

V
value is above 0.75; especially in the mature stage, the R2

V value was up to 0.97, which can
be a good estimate of the SPAD value of winter wheat. The RPD value of jointing stage is
greater than 1.4, which can also better estimate the SPAD value of winter wheat. However,
the estimation results of the SPAD value in the heading stage, flowering stage, filling stage
and milk maturity stage were extremely poor, R2

V was less than 0.4, and the corresponding
RPD value was less than 1.4.

3.4. Comparison of SPAD Value Estimation Results of Different Model Inputs

Taking the sensitive spectral indices or the preprocessed spectral data as the model
input value, the estimation results have some similarities, which are mainly reflected in
different growth periods.

Firstly, the estimation accuracy of the mature stage and whole growth stage is very
high, RPD value is greater than 2, and R2

V can be up to 0.97 in the mature stage. The
estimation accuracy of the jointing stage and milk maturity stage is relatively high, RPD
value is basically greater than 1.4, and the accuracy R2

V value is also greater than 0.5. The
model’s accuracy in predicting the stages of heading, flowering, and filling are relatively
poor, R2

V value is less than 0.4, and the estimation results are obviously underfitted (Tables 5
and 6). The estimation accuracy of different growth periods varies widely, and one of the
influencing factors is the original sample set. The number of samples collected in every
growth period is similar; however, the STDchl in the sample set is substantially different
(Table 1). From the turning green to jointing and then to the heading stage, the temperature
increases continuously, the winter wheat leaves grow continuously, and the top leaf size
also increases continuously. During this period, the chlorophyll content increases sharply.
From filling to the mature stage, the grain in the wheat ear takes shape, its reproductive
growth is dominant, and the vegetative organs such as leaves gradually stop growing and
begin to wither and fall off. Coupled with the damage of high temperature to leaf cells,
the chlorophyll content in the leaves decreases significantly. Therefore, the sample’s SPAD
value measured in these two periods has a large range, and the STDchl in the sample set
is also large. The standard deviation of the SPAD value in the sample set at the jointing
stage, milk maturity stage, maturity stage and whole growth stage is greater than 5.5. From
heading stage to filling stage, the number and size of leaves basically did not change, and
the chlorophyll content increased slowly. Therefore, the range of SPAD value in the sample
set measured during the growth period is small, and the STDchl in the sample set is also
small. The standard deviation of the SPAD value in the heading, flowering and filling stage
is less than 4.

Secondly, using preprocessed spectral data or sensitive spectral indices set as the
model input value can significantly boost the precision and stability of the PLSR-based
SPAD value estimating model, and when the STDchl of all samples in the model sample
set is greater than 5.5 (Tables 1, 5 and 6), the estimation accuracy is higher (the estimation
accuracy is greater than 0.5), and the model is stable (RPD is greater than 1.4). Moreover,
when STDchl in the sample set is greater than 5.5, the larger the SPAD value in the sample
set, the more accurate the model’s estimation. Most important of all, the STDchl in the
sample set and the estimation accuracy of the model from high to low are the mature
stage, whole growth stage, jointing stage and milk mature stage. It can be seen that the
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SPAD value estimation model based on PLSR is particularly responsive to the input sample
set’s STDchl in addition to the high requirements for the spectral input value of the model
(appropriate spectral data preprocessing or appropriate spectral indices set). In addition,
there are great differences in the estimation results of single growth period data. If only the
data of a single growth period are used to build a model to estimate the SPAD value, the
universality of the estimation results is too weak. It is suggested to collect the data of mixed
growth period (such as the whole growth period in this paper) for relevant estimation
research, and the stability of the model is stronger.

The estimation results of input values of different models also have some differences.
When the STDchl in the input value sample set is greater than 6, taking the sensitive spectral
indices as the input value is more accurate than taking the preprocessed spectral data. The
calculation formula of spectral indices involves the mathematical form transformation of
spectral data. Taking spectral indices as the model’s input value also has a certain function of
data compression and dimensionality reduction. Therefore, the spectral indices set selected in
this study can significantly aid in improving the model’s accuracy and reliability.

3.5. Estimation of SPAD Value with Different Chlorophyll Standard Deviations

For the sake of further confirming the estimation model’s sensitivity to the STDchl in
the input sample set, we estimated the SPAD value in different standard deviation sample
sets. Within this investigation, the SPAD value in all samples ranges from 2.5 to 76.8. Taking
5 as the gradient and making statistics in the range of 0 to 80 (Figure 17), it is found that
the SPAD value of most samples is concentrated in the range of 40 to 60. Based on the
principle that the sample set has as many standard deviations (STD) of different SPAD
values as possible, the sample set with different SPAD value ranges is set. The range of
SPAD value in the sample set ranges from 5 to 80. The spectral data of each sample set
pretreated by WPD-(1/R)-PCADR are used as the input value of the model, and the model
estimation accuracy of different SPAD value ranges was analyzed using the PLSR SPAD
value estimation model (Table 7).
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Table 7. The estimation results of different SPAD value ranges.

SPAD Value Range STD (SPAD) RMSET (SPAD) RMSEV (SPAD) RPD R2
T R2

V

50–55 1.393 1.299 1.305 1.065 0.133 0.121
50–60 2.424 2.159 2.265 1.083 0.203 0.151
45–60 3.462 2.641 2.653 1.301 0.420 0.422
45–65 3.748 3.018 3.070 1.223 0.352 0.338
40–65 4.981 3.271 3.657 1.362 0.57 0.472
40–80 5.173 3.644 3.699 1.378 0.509 0.485
35–80 5.878 3.664 3.694 1.578 0.614 0.607
30–80 6.242 4.096 4.065 1.523 0.573 0.576
25–80 6.803 4.469 4.365 1.544 0.572 0.592
15–55 7.197 4.500 4.565 1.534 0.616 0.589
15–80 7.664 3.689 4.748 1.603 0.771 0.626
00–80 8.680 4.161 4.841 1.774 0.773 0.697

The research shows that when the SPAD value range in the sample set is small (50~55,
50~60), the standard deviation of the sample set is also small, and the corresponding model
R2

V value is also poor (R2
V is less than 0.2). As the range of SPAD values in the sample set

gradually increases, the standard deviation also increases, and the corresponding model
estimation accuracy (R2

V) basically shows a gradually increasing trend, and the more stable
the model estimation result is (RPD). Figure 18 shows the variation law of RPD with the
STDchl in the sample set, and Figure 19 shows the variation law of R2

V with the STDchl
in the sample set. It can be seen from the two figures that the STDchl in the sample set is
highly correlated with the PLSR SPAD value estimation model’s accuracy and reliability.
When the STDchl in the sample set is larger than 5.5, RPD is greater than 1.4 and R2

V is
higher than 0.5, the model is stable, and its accuracy is high. At this time, the PLSR model
could be used to predict the SPAD value with high accuracy.
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4. Discussion
4.1. Pretreatment Methods

In this study, common spectral preprocessing methods were compared, and it was
found that using both sensitive spectral indices and preprocessed spectral data as model
input values could increase the model’s estimation accuracy and reliability to some extent.
This also illustrates the importance of spectral data preprocessing. In particular, it can be
seen from Table 6 that, no matter in which growth stages, the model inversion accuracy
was highest when the pretreatment method was WPD-R’-PCADR or WPD-(1/R)’-PCADR.
When WPD and PCADR are used combined, the benefits of the derivative technique
become clear. The derivative approach, according to Oldham et al. and Li et al., is not only
a useful tool for studying spectral data, but it also aids in the resolution of multicollinearity
issues [73,74]. As a result, it can be utilized to improve the analysis’s sensitivity. It also aids
in the reduction of noise to some extent. The first derivative (FD) provides the reflectance
spectrum’s slope, whereas the second derivative (SD) provides the reflectance spectrum’s
slope change [74]. Although SD allows more absorption peaks to be separated, it also
introduces noise and may lead to errors. Through SD and FD changes, the spectrum is
severely deformed and leads to sharp peaks. For the pretreatment of spectral data, the
fractional derivative can reduce the range of spectral variation to a certain extent and retain
the form properties of the original spectrum as far as possible, which is more useful than
the integer derivative (FD, SD). Fractional derivatives can really be utilized to include
further valuable data coming from remote sensing by extending the order to non-integers,
which could also add more details to the spectrum than integer derivatives. Only FD
was employed to measure SPAD values in this research. Other higher-order integer and
fractional derivatives will be used to preprocess spectral data in the future.

4.2. Influence of Sample Set on Model Accuracy

The results of this paper show that (Figures 18 and 19) the STDchl in the model input
sample set is highly sensitive to the accuracy of the PLSR model in evaluating the SPAD
value. This has to do with the characteristics of the PLSR method itself. PLSR is a machine
learning algorithm, which has high requirements for the model input sample set. It needs
the number of samples to be as large and diverse as possible. When the sample set is
too small or the data range is too monotonous, it is easy to lead to the phenomenon of
underfitting and overfitting, and the generalization ability of the model is weak. In this
study, the STDchl in the sample set is too small, which is the performance of poor sample
diversity. The SPAD values in the heading stage, flowering stage and milk ripening stage
are relatively concentrated due to their own physiological characteristics. The standard
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deviation of the SPAD value in the corresponding sample set is less than 4, and the accuracy
of the corresponding model is also low. However, there are not enough data to prove
whether the accuracy tends to be stable when the standard deviation is large to a certain
value. More growth period data need to be collected for further verification.

Table 7 reveals that when the STDchl in the sample set is greater than 5.5, the larger
the STDchl in the sample set, the higher the estimation accuracy of the model. Due to the
small number of samples collected from the research, whether the threshold of 5.5 can be
applied to other scenes needs to be further verified. In addition, based on the biological
characteristics of winter wheat itself, the content of chlorophyll in leaves has a certain range.
The STDchl in the sample set we collected will always reach an upper limit. At this time,
the relationship between the STDchl and the accuracy of the model also needs to be further
explored and verified. In following research, we will conduct deeper exploration, research
and verification on the relationship between the sample set and model accuracy.

4.3. Universality of Data

Taking winter wheat as the research object and taking the hyperspectral data and
corresponding SPAD value in different growth periods as the data source, this paper
establishes a model by using the PLSR method to estimate the SPAD value and analyzes
the estimation results in detail. The research has achieved some results, but the scope of the
study area is small. When the variety of winter wheat changes or the growing environment
changes, the research results need to be further analyzed and verified. In addition, it is
relatively difficult to obtain data at the leaf scale of winter wheat, because it is susceptible
to weather (when there are clouds and winds, etc.), and data collectors need certain
professional experience. At present, in the quantitative remote sensing’s field, combining
ground non-imaging spectral data with UAV imaging spectral data and satellite image
multi-spectral data to realize multi-level and multi-scale crop growth monitoring is an
unavoidable tendency. Wang et al. combined ground hyperspectral data with GF1 satellite
multispectral images to achieve an inversion of chlorophyll concentration geographic
variation in the winter wheat canopy [75]. In the subsequent study, we attempted to
expand the research scope and conduct satellite-scale estimation of the winter wheat SPAD
value, so as to analyze and find efficient and high-precision estimation methods for winter
wheat chlorophyll that are suitable for more conditions.

5. Conclusions

Depending on the spectral data and SPAD value in various growth stages, taking the
sensitive spectral indices and preprocessed spectral data as the model input values, the
model was constructed by the PLSR method to estimate the SPAD value, and the estimated
results were compared and analyzed in detail. The main conclusions are as follows:

(1) The 11 spectral indices (V13, V15, V16, V17, V25, V39, V41, V42, V43, V47 and V57)
selected in this paper can be used as the input values of the model, which could boost
the model’s precision and reliability while calculating the SPAD value.

(2) Compared with the original spectral data and preprocessed spectral data as the
model’s input value, especially spectral data preprocessed by WPD-(1/R)-PCADR or
WPD-R’-PCADR, it can increase the accuracy of the SPAD value estimation model
and enhance the model’s stability.

(3) When the STDchl in the sample set is less than 4, the estimation results of the SPAD
value are prone to underfitting; when the STDchl in the sample set is greater than 5.5,
the greater the STDchl in the sample set, the higher the model’s estimating accuracy. In
this case, the advantage of using sensitive spectral indices and preprocessing spectral
dataset as model input values to increase the estimation model’s precision and stability
is obvious. In addition, when the STDchl in the sample set was greater than 6, the
model with the sensitive spectral indices as the model input had a greater estimation
accuracy than the model with the pretreatment spectral dataset.
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(4) When using the spectral data and corresponding SPAD value data of a single growth
period as the data source, the estimation results were not representative when using
the PLSR method to predict the SPAD value, and the universality of data related to
other growth periods was poor. Modeling using data from the whole growth period
can improve the universality ability and stability of the model. It is recommended
that spectral data for the whole fertility period be used as the data source and that
the STDchl corresponding to the data source should be as large as possible (standard
deviation of SPAD values > 5.5).
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