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Abstract: Nearshore sandbars characterize many sandy coasts, and unravelling their dynamics is
crucial to understanding nearshore sediment pathways. Sandbar morphologies exhibit complex
patterns that can be classified into distinct states. The tremendous progress in data-driven learning in
image recognition has recently led to the first automated classification of single-barred beach states
from Argus imagery using a Convolutional Neural Network (CNN). Herein, we extend this method
for the classification of beach states in a double-barred system. We used transfer learning to fine-
tune the pre-trained network of ResNet50. Our data consisted of labelled single-bar time-averaged
images from the beaches of Narrabeen (Australia) and Duck (US), complemented by 9+ years of daily
averaged low-tide images of the double-barred beach of the Gold Coast (Australia). We assessed
seven different CNNs, of which each model was tested on the test data from the location where
its training data came from, the self-tests, and on the test data of alternate, unseen locations, the
transfer-tests. When the model trained on the single-barred data of both Duck and Narrabeen was
tested on unseen data of the double-barred Gold Coast, we achieved relatively low performances as
measured by F1 scores. In contrast, models trained with only the double-barred beach data showed
comparable skill in the self-tests with that of the single-barred models. We incrementally added data
with labels from the inner or outer bar of the Gold Coast to the training data from both single-barred
beaches, and trained models with both single- and double-barred data. The tests with these models
showed that which bar the labels used for training the model mattered. The training with the outer
bar labels led to overall higher performances, except at the inner bar. Furthermore, only 10% of
additional data with the outer bar labels was needed for reasonable transferability, compared to
the 20% of additional data needed with the inner bar labels. Additionally, when trained with data
from multiple locations, more data from a new location did not always positively affect the model’s
performance on other locations. However, the larger diversity of images coming from more locations
allowed the transferability of the model to the locations from where new training data were added.

Keywords: machine learning; Argus; ResNet50; transfer learning; CNN; deep learning; beach state;
nearshore morphology

1. Introduction

The nearshore zones of sandy coasts are highly dynamic areas, where wave breaking
and wave-driven currents constantly rearrange nearshore sediment into complex, consis-
tently occurring morphological patterns. Sandbars, in particular subtidal sandbars, are
responsible for significant spatiotemporal variations in nearshore bathymetric profiles [1,2].
They are fundamental to various nearshore processes: they can reduce beach-dune ero-
sion through wave dissipation [3–6]; exchange sand with the subaerial beach [7]; control
advection, mixing and distribution of nutrients and pollutants [8]; and determine recre-
ational safety [9]. Hence, monitoring and understanding the spatiotemporal variability of
nearshore morphology is essential to both scientists and coastal managers.
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Sandbar morphology at a given beach may range from shore-parallel ridges to an
alongshore alternation of shore-attached bars and rip channels [10,11]. Ref. [12] created the
most widely used beach state classification scheme for single-barred coasts (Figure 1). In this
scheme, they identified three basic beach types: reflective, intermediate and dissipative,
consisting of six beach states in total with distinct sandbar configurations. The two end
members, Reflective (R) and Dissipative (D), relate to, respectively, low and high-energetic
conditions. The intermediate states, corresponding to high to low-energetic conditions,
were identified as Longshore Bar and Trough (LBT), Rhythmic Bar and Trough (RBB),
Transverse Bar and Rip (TBR) and Low Tide Terrace (LTT) (Figure 1) [12]. In general,
during low-energetic accretionary conditions, sandbars advance sequentially in downstate
direction, whereas sandbar morphology may jump to a higher state during high-energetic
erosional sequences [13].
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Figure 1. Schematic representation of the beach states as defined in the classification scheme of [12].
(Adapted from: [14]).

Initially, this classification scheme was used for the classification of beach states of
single-barred beaches. Eventually, the scheme of [12] was extended to be applicable on
multi-barred beaches. A multi-bar state model was devised in which each bar can go
through the same states as in the original single-bar model [10]. On a double-barred beach,
the seaward-most outer bar evolves more slowly through the bar states than the landward-
most inner bar. The outer bar often occurs as a quasi-inactive feature during low-energetic
periods [11].

In situ measurements, where hydrodynamics, sediment transport and bed levels are
measured directly in the field, have often been used to study sandbars and their dynamics.
However, this method is spatially limited and expensive in terms of time and money.
In addition, these field-based experiments are often restrained by the surf zone’s harsh
and potentially dangerous conditions [7,15–17]. Luckily, the nearshore zone exhibits many
optical signatures that can be exploited. Wave breaking is very obvious to the eye as bright
patches of foam on the water surface. Since waves tend to break in shallow water, the
locations of concentrated foam and the spatial pattern this foam forms can be used to
locate the position of submerged sandbars and to classify them into a beach state [16].
These optical signatures led to the extensive use of remote sensing applications such as
the Argus video monitoring systems [11,18], permitting frequent, spatially extensive and
high-resolution data monitoring [3,16,19].

The research on sandbar morphology and dynamics has thus far mainly been con-
ducted using quantitative measures [11,20,21] or conventional machine learning (ML)
algorithms. Ref. [22] used machine learning for the automated classification and mapping
of the seabed. Ref. [23] used a Neural Network (NN) to study the predictability of nearshore
sandbar migration. Additionally, ref. [24] used an Artificial Neural Network (ANN) to
produce a model that estimates cross-shore bar location from raw Argus images of double-
barred beach systems. However, the surge of deep learning (DL) in nearshore studies has
enabled the development of innovative algorithms to study sandbars. Ref. [25] applied a
Recurrent Neural Network (RNN) to study nearshore sandbar behaviour. Additionally,
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ref. [26] applied a Convolutional Neural Network (CNN) to derive surf-zone bathymetry
from video imagery.

In contrast with conventional machine learning (ML), DL algorithms do not need
human-designed rules. Instead, they use large amounts of data to map the input to a
specific label. DL can automate the learning of features and enables classification to be
achieved in a single shot [27]. The tremendous progress in DL, particularly in image
recognition and classification is primarily due to the application of CNNs [27]. CNNs are
a specific DL method designed to learn spatial patterns, allowing image-specific features
into the network’s architecture and making the network more suited for image-focused
tasks [28]. CNNs have been shown to produce state-of-the-art performances for various
image recognition and classification tasks [29–33]. These state-of-the-art performances
could partly be attributed to the use of transfer learning [34]. Instead of training a model
from scratch, requiring a large amount of data, transfer learning utilizes the parameters
of CNN architectures pre-trained on large public datasets, such as ImageNet [32], to be
fine-tuned by new datasets in other image classification problems [35].

In a recent study, Ref. [36] trained a CNN from scratch for the automated classification
of single-barred beach states from Argus imagery of the coasts of Duck (US) and Narrabeen
(Australia). They implemented various data combinations to train and test the models
and compared their results to the inter-labeller agreements resulting from the classification
carried out by humans. They showed that CNNs trained and tested at the same site had
comparable skills to the inter-labeller agreement, with a higher overall skill at Duck than at
Narrabeen. For both sites, the highest accuracy was in classifying the low-energy R and
LTT states, while the lowest skill of the CNN was classifying the rhythmic states of RBB (at
Narrabeen) and TBR (at Duck). The performance decreased when the CNNs trained with
the data of one location were tested on the other site’s test data. However, they showed
that the models trained on data from multiple locations achieved performances comparable
to the CNNs trained with the data from a single location, with at least 25% of the training
data coming from each location. Ref. [36] showed that single-barred beach systems could
be successfully classified using CNNs. However, it is unknown how CNNs can be applied
to double-barred systems. Hence, the aim of this study is to extend

2. Field Sites and Datasets

We used the data of three field sites, displayed in Figure 2. These datasets consist
of grey-scale Argus imagery. Figure 3 shows examples of images from all three datasets,
with each column containing images from a different site and each row containing a
different beach state. In this section, we introduce the three field sites and the correspond-
ing datasets.

2.1. Field Sites
2.1.1. Duck

The first site is the sandy barrier beach of Duck, situated at the U.S. Army Engineering
Research and Development Center Field Research facility, North Carolina. As shown in
Figure 2A, Duck is located between two water bodies, the Currituck Sound in the west
and the North Atlantic Ocean in the east. The Argus installation at the Field Research
Facility faces the North Atlantic Ocean. In general, the beach of Duck is classified as an
intermediate beach with one and, occasionally, two sandbars present. The waves coming
from the North Atlantic Ocean vary seasonally, with higher incident wave energy in winter
and lower incident wave energy in summer [37]. The annual significant wave height is
1.1 m, with waves coming from the south during spring and summer and from the north
during winter. In addition, winter storms consist of extra-tropical and tropical cyclones [38].
The mean spring tide range is micro-tidal at 1.2 m. The beach slope averages 0.108 at the
foreshore and decreases further offshore to 0.006 at a depth of 8 m. The sediment consists
of medium to fine-grain quartz with finer sands further offshore. The median grain size
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between the bar and the shoreline is approximately 0.5 mm, with 20% carbonate material.
Offshore of the bar, the median grain size becomes 0.2 mm [39].

Figure 2. The location of the three field sites, (A): Duck (US), (B): Narrabeen (Australia) and (C): Gold
Coast (Australia).

Figure 3. Examples of Argus imagery showing the five different beach states. Left column: Duck,
middle column: Narrabeen and right column: Gold Coast. Note that the inner and outer bars of
the Gold Coast have individual labels, with the outer bar labels only exhibiting the TBR, LBT and
RBB states.
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2.1.2. Narrabeen-Collaroy

The second site is the 3.6 km-long embayment of Narrabeen-Collaroy, referred to as
Narrabeen. Narrabeen is located within the Northern Beaches region of the metropolitan
Sydney, Australia (Figure 2B). A lagoon backs the northern half of the barrier and is
connected to the ocean via a shallow, narrow inlet, which opens and regularly closes at
the embayment’s northern end. Adjacent to the southern end of the beach is a prominent
headland. This headland and the curvature of the embayment result in a distinct alongshore
wave gradient [40–42]. The wave climate at Narrabeen is mildly seasonal, with high-energy
cyclones and east-coast lows more prominent in Austral winter months and low-energy
swells more prominent in Austral summer. At interannual time scales, the wave climate
is influenced by the El Niño-Southern Oscillation (ENSO), resulting in periods of less
energetic and a more southerly wave climate.

On the other hand, La Niña periods result typically in more energetic and easterly
wave climates. The deep-water wave climate for the Sydney region is moderate to high
wave energy with a mean wave height of 1.6 m. It is dominated by long continuous
period swell waves coming from an SSE direction. These swell waves are generated
from mid-latitude cyclones propagating in the southern Tasman Sea, south of Australia.
Superimposed on these swell waves are storm events typically defined for this region by
a significant wave height threshold of 3 m [43]. Tides are micro-tidal and semi-diurnal,
with a mean spring tide of 1.3 m. The sediment is mainly uniform along the beach and
consists of primarily fine to medium quartz sand with 30% carbonate materials [44].

2.1.3. Gold Coast

The third field site is from the popular tourist destination of Surfers Paradise, located
at the northern end of the Gold Coast in South East Queensland, Australia (Figure 2C).
The beach of the Gold Coast consists mainly of a double-barred system. In winter, persistent
SSE swells and high-energy mid-latitude cyclones result in a net littoral drift to the north
in the order of 500,000 m3 per year [45]. The root-mean-square wave height at the Gold
Coast is typically about 0.8 m. However, East Coast and tropical lows can increase the
significant wave height to 1.5 m, with an estimated return interval of 2 years for a significant
wave height of 3.5 m [46]. The tide is semi-diurnal with a spring tidal range from 1.5 m to
2 m [11]. Furthermore, the nearshore predominantly consists of quartz sand with a median
grain size of 0.225 mm and exhibits an average slope of approximately 0.02.

Between 1999 and 2000, a 1.2 Mm3 beach nourishment was undertaken to maintain
and enhance the sub-aerial beach width [47]. The implementation of the nourishment
near the study site of the Gold Coast commenced in early November 1999 and reached
its southernmost extension in June 2000. The effect of the nourishment on the sandbars
was most pronounced in March and April 2000. Our study site was restricted to the area
south of the nourishment, and our sandbar data were not directly impacted. Furthermore,
a hybrid coastal protection-surfing reef structure is located at Narrowneck, north of our
study site [48]. Hence, only the imagery containing the southern area of our study site
was used.

2.2. Datasets

We used the single-barred datasets of Duck and Narrabeen from [36]. These datasets
consist of orthorectified time exposure (timex) grey-scale imagery collected hourly from
Argus stations (for details on the Argus system see [36]). Argus images are the average of
video frame observations of the surf zone collected over a period of time of fifteen minutes,
which results in a picture of beach morphology over the surf zone [16]. The effects of
lighting due to the angle of the sun or cloud cover, or a lack of wave-breaking signal due to
low waves or high tide were reduced by using daytimex images. Daytimex images are the
temporal mean of all Argus images collected hourly during a single day, thus averaging
out tidal dependencies and natural modulations in wave-breaking, such as a lack of wave-
breaking, and removing persistent optical signatures. Furthermore, the daytimex images
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were orthorectified onto a domain of 900 m alongshore and 300 m cross-shore, with a
ground resolution of 2.5 m × 2.5 m. The dataset was collected over the years 1987–2014
for Duck and 2004–2018 for Narrabeen. The images were combined from various camera
views depending on the number of cameras installed and functional in the Argus system.
This ranged from one to three for Duck and only one for Narrabeen.

The datasets of Duck and Narrabeen were manually labelled by [36] with small
adjustments made by the authors of this paper. As can be seen in Figure 3, the datasets
consist of images labelled with the beach states R, LTT, TBR, RBB and LBT, with 680 images
of the site of Duck and 687 of Narrabeen. Table 1 shows the state distribution of these
single-barred datasets and the number of adjustments to the original dataset made by the
authors of this paper.

Table 1. Per state data distribution for Duck, Narrabeen and the Gold Coast’s inner and outer bar
(* Differences with [36] after adjusting labels).

State Duck Narrabeen (*) Gold Coast
Inner Bar

Gold Coast
Outer Bar

R 125 125 (0) 377 0

LTT 126 164 (+7) 1779 0

TBR 140 157 (+8) 596 1118

RBB 126 106 (−24) 74 746

LBT 163 135 (+9) 197 1159

Total 680 687 3023 3023

The Gold Coast dataset consists of labelled images collected over the years 1999–2008 [11].
However, instead of daytimex-images as for Narrabeen and Duck, the dataset of the Gold
Coast comprises 3023 daily low-tide time-exposure images (for details on the Argus system
see [49]). These images were created by time-averaging 600 individual snapshots sampled
at 1 Hz during low-tide. Each image spans 2500 and 900 m in the longshore and cross-shore
direction, respectively. Ref. [11] used this dataset to individually classify the inner and outer
bars. Ref. [11] identified two additional intermediate beach states, the erosive Transverse
Bar and Rip (eTBR) and the rhythmic Low Tide Terrace (rLTT), related to the dominant
oblique angle of wave incidence and the multiple bar setting, respectively. For this study,
the labels of the images corresponding to these additional bar states have been adjusted to
fit the best alternative beach state to correspond with the scheme of [12].

Table 1 shows the state distribution for the dataset of the Gold Coast over the entire
collection. Every image has two labels, one belonging to the inner and another to the outer
bar. The inner bar was labelled with all five beach states (R, LTT, TBR, RBB and LBT).
In contrast, the outer bar was only observed to exhibit higher-energy states TBR, RBB and
LBT (Figure 3).

3. Methodology

To explore and evaluate the application of a CNN in combination with transfer learning
on the automated classification of beach states in a double-barred beach system, the follow-
ing step-by-step process was used (Figure 4):

1. Collect the datasets;
2. Model initialization;
3. Prepare the data;
4. Train models with various datasets;
5. Test the models on various locations;
6. Report the performance for each test.
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Figure 4. Schematic block diagram of the step-by-step methodology.

The datasets used in this study (step 1) are described in the previous section and
comprise the Argus imagery from the single- and double-barred beach systems of Duck,
Narrabeen and the Gold Coast.

3.1. Model Initialization

The second step is to prepare the model for the task at hand. In this application, a CNN
takes the images of sandbar morphology as input and produces a beach state as an output.
A CNN consists of various layers of artificial neurons. These artificial neurons, similar to
neuron cells used by the human brain for passing input signals, are mathematical functions
used to process the various inputs and to give a single output. The behaviour of each
neuron contained in a CNN is defined by the value of its weights, the so-called trainable
parameters [27].

The architecture of a common type of CNN consists of numerous layers, in general,
a convolutional layer separating and identifying the distinct features of an image, a pooling
layer responsible for the reduction in the spatial size of the convolved features and a fully
connected (FC) layer that takes the output from the previous processes and predicts the
image’s class based on the retrieved features [27].

3.1.1. ResNet50

Many CNN architectures have been created [50,51]. Modifications on these architec-
tures have eventually resulted in state-of-the-art models [52–54]. One such architecture is
the Residual Network (ResNet) [55]. ResNet became a family of models based on the num-
ber of layers, starting with 18 and going as deep as 1202 layers. In this study, the 50-layered
architecture of ResNet50 was used following [55].
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Figure 5 shows a schematic block diagram of a typical ResNet50 architecture. This
architecture consists of two parts: the feature extraction part, consisting mainly of convolu-
tional and two pooling layers, and the classification part existing of the FC layer. Note that
the number of nodes in the FC layer corresponds to the number of unique classes in the
training dataset.

Figure 5. Schematic block diagram of ResNet50 and transfer learning. Note that the classification
layer is replaced with 5 as the number of unique classes in the datasets.

3.1.2. Training Protocols and Transfer Learning

Training a CNN is described as minimizing the differences between output predictions
and the given labels on a training dataset. The training is carried out by feeding the CNN
with a large dataset of images labelled with their corresponding class label. The images are
added individually or in groups depending on the batch size. The CNN network processes
the images and compares them with the class label of the input image. Backpropagation is a
technique that is commonly used for training neural networks, where a loss function and
an optimization algorithm play essential roles. The loss function measures the compatibility
between output predictions and the given labels, and the optimization algorithm updates
the trainable parameters according to the loss value. During training, the CNN goes
through the entire dataset multiple times. Each time that all input images have had the
opportunity to update their weights is called an epoch [56].

When the training of a CNN starts with random initialized weights, it is trained from
scratch. A large amount of well-annotated data is required to train a model this way.
This data are not always available as the acquisition and annotation of data can be very
time-consuming. Additionally, training a model from scratch can take a long time. Rather
than collecting and annotating large datasets, it is popular to use networks that have been
pre-trained on vast datasets, such as ImageNet with over 14 M images [57] and to use a
technique called transfer learning to train models [58]. There are two different ways in
which transfer learning can be applied. The network can be used either for feature-extraction,
in which only the classification part of the pre-trained network is updated for classification,
or for fine-tuning, in which all trainable parameters of the pre-trained are updated using a
new dataset, before using them for classification [59].

In this study, the ResNet50 model, pre-trained on the public dataset ImageNet, was
fine-tuned to classify images into beach states. Initially, the classification part of the pre-
trained network corresponds to the number of unique classes within ImageNet. Hence,



Remote Sens. 2022, 14, 4686 9 of 26

the classification part was reconfigured to correspond to the number of beach states within
the unique datasets used in this study, as can be seen in Figure 5. In addition, several
adjustments were made to the training settings as used by [36] to increase the computational
speed and to optimize the model performance; these adjustments were made empirically.
We used the OneCycleLR Policy following [60] to tune the learning process, and we
implemented the Early Stopping method as described by [61] to stop training automatically
when the performance is not increasing for a specific amount of training rounds defined
by the patience. The optimization algorithm called stochastic gradient descent (SGD) was
used [62]. The parameters and corresponding settings used in this study are shown in
Table 2.

Table 2. The parameters and corresponding settings used in this study.

Type Parameter Setting

OneCycleLR Max momentum 0.95

OneCycleLR Min momentum 0.85

OneCycleLR Max learning rate 0.01

SGD Learning rate 0.002

Network Batch size 32

Early stopping Patience 20

3.2. Data Preparation

Step 3, before training the model, consists of data preparation. First, the data were
distributed into three sets: one for training, one for validation to give an unbiased evaluation
of the model performance while tuning the model parameters and one for testing the trained
model on unseen data to evaluate the performance. The number of images used of each
state is detailed in Table 1. As our data consist of time series from different periods, we
sorted them chronologically per field site before splitting them. This sorting was carried out
so that images from consecutive days and most likely having very similar optical signatures
were not distributed in the different sets. Generally, the distribution was 80%, 10% and 10%
for the training, validation and test datasets, respectively. An exception was made in the
experiment in which the model’s performance was evaluated as a function of training data
composition, explained further in Section 4.2.

As the number of images belonging to each state were not equally distributed over the
recorded periods, sorting the data before splitting resulted in datasets in which the state
representation was highly unbalanced, as more images were available from some states
than others. An unbalanced training dataset might adversely affect the training process
leading to a bias during the classification phase of the model [63]. To counter this problem
and to balance out the bias, we oversampled the data based on the states’ occurrence ratios
in the training dataset. Oversampling is the method in which images from a minority class
in the training datasets are given a larger share in the training process. This is carried out
by weighting, where a larger weight is applied to the images belonging to a minority class
compared to the weights applied to a majority class.

Furthermore, for optimal training performance, the images must be in the same input
format as the images on which the network is pre-trained. Hence, each image was processed
to meet the requirements of the pre-trained ResNet50 model. The resolution of the images
was resized to meet 224 × 224 pixels, and the values of these pixels were normalized to the
range [0, 1].

The datasets used in this study were limited by the number of times each state occurred
over the period spanned by the dataset and the number of images that distinctly exhibited
one beach state [36]. We increased the number of training data by applying geometric
transformations, or so-called augmentations, to the training images while simultaneously
preserving the morphology and labels, similar to [36]. Table 3 shows the combination of
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augmentations and their corresponding functions used for this study. Examples of the
resulting images after transformation are shown in Figure 6.

Table 3. The augmentations used before training. In the left column, the transformations applied,
and in the right column, the function of the corresponding augmentation.

Augmentation Function

RandomRotation (15) Rotate the image randomly between 0 and 15 degree angles

AutoAugment Data augmentation method based on the proposed method of [64].

RandomAffine (0, translate = (0.15, 0.20))
Random affine transformation (translation with horizontal translates
randomly between maximum fractions of 15 and 20) of the image,
keeping the center invariant.

Figure 6. Examples of transformed images after applying the augmentations as described in Table 3:
RandomRotation, RandomAffine, AutoAugment and the combination of the three.

4. Experimental Setup

The writing of our algorithm, which is publicly available online at https://github.com
/StanOerlemans/DeepBeachStateV2, accessed on 14 January 2022, and our two experiments
were done using Google Colaboratory (Google Colab, https://colab.research.google.com/,
accessed on 14 January 2022). Google Colab provides a RAM of 13 GB, an NVIDIA Tesla
K89 12 GB GPU and an Intel(R) CPU @ 2.30 GHz processor. In the first experiment, only the
single-barred beach datasets of Duck and Narrabeen were used to train the models. In the
second experiment, we assessed the performance of models trained using additional data
from the double-barred beach of the Gold Coast. The CNNs were trained using a dataset
consisting of the data from a single location or on a combined dataset consisting of the data
of multiple locations (step 4).

Additionally, each CNN was tested (step 5) on the test data from the same location
as the training data, the self-tests, and on the test data of unseen locations, the transfer-
tests. Ensembles of 10 CNNs were trained for each training setup, of which the highest
performing CNN was used for further evaluation. The names given to the resulting models
corresponding to these setups, the corresponding experiments and the data combinations
on which they were trained and tested are shown in Tables 4 and 5, respectively.

https://github.com/StanOerlemans/DeepBeachStateV2
https://github.com/StanOerlemans/DeepBeachStateV2
https://colab.research.google.com/
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Table 4. The two experiments, the corresponding models and the data combinations used to train
the models.

Experiment Model Name Training Data

1.

DUCK-CNN Duck

NBN-CNN Narrabeen

CombinedSINGLE-CNN Duck & Narrabeen

2.

INNER-CNN Gold Coast’s inner bar labels

OUTER-CNN Gold Coast’s outer bar labels

CombinedINNER-CNN Duck, Narrabeen & Gold Coast’s inner bar labels

CombinedOUTER-CNN Duck, Narrabeen & Gold Coast’s outer bar labels

Table 5. The two experiments, the corresponding models and the data combinations on which the
models were tested.

Experiment Model Name
Test Data

Self-Tests Transfer-Tests

1.

DUCK-CNN Duck Narrabeen

NBN-CNN Narrabeen Duck

CombinedSINGLE-CNN Duck & Narrabeen Duck Narrabeen Gold Coast

2.

INNER-CNN Gold Coast’s inner bar labels -

OUTER-CNN Gold Coast’s outer bar labels -

CombinedINNER-CNN Duck, Narrabeen & Gold Coast Duck Narrabeen Gold Coast -

CombinedOUTER-CNN Duck, Narrabeen & Gold Coast Duck Narrabeen Gold Coast -

4.1. Experiment 1: Single-Bar Beach Models

In the first experiment (Table 4), only the single-barred beach datasets of Duck and
Narrabeen were used to train the models. Three 10-member ensembles of CNNs were
trained. The first two ensembles were single-location ensembles, meaning that the training
data came from either Duck or Narrabeen. The data distribution at Duck resulted in
544 training images, and 68 validation and testing images. The CNNs trained at Duck
are referred to as DUCK-CNN. The data distribution at Narrabeen resulted in 549 training
images, and 69 validation and testing images. The CNNs trained at Narrabeen are referred
to as NBN-CNN. The resulting models were self-tested and transfer-tested.

The third 10-member ensemble trained in Experiment 1 was trained with the training
data of both Duck and Narrabeen combined and is referred to as CombinedSINGLE-CNN.
The CombinedSINGLE-CNN was self-tested on the test data of both Duck and Narrabeen
together and individually. In addition, to assess the skill of a model trained with only
single-barred data on unseen double-barred beach data, the CombinedSINGLE-CNN was
transfer tested on the data of the Gold Coast. When analysing the performance on the Gold
Coast, the model was tested on the entire cross-shore of the Gold Coast and compared with
both inner and outer bar labels separately. Hence, the performance on each bar can be
assessed individually.

4.2. Experiment 2: Double-Bar Beach Models

In the second experiment (Table 4), four models were trained to assess the performance
of models trained using not only single-barred beach data, such as in the first experiment
(Section 4.1), but also double-barred beach data. In this experiment, additional data from
the Gold Coast were used for training.

Firstly, two models were trained with only the double-barred beach data, with either
the inner or outer bar labels. These two models were trained by feeding it 2418 training
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images from the Gold Coast with labels corresponding to either the inner bar or the outer
bar. This resulted in the INNER-CNN and the OUTER-CNN.

Additionally, two models with data coming from Duck, Narrabeen and incrementally
added data of the Gold Coast, with either the inner or outer bar labels, were trained
(See Table 4). The training data of Duck and Narrabeen combined, as used for training
the CombinedSINGLE-CNN, was supplemented with data of the Gold Coast. The Gold
Coast’s training data, with either the inner or outer bar labels, were added incrementally
as a percentage of the total training data (1093) of Duck and Narrabeen combined. This
created the CombinedINNER-CNN and the CombinedOUTER-CNN, respectively. In these
cases, data with either the inner or outer bar labels were added in 10% of the Duck and
Narrabeen training data until 100% of additional data were added and the total amount of
training data were doubled. During this process, the test and validation data were kept
constant, in which the test and validation data of the Gold Coast were added in an equal
amount to the number of test and validation images from Duck and Narrabeen.

The performance of each run with increasing amounts of data from the Gold Coast was
evaluated to determine the best-performing CombinedINNER-CNN and CombinedOUTER-
CNN. Subsequently, these were used for further evaluation and testing. The testing in-
cluded self-testing at all test sets individually and combined, following Table 5.

4.3. Performance Measures

In step 6, several metrics were used to report the performances. The training and
validation losses can be used to assess the model’s training performance and optimization.
The loss quantifies the error produced by the model. We used the training loss as a metric
to assess how our model fitted the training data, and we used the validation loss as a metric
to assess the performance of our model on the validation set.

We chose several performance metrics to evaluate and validate our models’ effec-
tiveness. Often chosen metrics are sensitivity, or so-called recall, specificity, and accuracy.
The accuracy is interrelated with sensitivity and specificity. In addition, a confusion matrix
in a classification task is a tabular representation of the per-state classifications of the
model. Table 6 shows an example of such a confusion matrix with the evaluation factors
described as follows:

• True Positive (TP): TP denotes the number of cases in which the CNN classified
Yes correctly.

• True Negative (TN): TN signifies the number of cases the CNN classified No correctly.
• False Positive (FP): FP is the number of cases we classified Yes where the true class

is No.
• False Negative (FN): FN denotes the number of cases the CNN classified No where

the true class is Yes.

Table 6. Confusion matrix for the classification of actual and classified yes or no, with actual and
classified, respectively, as True Positive (TP) for Yes–Yes, False Negative (FN) for Yes–No, False
Positive (FP) for No–Yes and True Negative (TN) for No–No.

Classified

Yes No

Actual Yes TP FN

No FP TN

Mathematically specificity and accuracy are given as follows:

Speci f icity =
TN

TN + FP
(1)

Accuracy =
TP + TN

TP + FP + TN + FN
∗ 100 (2)
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These metrics are especially effective in the case of a balanced dataset. However,
they could give an unreliable representation of the classification performance in imbal-
anced data sets [65]. Hence, three different metrics were used to assess the overall and
per-state performances.

The precision metric is the proportion of correct test results. A downside of precision is
that it does not take the FN into consideration. It is mathematically represented as follows:

Precision =
TP

TP + FP
(3)

The recall is the proportion of actual positives classified correctly. One downside of
this metric is the fact that it does not take the FP into consideration. It is mathematically
represented as follows:

Recall =
TP

TP + FN
(4)

The F1 score is the harmonic mean between precision and recall therefore considering
all four types of measures (FP, TP, FN and TN) in evaluating overall performance. In this
metric, both recall and precision are evenly weighted, and therefore, it is often used when
the class distribution in datasets is imbalanced. The F1 score is mathematically given as
follows:

F1 =
2

1
precision + 1

recall
(5)

When the F1 is high, it signifies a high precision and recall, indicating a good balance
between the two. A low F1 score, on the other hand, only indicates that the model per-
formance was poor over the entire test set and does not indicate whether we have a low
precision or low recall. Hence, the overall performance was reported in F1 scores, whereas
the per-state performances were reported in normalized confusion matrices. Normalized
means that each of the states is represented as having one samples. Thus, the sum of each
row represents 100%. In the matrices, the diagonal represents the recall as calculated with
Equation (4). The precision is calculated with Equation (3).

5. Results
5.1. Single-Bar Beach Models Performances

The results in terms of F1 scores for the single-barred beach classifications are reported
in Table 7. The training and validation losses corresponding to the models are reported
in Appendix A. The highest performances are in the case of the self-tests, with F1 values
of 0.76 for NBN-CNN and 0.89 for DUCK-CNN. Transfer-testing resulted in lower per-
formances for both single-location models: F1 scores of 0.66 for NBN-CNN, a decrease
of 13%, and F1 scores of 0.73 for DUCK-CNN, a decrease of 18%. Testing the NBN-CNN
at Duck yielded a smaller decrease in performance than vice versa, which is consistent
with the results of [36]. This could indicate that the correlation of sandbars and beach states
at Narrabeen was more informative than at Duck.

Table 7. F1-values for the single-barred beach models tested at Duck and Narrabeen.

F1 Values

Model Duck Narrabeen

NBN-CNN 0.66 0.76

DUCK-CNN 0.89 0.73

CombinedSINGLE-CNN
0.85 0.78

0.78
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Testing the CombinedSINGLE-CNN gives comparable results to the single-location
models. The F1 score, when tested at Duck is 0.85 and when tested at Narrabeen is 0.78.
Transfer-testing the CombinedSINGLE-CNN on the Gold Coast resulted in an F1 of 0.32 for
the inner bar and an F1 score of 0.55 for the outer bar.

Figures 7 and 8 show the normalized confusion matrices for the tests of the DUCK-
CNN and NBN-CNN, respectively. The self-tests of the DUCK-CNN (Figure 7a) resulted
in per-state recall values of 0.84–0.94. In this case, 11% of the images with the true RBB
state and 10% of the images with the true R state are classified as LTT. In comparison,
the per-state performance of the self-test of the NBN-CNN (Figure 8a) has an overall bigger
range, ranging between 0.59 and 0.94. The major confusions happen between the linear
states, R, LTT and LBT, and between the rhythmic states, TBR and RBB. For the linear states,
29% of the R and 6% of the LBT images were classified as LTT and 11% of the LTT images
were classified as LBT. In addition, 20% of the TBR images were classified as RBB.

(a) Duck (b) Narrabeen

Figure 7. Normalized confusion matrices for the DUCK-CNN tests: (a) The per-state performance of
the self-test. (b) The per-state performance of the transfer-test on Narrabeen. The confusion matrices
show the true states on the y-axis and the state as classified by the CNN on the x-axis. Note that the
confusion matrices show the recall on the diagonal in green and that the precision and F1 score can
be calculated by Equations (3) and (5), respectively.

For the transfer-test of the DUCK-CNN (Figure 7b) at Narrabeen, the recall values
decreased for all the states compared to the self-test; recall values range between 0.61
and 0.80. The main confusions occur in the adjacent states and between the linear states,
in which 33% of the LBT images are classified as LTT and 22% of the LTT images as LBT.

Transfer-testing NBN-CNN at Duck (Figure 8b) resulted in recall values ranging
between 0.00 and 1.00. The first significant observation is that the model achieved the
lowest recall on the R state, similar to the self-test of NBN-CNN. However, in this case,
the NBN-CNN failed to classify any images from the R state. Instead, the images of the R
state are all classified as LTT. In contrast, LTT was often misclassified as TBR, RBB or LBT.
In addition, the CNN resulted in misclassifications for TBR, of which 40% was classified as
RBB, and for LBT, with 33% classified as RBB. The images exhibiting the RBB state, on the
other hand, are all correct classified.

The confusion matrices corresponding to the CombinedSINGLE-CNN are shown in
Figure 9. When this model was tested on the test data of Duck (Figure 9a), it resulted
in recall values ranging between 0.81 and 0.90, with the confusion concentrated between
adjacent states. In addition, the LTT and TBR states are most often confused with each
other; 19% of LTT was classified as TBR and 13% of TBR images were classified as LTT.
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(a) Narrabeen (b) Duck

Figure 8. Normalized confusion matrices for the NBN-CNN tests: (a) the per-state performance of
the self-test and (b) the per-state performance of the transfer-test on Duck.

(a) Duck (b) Narrabeen

(c) Duck & Narrabeen

Figure 9. Normalized confusion matrices for the CombinedSINGLE-CNN tests at (a) Duck and
(b) Narrabeen and (c) on the test data of Duck and Narrabeen combined.

When tested at Narrabeen (Figure 9b), the CombinedSINGLE-CNN achieved recall
values ranging between 0.66 and 0.88. Note the high performance of the R state. At the
transfer-test of the DUCK-CNN at Narrabeen, we noticed that the model failed to classify
the R state, whereas the CombinedSINGLE-CNN resulted in a higher recall for the R state
than the self-test of the NBN-CNN. In addition, we see high misclassifications for LBT,
of which 28% is classified as LTT, and for RBB, of which 30% is classified as LBT.
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When tested on the combined test datasets of Duck and Narrabeen (Figure 9c),
the CombinedSINGLE-CNN achieved recall values ranging between 0.71 and 0.89. The most
classification errors were consistent with the errors made when tested at Narrabeen,
with 16% of the LTT images classified as R, 15% of the LBT images as LTT, and 14%
of the RBB images classified as LBT.

To assess the transferability of single-barred models on unseen, double-barred data,
the CombinedSINGLE-CNN was tested on the test data of the Gold Coast (Figure 10). For the
inner bar (Figure 10a), recall values ranged between 0.00 and 0.47. The CombinedSINGLE-CNN
especially failed to classify the R and RBB states. Rather, the images corresponding to
the R state are most often classified as TBR and LTT states. On the other hand, images
corresponding to the RBB state are classified as TBR, 50%, and LBT, 50%. Additionally,
the LTT state is often classified as TBR, 42%, and as LBT, 18%. The TBR state is often
classified as LTT, 0.24%, and as LBT, 19%. Additionally, the LBT state is often classified as
LTT, 35%, and TBR, 18%. For the outer bar (Figure 10b), the recall values ranged between
0.18 and 0.78. The biggest confusion was made for the RBB state, of which 58% was
classified as the LBT state. In addition, images were classified as R and LTT states, while
the labels of the outer bar do not exhibit these states.

(a) Inner bar (b) Outer bar

Figure 10. Normalized confusion matrices for the CombinedSINGLE-CNN tests at the test data of
the Gold Coast. (a) The per-state performance on the inner bar. (b) The per-state performance on the
outer bar.

5.2. Double-Bar Beach Models Performances

Four CNNs were trained with the training data of the Gold Coast with either the
inner or outer bar labels. The INNER-CNN, trained only with the Gold Coast inner
bar labels, achieved an F1 score of 0.73 on its self-test, which was a 128% increase as
compared with CombinedSINGLE-CNN. The OUTER-CNN, trained with only the Gold
Coast outer labels, achieved an F1 score of 0.88, which is an increase of 60% as compared to
the CombinedSINGLE-CNN.

Additionally, the CombinedINNER-CNN and CombinedOUTER-CNN were trained
with data from the Gold Coast, added in increments of 10%. The F1 values of both models,
per increment of data added, are shown in Figure 11. The models’ performances in terms
of F1 values and training and validation losses (Appendix A) varied with the different
amounts of training data coming from the Gold Coast, with a maximum performance
on the test data coming from all locations combined of F1 scores of 0.72 and 0.82, for the
CombinedINNER-CNN and CombinedOUTER-CNN, respectively. In both cases, these
scores were achieved with 546 additional images from the Gold Coast. This corresponds to
1
3 of the total training dataset, with images coming from Duck, Narrabeen and the Gold
Coast, resulting an equal amount of training images coming from each location.

In Figure 11a, it can be seen that when trained with at least 20% of additional data with
the inner bar labels, F1 values within 20% of the F1 score of the self-test of the INNER-CNN
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(F1 of 0.73) were achieved. In Figure 11b, we see a similar case when trained with the outer
bar labels. In this case only, 10% of additional data with the outer bar labels is required to
achieve F1 scores within 20% of the self-test of the OUTER-CNN with an F1 score of 0.88.
Furthermore, when data from the Gold Coast with the labels corresponding to the inner
(outer) bar were added, the performance on the inner (outer) bar increased significantly.
Simultaneously, the performance decreases substantially on the alternative bar (the location
of which the labels were not included in the training). For example, when 10% of data were
added from the outer bar to the CombinedOUTER-CNN, the F1 score increases at the outer
bar from 0.58 to 0.71, while the F1 score at the inner bar decreases from 0.32 to 0.11.

(a) CombinedINNER-CNN (b) CombinedOUTER-CNN

Figure 11. F1 values of the CombinedINNER-CNN and CombinedOUTER-CNN with respect to
percentage of data coming from the Gold Coast with labels coming from (a) the inner bar or (b) the
outer bar and added to the combined training dataset of Duck and Narrabeen.

Figure 12 shows the confusion matrices corresponding to the per-state performance
for the self-tests of the INNER-CNN and the OUTER-CNN. In the case of the INNER-CNN
recall values ranging between 0.41 and 0.82 were achieved. There was a significant bias
towards the LTT state as most of the confusions were made to this state. Specifically, 50%
of the RBB, 31% of the R, 22% TBR and 35% of the LBT images were classified as LTT.
The self-test of the OUTER-CNN resulted in recall values of 0.97 for LBT, 0.75 for RBB
and 0.84 for TBR. The only significant confusion occurred in the LBT state, in which 18% of
the RBB images and 12% of the TBR images were classified as LBT.

(a) INNER-CNN (b) OUTER-CNN

Figure 12. Normalized confusion matrices for the self-tests of (a) the INNER-CNN and (b) the
OUTER-CNN.

Figures 13 and 14 show the confusion matrices corresponding to the tests of the
CombinedINNER-CNN and CombinedOUTER-CNN, respectively, trained with 50% of
additional data coming from the Gold Coast. The test of the CombinedINNER-CNN at
the test data of all locations combined (Duck, Narrabeen, Gold Coast inner bar) reached
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per-state recall values between 0.57 and 0.80, as shown in Figure 13a. The largest misclas-
sifications were the 31% of the R and 26% of the LBT states classified as LTT and the 20%
of RBB images classified as LBT. When the CombinedINNER-CNN was only tested at the
Gold Coast inner bar, performance slightly decreased as recall values were slightly lower
than for the combined beach test dataset (Figure 13b shows recall values between 0.41 and
0.76 for the Gold Coast inner bar dataset as compared with those between 0.57 and 0.80 for
the combined dataset). In this case, almost all misclassifications happened in the LTT and
TBR states.

(a) Duck, Narrabeen & Gold Coast inner bar (b) Gold Coast inner bar

Figure 13. Normalized confusion matrices for the CombinedINNER-CNN tests: (a) the per-state
performance of the self-test and (b) the per-state performance of the test at the data of the Gold Coast
with the inner bar labels.

(a) Duck, Narrabeen & Gold Coast outer bar (b) Gold Coast outer bar

Figure 14. Normalized confusion matrices for the CombinedOUTER-CNN tests: (a) the per-state
performance of the self-test and (b) the per-state performance of the test at the data of the Gold Coast
with the outer bar labels.

The classifications of the test of the CombinedOUTER-CNN at the test data of all
locations combined (Duck, Narrabeen, Gold Coast outer bar) resulted in recall values
within the range of 0.76–0.88, as shown in Figure 14a. When the CombinedOUTER-CNN
was tested at the outer bar of the Gold Coast, performance slightly increased as recall values
were higher than for the combined beach test dataset. Testing the CombinedOUTER-CNN
only at the Gold Coast with the outer bar labels (Figure 14b) gave recall values of 0.85 for
LBT, 0.78 for RBB and 0.92 for TBR.



Remote Sens. 2022, 14, 4686 19 of 26

6. Discussion
6.1. Single-Bar Models

The misclassifications made by the CNNs trained with data of Duck and Narrabeen
(Figures 7–9) in this study are consistent with [36]. Firstly, many misclassifications made by
the CNNs can be attributed to states that are adjacent to one another in the classification
scheme of [12]. Additionally, the misclassifications were made between the RBB and LBT
states (states corresponding to an offshore sandbar with a distinct trough,) and between
TBR and LTT states (states corresponding to bar welding and rip currents.) The fact that
most misclassifications correspond to states with similar structural features that result in
similar optical signatures indicates that the models have more difficulty classifying states
with similar morphology.

As expected from the overall performances with F1 values of 0.76 and 0.89 for the self-
tests and 0.66 and 0.73 for the transfer-tests of NBN-CNN and DUCK-CNN, respectively,
the number of misclassifications made at Narrabeen was typically higher than at Duck.
This indicates that classifying beach states at Narrabeen is more complicated than at Duck.
Ref. [36] stated that a possible explanation could be the difference in optical signatures of the
shoreline. In Argus timex imagery, due to swash motions, Duck’s shoreline is consistently
identifiable by higher image intensities. In contrast, shoreline detection at Narrabeen
happens in two ways: by higher image intensities associated with swash motions or lower
intensities associated with wet, dark sand [66]. Due to the lack of a consistent optical
signature of the shoreline at Narrabeen, the separation between shoreline and sandbar
is less evident than at Duck. This could be one reason why the classification difficulty
is enhanced.

When applied to the dataset of the Gold Coast, the CombinedSINGLE-CNN failed to
accurately classify either the inner or outer bar in the double-barred system (Figure 10). We
achieved F1 values of 0.32 and 0.55 on the inner and outer bars, respectively. The per-state
performance showed that for the inner bar, the images were primarily classified as LTT, TBR
or LBT. For the outer bar, this was primarily the TBR and LBT states. The misclassifications
at the inner bar may be due to difficulty in differentiating between the optical signature of
the bar and the shoreline. At the Gold Coast, the Argus imagery consists only of low-tide
images. In these low-tide images, the separation distance between the inner bar and the
shoreline is more subtle compared to the separation distances in the single-barred imagery.
When the models, trained with only the single-barred data were applied to identifying the
inner bar, they were probably not sensitive enough to find those separation distances so it
labelled most of the images into the shore-attached LTT and TBR states.

The lower performance of the CombinedSINGLE-CNN on the double-barred system
of the Gold Coast as compared with the tests at Duck and Narrabeen (F1 scores of 0.32 and
0.55 at the double-barred system compared with F1 scores of 0.85 and 0.78 for the tests at
Duck and Narrabeen) suggested that the algorithm required additional data from the Gold
Coast to improve transferability performance.

6.2. Double-Bar Models

The F1 values of 0.73 and 0.88 for the models trained with only the data of the
Gold Coast with either the inner or outer bar labels, respectively, the INNER-CNN and
OUTER-CNN, suggest that these models can distinguish between the inner and outer
bar. We found that when the INNER-CNN was tested at the Gold Coast, it was biased
towards labelling images as the LTT and TBR states (Figure 12a). In addition, the OUTER-
CNN was biased towards the LBT state (Figure 12b). We found that these states occur
more frequently in the training dataset. The training data of the inner bar were heavily
imbalanced, with the frequencies of R/LTT/TBR/RBB/LBT being 13%/62%/18%/2%/5%.
Additionally, the training data of the outer bar were moderately imbalanced, with the
frequencies of TBR/RBB/LBT being 37%/23%/40%. This suggests that the biases towards
these states were mainly caused by the imbalanced datasets (despite the effort to weigh
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them more heavily during training using oversampling; see Section 3) rather than the
confusion between similar looking morphologies.

In the second experiment, we tested the transferability of a model with data coming
from both single and double-barred beach data. Notable is that when data from the Gold
Coast were added, the performance on the bar from which the data were added increased
up to recall values comparable to the self-tests of Duck and Narrabeen. On the other hand,
the performance on the bar of which the data were not added decreased to an almost
insignificant rate (Figure 11). Consistent with the results of the INNER-CNN and OUTER-
CNN, this implies that the model can discriminate the inner and outer bar while training.
Overall, the skill for the double-bar models (CombinedOUTER, CombinedINNER, INNER
and OUTER) were highest for the outer bar labels, potentially indicating that the outer
bar classification is ‘easier’ at the outer bar than the inner bar. This is consistent with our
previous observations, showing that there are more difficulties to identify the inner bar
compared to the outer bar.

Figure 11 showed that at least 20% of data coming from the Gold Coast with the inner
bar labels or at least 10% of data with the outer bar labels was required for reasonable
(within 20% of the self-test performances of the INNER-CNN and OUTER-CNN) transfer-
ability of the model to the new site. Moreover, we saw that for both cases, the best overall
performance was achieved when an equal amount of training data came from all locations.
Simultaneously, the performance on the single-bar datasets of Duck and Narrabeen re-
mained quite similar compared to the performance of the CombinedSINGLE-CNN (with F1
scores between 0.74–0.85 at Duck and F1 scores between 0.66–0.83 at Narrabeen compared
to the F1 scores of 0.85 and 0.78 at Duck and Narrabeen, respectively). This indicates that
increasing the diversity of images does not necessarily increase the overall skill at the
original locations. Instead, it allows for classifications at an alternate location.

Depending on the dataset used for training, the bias towards certain beach states
varied. For the CombinedSINGLE-CNN (trained on Narrabeen and Duck), there was a
slight bias towards the LTT and TBR states, the INNER-CNN was biased towards the LTT
state, and the CombinedINNER-CNN (trained on Narrabeen, Duck and Gold Coast inner
datasets) was slightly biased towards the LTT and TBR states (Figure 13). This suggests
that the inclusion of the Duck and Narrabeen datasets alleviated the bias of the INNER-
CNN and spread the bias between the TBR and LTT states. In addition, the bias was less
for the CombinedINNER-CNN than for the CombinedSINGLE-CNN, implying that the
Duck and Narrabeen datasets contributed to the LTT/TBR bias when combined with the
dataset of the Gold Coast with the inner bar labels. These results suggest that training with
additional data from a new location does not cancel out confusions made by models the
models without the data from a new location. Instead, these errors become relatively small,
and therefore, the F1 score becomes overall better as the total amount of test data from
other locations increases.

In the cases where the models were trained with additional data from the Gold Coast,
we stopped adding data when the training data consisting of data from Duck and Narrabeen
doubled. Hence, only 36% of the total amount of the Gold Coast’s available training data
was used to train the models. In most classification tasks, training the model on more
data should improve the model’s performance [67]. However, in the case of using all three
datasets, higher amounts of data coming from one location did not always positively affect
the model’s performance. Reasons for this may be the site-specific features, such as tidal
range, number of cameras, and wave climate. A majority of images coming from one
specific site could result in the model training on such a specific feature. This would result
in the fact that wrong features will be correlated with specific labels, thus decreasing the
performance on the other sites.

In future research, more data from different locations would benefit the model’s perfor-
mance at new locations and would be a step in the right direction for creating a universally
applicable model for classifying beach states worldwide. Additionally, to classify beach
states more accurately, the application of CNNs in object detection and localization tasks
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could enable a CNN to localize multiple beach states alongshore and cross-shore [68].
Moreover, object tracking could enable a CNN to track sandbar evolution [69].

7. Conclusions

With our work, we extend the previous work by [36], on the classification of beach
states in single-barred systems using a convolutional neural network, to the classification
of beach states of double-barred beaches. The main findings of our work are that (1) a CNN
trained with images from single-barred beaches shows poor performance when classifying
double-barred beach states; (2) transfer learning, where limited data from a double-barred
beach is added to the single-barred model, allows for the training of a well-performing
model for classifying double-barred beach states; and (3) including outer-bar labels in the
transfer learning has a larger impact on the resulting model performance than when labels
from the inner bar are included.

Rather than training the model from scratch as in [36], we used transfer learning to
fine-tune the pre-trained ResNet50 network. Datasets from three different beaches were
used: the single-beach images from Duck, North Carolina, USA and Narrabeen-Collaroy,
NSW, Australia, and double-bar beach images from the Gold Coast, Australia. The fact that
we achieved comparable performance to [36] shows that the features learned from images
within the ImageNet dataset can be applied to classify coastal imagery. Additionally, our
work shows that we can classify both single and double-barred beaches in an automated
way using a CNN. Hence, this is a step forward to better automatic beach state classification.

We conducted two experiments in which we trained and assessed seven different
CNNs. Each model was tested on the test data from the locations where its training data
came from, the self-tests, and on the test data of alternate, unseen locations, the transfer-
tests. Three models were trained with only the single-barred data: one at Duck, one at
Narrabeen, and one with data from both Duck and Narrabeen. The model trained on the
data from both Narrabeen and Duck combined achieved F1 values of 0.78 at Narrabeen,
0.85 at Duck and 0.78 for the combined test dataset. When the model trained on the data of
both Duck and Narrabeen was tested on the Gold Coast, we achieved poor performance
for both bars (F1 score at inner bar = 0.32 and outer bar = 0.55). Consistent with [36], this
suggested that the algorithm requires additional data from a new location to improve the
transferability performance.

In a second experiment, additional data from the Gold Coast were used for training.
Firstly, two models were trained with only the double-barred beach data. The skills of the
self-tests of these models were comparable to the skills in the self-tests of the single-barred
models of Duck and Narrabeen, with F1 values of 0.73 and 0.88 for the models trained with
either inner or outer bar labels, respectively.

Additionally, two models with data coming from Duck and Narrabeen and with
incrementally added data of the Gold Coast, with either the inner or outer bar labels,
were trained. The tests with these models showed that, with at least 20% of data with the
inner bar labels or 10% of data with the outer bar labels, F1 values within 20% of the F1
scores of the self-tests of the INNER-CNN and OUTER-CNN (0.73 and 0.88) were achieved.
Moreover, with an equal amount of the total training data coming from each location, F1
values comparable with the self-test cases at each location were achieved. On the single-
bar data, the CombinedINNER-CNN and CombinedOUTER-CNN achieved F1 values at
Narrabeen and Duck of, respectively, 0.80 and 0.85 for the model with labels from the
inner bar and F1 values of 0.82 and 0.86 for the model with the outer bar labels. On the
double-barred data, the CombinedINNER-CNN and CombinedOUTER-CNN achieved F1
values of 0.65 and 0.84 for the inner and outer bars, respectively.

For the models trained with data of the Gold Coast it mattered which of the labels
were used for training; training with outer bar labels led to overall higher performances,
with the exception of classifying the inner bar, on which the performance was higher when
using the inner bar labels for training. Additionally, more data from one location did not
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always positively affect the model’s performance. However, the larger diversity of images
allowed the transferability to more locations.

Author Contributions: Conceptualization, S.C.M.O., W.N., T.D.P. and A.N.E.; methodology, S.C.M.O.
and A.N.E.; software, S.C.M.O. and A.N.E.; writing—original draft preparation, S.C.M.O.; writing—
review and editing, W.N., T.D.P. and A.N.E.; supervision, W.N. and T.D.P.; All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding. We thank the Utrecht University Open Access
Fund for reimbursing the article processing charge of this open access publication.

Data Availability Statement: Trained models are available at https://github.com/StanOerlemans
/DeepBeachStateV2, accessed on 14 January 2022, and images upon request.

Acknowledgments: We thank Ton Markus from Communications & Marketing at the Faculty of
Geosciences, Utrecht University for producing Figures 1 and 2. We also thank the anonymous referees
for their valuable comments that improved the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Performance in Terms of Loss

To assess the model’s performance during training, the measure known as loss was
used. The loss quantifies the error produced by the model. We used the training loss as
a metric to assess the model’s error on the training data. The validation loss was used to
assess the model’s error on the validation data. For each CNN, we visualized both the
training and validation loss. Preferably, both losses are close together and decrease at the
same rate. However, when they diverge the model starts to overfit, meaning that the model
performs better on the data it ’knows’ than on unseen data.

Appendix A.1. Single-Bar Models

Figure A1. The training and validation losses of training the models: DUCK-CNN (left), NBN-CNN
(middle) and CombinedSINGLE-CNN (right). On the y-axis is the loss, and on the x-axis is the
number of epochs. The red dotted line indicates the early stopping point.

https://github.com/StanOerlemans/DeepBeachStateV2
https://github.com/StanOerlemans/DeepBeachStateV2


Remote Sens. 2022, 14, 4686 23 of 26

Appendix A.2. Double-Bar Models

Figure A2. The training and validation losses of training the models: INNER-CNN (left) and OUTER-
CNN (right). On the y-axis the loss and on the x-axis the number of epochs. The red dotted line
indicates the early stopping point.

CombinedINNER-CNN

Figure A3. The training and validation losses of the models fed with increments of 10% of additional
double-barred beach data with the inner bar labels.
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CombinedOUTER-CNN

Figure A4. The training and validation losses of the models fed with increments of 10% of additional
double-barred beach data with the outer bar labels.
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