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Abstract: The fine state of targets can be represented by the extracted micro-Doppler (m-D) com-
ponents from the radar echo. However, current methods do not consider the specialty of the m-D
components, and their performance with non-sinusoidal components is poor. In this paper, a neural
network is applied to signal extraction for the first time. Inspired by the semantic line detection
in computer vision, the extraction of the m-D components is transformed into the network-based
time–frequency curves detection problem. Specifically, a novel dual-branch network-based m-D
components extraction method is proposed. According to the property of intersected multiple m-D
components, the dual-branch network consisting of a continuous m-D components extraction branch,
and a crossing point detection branch is designed to obtain components and cross points at the same
time. In addition, a shuffle attention-fast Fourier convolution (SA-FFC) module is proposed to fuse
local and global contexts and focus on key features. To solve the error correlation problem of multi-
component signals, the first-order parametric continuous condition and cubic spline interpolation are
employed to obtain complete and smooth components curves. Simulation and measurement results
show that this method of good robustness is a good candidate for separating the non-sinusoidal m-D
components with intersections.

Keywords: micro-Doppler; neural network; components extraction; intersection detection

1. Introduction

The radar micro-Doppler (m-D) effect describes the frequency shift phenomenon
induced by targets or components of targets undergoing micro-motion dynamics [1]. For a
target with multiple scattering centers, the individual micro-motion of the scattering cen-
ters is different. The radar echo contains several m-D components [2]. By separating m-D
components or estimating the m-D from the radar echo, Doppler features corresponding to
the specific target parts can be extracted, and target fine status analysis can therefore be
achieved [3]. It is noted that the m-D signal is typically a multicomponent non-stationary
signal, and the m-Ds of the target’s scattering centers are identical to the signal’s instanta-
neous frequencies (IFs) when the target’s motion only contains micro-motion, which is the
major studied scenario in existing research.

Numerous m-D signal estimation methods were proposed, which can be divided into
signal-based and image-based methods. The signal-based methods decompose the radar
echo into a set of statistically uncorrelated or independent components [4] by using tech-
niques such as Empirical Mode Decomposition [5], Variational Mode Decomposition [6],
Singular Value Decomposition [7] and Independent Component Analysis [8]. After obtain-
ing the individual components, their IFs can be estimated. However, most signal-based
methods assume that the signal components comply with certain separation conditions.

The image-based methods are based on time–frequency representation (TFR). As TFR
can characterize the echo signal in time and frequency dimensions, it is widely used for
m-D feature extraction. The m-D signal presents multiple continuous ridges in the TFR.
Thus, the m-D can be estimated by applying curve detection methods. Hough transform
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(HT) [9] and inverse radon transform (IRT) [10] extract m-D components by carrying out a
peak selecting procedure in transform space. These two methods work well in extracting
cross components even if strong noise exists, but the m-D model needs to be preset, which
has limitations in real-world scenarios, where the m-D model is unknown as a prior or
if there is a derivation between the real m-D and its model. The Viterbi algorithm (VA)
and its improved version [11] perform m-D component extraction by detecting curves on
the TFR by setting the path connection penalty function. However, VA-based methods are
computationally expensive. Ridge detection and tracking methods are computationally
efficient alternatives to the VA. The ridge path regrouping algorithm (RPRG) detects
and regroups components based on the slope of IF at the intersection region [12], but it
is sensitive to noise. The adaptive directional time–frequency distribution-based ridge
tracking (ADTFD-RT) method estimates the IF of components along the direction of the
principal axis of ridges [13], yet the improved performance is achieved at the expense of
additional calculation costs.

Higher-dimensional signal characterization is a new way to achieve signal extrac-
tion. It is possible to separate signals that overlap in the time–frequency plane in high-
dimensional feature space [14,15]. The frequency-chirprate reassignment method (FCRM)
makes the crossing components appear separated in the time–frequency-chirprate do-
main [14], but its accuracy is easily influenced by the scaling factor. A more robust three-
dimensional extracting transform (TET) based on chirplet transform is proposed to obtain
perfect IF estimation[15]. However, the 3D representation requires a tremendous amount
of computation.

Although the above methods perform well in certain conditions, they are mainly
confronted with three challenges: (1) The overlapping m-D components are difficult to
extract; (2) The used model based on a prior cannot adapt to various m-D components such
as non-sinusoidal and irregular forms. (3) Performance is degraded for scenarios where
there exists strong noise.

The booming of deep learning technology advances the performance of radar target
detection [16], recognition [17] and imaging [18] in real applications. However, it is rare in
radar signal separation and extraction. Semantic line detection is a time-honored problem
in computer vision, which aims to find meaningful lines with strong shapes with prior
knowledge but weak apparent coherence [19]. It was widely used in computer vision
tasks such as lane detection [20] and image aesthetics [21]. The m-D components with
varying instantaneous frequency (IF) can be viewed as semantic lines on the spectrogram,
as shown in Figure 1. Affected by interference such as noise, the signal may be submerged
or incomplete but still show continuity in global contexts, which provides the possibility of
applying the neural networks to component extraction.
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In this paper, we propose a novel and effective dual-branch network-based m-D
components extraction method. The contributions of this paper are three-fold.

(1) An efficient, dual-branch and multi-task network is proposed to extract the continuous
m-D components and their crossing points.

(2) The shuffle attention-Fast Fourier convolution (SA-FFC) module is proposed, which
can not only fuse the local and global context, but also focus on key information in
the channel and space to obtain better performance.

(3) A post-processing module to re-group the m-D components to achieve smooth and
complete component curves is further designed. The first-order parametric continuous
condition and cubic spline interpolation are applied in the module.

2. M-D Signal Model

The micro-motion induces a Doppler modulation on the radar signal, which is referred
to as the m-D effect. The m-D reflects the unique dynamic and structural properties of a
target and can be used as an important basis for target detection and recognition. For a
target with multiple scattering centers, the instantaneous range of the l-th scattering centers
to radar is

rl(t) = rMl (t) + rT(t) (1)

where rT(t) is the distance corresponding to the translation of the target, and rMl (t) is the
distance corresponding to the micro-motion of the l-th scattering center. Therefore, the
baseband radar echo of the target can be described as:

s(t) =
L

∑
l=1

σl(t) exp
{

j4π fcrl(t)
c

}
(2)

where σl is the reflectivity of the l-th scattering center, and L is the number of scattering
center. The IF of the l-th scattering center is:

f l
mD(t) =

2 fc

c

[
d
dt

rl(t)
]
= fT(t) + fMl (t) (3)

where fT(t) is the target’s translational Doppler, and fMl (t) is the m-D of the l-th scattering
centers, which can be represented as

fT(t) =
2 fc

c

[
d
dt

rT(t)
]

(4)

fMl (t) =
2 fc

c

[
d
dt

rMl (t)
]

(5)

fT(t) is consistent for all scattering centers, while the m-D of each scattering center
is different due to the amplitude and initial phase of micro-motion varying for different
scattering centers. In general, the extraction of m-D components is referred to as the
estimation of the individual m-D or the estimation of the individual radar signal of all
scattering centers. In this work, the TFR-based m-D estimation is considered.

The micro-motion signal can be transformed from the time domain to the time–
frequency domain for joint characterization through TFR. As shown in Figure 2, in the TF
plane, the energy of the signal concentrates around the signal’s IFs (m-Ds), which looks
like multiple ridges (curves), while the noise distributes over the entire plane [22].

As one of the most widely used TFR, the short-time Fourier transform (STFT) has the
advantages of simple implementation and low computational complexity. The STFT of s(t)
can be written as

ρs(t, f ) =
∫ ∞

−∞
s(τ)h(τ − t) exp(−j2π f τ)dτ (6)
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where h(t) is a symmetric window function. The time–frequency resolution is affected
by the length of the window. According to the uncertainty principle of Heisenberg, the
time resolution and frequency resolution cannot be optimized at the same time. For the
target with multiple scattering points, their m-Ds overlap in the time–frequency plane.
Moreover, with the influence of noise or other interference, the signal becomes weak or
incomplete. These properties, especially the overlapping m-Ds, makes the extraction of
signal components become more challenging.
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To deal with the overlapping m-Ds, the TFR-based m-D estimation often contains two
processes: extraction of the pixels that belong to the m-D components, and the association of
these pixels with the corresponding scattering centers, as shown in Figure 3. The extraction
stage can be peak detection or ridge extraction, while the association is achieved by first
finding the continuous parts of the m-Ds and then by connecting the parts before and after
intersection points with special features such as slope.
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3. Method

As stated in the introduction, the m-D estimation methods have limitations for non-
sinusoidal multicomponent m-D signals. In recent years, semantic line detection based on
deep learning has developed rapidly and has provided new ideas for signal extraction. The
non-sinusoidal signal components in the time–frequency plane can be regarded as semantic
lines. With the powerful processing ability of neural networks, the m-D estimation perfor-
mance can be improved. Below, the principle of neural network-based m-D estimation is
presented, followed by the detail of the proposed method.

For a TFR I with size H ×W, it can be regarded as a set of vectors of time series
I = {ti, i ∈ [1, W]}, ti is an H-dimensional vector. The m-D continuous signal compo-
nent can be represented by several time series, which is denoted as P = {Pc, c ∈ [1, C]}.
Pc = { fi, i ∈ [1, W]} is the frequency coordinate of the c-th component and presents as a
curve in the image.

The m-D estimation process can be expressed as

P = g(I) (7)
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where function g() consists of extraction part gext and association part gass. The g() can be
regarded as a map process that converts an H-dimensional vector into a C-dimensional
vector, which corresponding the frequency dimension coordinate of components. The
task of gext is to find the pixels that belong to the m-D components. One can use features
such as shape, color and amplitude to achieve this. This task can be transformed to
a classification problem and neural network-based segmentation [23] or anchor-based
semantic line detection methods [20,24] as shown in Figure 4. It was proved in [20] that
the anchor-based line detection method has better performance and higher computing
efficiency. In view of this, we used this type of method on TFR m-D extraction. At each
time instant i, the proposed method outputs c frequency coordinates by using a multilabel
classification function, which can be expressed as

f c
i = g(ti), c ∈ [1, C] (8)
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After obtaining the estimates for each time instance, component association should be
performed. In this work, a two-stage technique for extracting m-D components is proposed.
In the first stage, a dual-branch neural network is employed to extract the continuous
m-D components (CMDCs) and their crossing points (CPs). The CMDC branch extracts
components by employing a column-based selecting method with global characteristics,
while the CP branch detects their crossing points by predicting a proposal heatmap. These
two branches share the features generated by the backbone network. The backbone adopts
the improved ResNet [25], in which the traditional convolution is replaced with the SA-FFC
module proposed in this paper. Compared with the original network, the modified network
can realize the fusion of global features and local features.

To further achieve more accurate associations, a post-processing stage is proposed.
Since the extracted m-D components of the dual-branch network are represented as sets of
positions consisting of multiple fragments, we used the first-order parametric continuity
condition to re-link the m-D components and interpolation to generate fine m-D estimation.
The overall architecture of the proposed method is shown in Figure 5.
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operator fast Fourier convolution (FFC) [26] has a receptive field that covers the entire image.
The FFC fuses local and global contexts through a multi-branch aggregation process.

Specifically, the FFC is comprised of a local branch and a global branch. The input
feature maps Fin are split into a local part and a global part Fin =

{
FLin , FGin

}
along channel

dimension, and the split ratio is controlled by a hyper-parameter α, α ∈ [0, 1]. The split
features are input into a local branch and global branch, respectively. The local branch
captures local information with vanilla convolution fg→l and fl , while the global branch
captures the long-range context by performing regular convolution fl→g and spectral
transform fg. The global and local branch interact with each other via inter-path convolution
transition, as illustrated in Figure 6.

FLout = fl
(

FLin

)
+ fg→l

(
FGin

)
(9)

FGout = fl→g
(

FLin

)
+ fg

(
FGin

)
(10)

The spectral transform is achieved by the following steps:

1. Apply real two-dimensional fast Fourier transform (FFT) to the input feature map.
2. Concatenate the real and imaginary parts of the output of Step 1 together by the

channel dimension to convert the output to a real value.
3. Apply 1× 1 convolution to the output of Step 2.
4. Split the output of Step 3 across the channel dimension and restore the real value to a

complex value.
5. Apply inverse real two-dimensional FFT to the output of Step 4.
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Although multi-scale features which contains sufficient information are obtained, they
often contain redundant information, and how to focus on the useful features is another
problem. As the two most widely used attention mechanisms, the proposals of spatial
attention and channel attention optimize the performance of the network. The shuffle
attention (SA) [27] utilizes the shuffle unit to delineate feature dependencies in spatial and
channel dimensions. In this paper, SA is combined with the FFC module. Specifically, the
SA module groups the channel dimension of local and global features, respectively, into
multiple sub-features, and for each sub-feature the spatial attention and channel attention
module are applied in parallel. Specifically, for the output FLout of the local branch, we

divided into K groups sub-features, FLout =
[

F1
Lout

, · · · , FK
Lout

]
. For each sub-feature Fk

Lout
,

it is spilt into two branches
{

Fk1
Lout

, Fk2
Lout

}
as the input of spatial attention and channel

attention. The spatial and channel attention can be calculated by

Fspatial = sigmoid
(

W1 · GAP
(

Fk1
Lout

)
+ b1

)
· Fk1

Lout
(11)
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Fchannel = sigmoid
(

W2 · GN
(

Fk2
Lout

)
+ b2

)
· Fk2

Lout
(12)

where GAP is global averaging pooling, and GN is group normalization. The output
of spatial and channel attention are concatenated. The outputs of each sub-feature are
aggregated. The information exchange between different sub-features is achieved by
operating channel shuffle on fused sub-features.

The SA-FFC can be used as a substitute for regular convolution. In this paper, ResNet
was used as the backbone, and the SA-FFC-ResNet could therefore be obtained; the basic
block of FFC-SA ResNet is shown in Figure 7. Assuming the input image size is I, the size
of output feature maps of FFC-ResNet are I1 = 1

4 I, I2 = 1
8 , I3 = 1

16 I, I4 = 1
32 I, respectively.
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Figure 7. The basic block of FFC-SA ResNet.

3.2. Extraction Stage
3.2.1. CMDC Branch

M-D components can be viewed as a series of vertical locations at each column, and our
goal was to distinguish the correct positions of components from the background. Existing
lane detection methods are often aimed at lanes that are mostly straight. The situation
in this paper was more complicated, as the radar signals were mostly non-sinusoidal
curves with overlap. Inspired by the previous work in [20], a column-based components
extraction method was proposed. Compared to segmentation networks, which use the
local feature [23], the CMDC branch uses the global feature obtained by the FFC-SA Resnet,
which can better capture a long continuous shape structure-like component. The structure
of the CMDC branch is shown in Figure 8.
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The feature map I4 generated from the backbone, serves as the input of the CMDC
branch, with a size of the 1

32 of the original image. The feature map is compressed by
convolution with a 1× 1 kernel to reduce the number of channels. After the compressed
feature F is obtained, it is flattened and sent to the fully connected (FC) layers, which
consist of two layers. The features are flattened before being sent to the FC layers. The FC
layers work as a classifier in the entire convolutional neural network, determining whether
components exist in divided grids. A dropout operation is embedded in the FC layers, so
that it does not rely too much on the local features to prevent overfitting, and the model
has stronger generalization performance. Assuming that there are C m-D components on
the TFR, then the features are restored to C× h× w by a reshape operation.

As the m-D components occupy a small proportion of the TFR, there is no need for
extensive computation to analyze each pixel. To improve computational efficiency, TFR
is divided into cells, with each cell corresponding to several pixels. For a TFR with size
H ×W, it is divided into grids of shape h× w. For each continuous signal component,
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there is only one label in each column, so the column-based classification method can be
used to find the position of the component in each column, as shown in Figure 9.
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For each visual m-D component, its vertical location at each column is estimated based
on an h-dimensional probability vector. The output of the CMDC branch is the reshaped
classification results. The production of CMDC branch is the position set of all components
with size C× h× w, which is given by

pmn = so f tmax( fmn(F)), m ∈ [1, C], n ∈ [1, w] (13)

where pmn is an h-dimensional vector representing the probability prediction at the n-th
column of the m-th m-D component. After obtaining the probabilities, the vertical locations
with the highest possibilities in each column are selected.

To alleviate the imbalance of sample distribution, we adopted a standard focal loss to
constrain the prediction output

losscls =
C

∑
m=1

w

∑
n=1

f ocalloss(pmn, lmn) (14)

where lmn is the one-hot label of the correct position of column n. The one-hot label of m-D
components is shown in Figure 9. The focal loss can be written as

f ocalloss = − p̂γ log( p̂)− (1− p̂)γ log(1− p̂) (15)

where p̂ is predicted value, and the hyper-parameter γ is set to 2.

3.2.2. CP Branch

The intersections are relatively small and susceptible to noise, making CP challenging
to detect. To find out the crossing points of m-D components, the CP branch inspired by
CenterNet [28] was designed, as shown in Figure 10.
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In this branch, the fusion of high-level semantic features and low-level detail informa-
tion is applied to detect small targets like CP. Specifically, a feature aggregation-based CP
detection method that utilizes multi-scale features to model local features is employed. The
backbone network outputs multiple scale features, including high-level semantic features
and low-level detail features. Three scale feature maps I2, I3, I4 are used in this branch. The
feature map I3 and I4 are resized to the same size as the feature map I2 by interpolation.
After that, the feature maps are squeezed and concatenated with feature map I2 across the
channel dimension. A heat map reflecting the CP position is generated from the CP branch.
The ground truth of heatmap is generated by Gaussian filter to the label map of the CP, as
shown in Figure 11.
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Since the number of CPs is small, the modified focal loss in [28] is adopted as the loss
function.

lossdet =
−1
N ∑

xy

{ (
1− P̂xy

)α log
(

P̂xy
)

Pxy = 1(
1− Pxy

)β(P̂xy
)α log

(
1− P̂xy

)
otherwise

(16)

where N is the number of intersections, and Pxy and P̂xy are the label and the predicted
value of the proposal heatmap at x-th column and y-th row, respectively. Hyper-parameters
α and β were set to 2 and 4 in this paper. The branch detects CP effectively by prediction,
and the position of CP is therefore obtained.

The multi-task learning is used to train the whole network, i.e., the CMDC branch and
CP branch are trained simultaneously. In the training phase, the multi-task loss is defined
as follows.

losstotal = losscls + lossdet (17)

3.3. Post-Processing Stage

Although position sets of m-D components are obtained from the CMDC branch, each
set consists of multiple fragments that may belong to different m-D components due to
crossing. To further improve the precision of extraction, a post-processing stage consisting
of regroup and interpolation operations is conducted to correct the association errors of the
previous stage. The post-processing process is shown in Figure 12.
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3.3.1. Regroup

As we obtain the position sets of components and CP, the sets of components can be
regrouped around CP obtained from the CP branch, according to the first-order paramet-
ric continuous (C1) of components. C1 is a commonly used measure to determine how
smoothly a curve transits from one curve segment to another segment, which can be used
to determine whether two fragments before and after the junction belong to the same curve.

Since m-D components are represented as a series of vertical locations at predefined
columns; the first derivatives are approximated as the slope of lines consisting of positions
on adjacent columns. Assuming a CP is between the i-th and (i + 1)-th column, the slope
before and after the CP of the p-th component can then be expressed as

kp
− =

yi − yi−1

xi − xi−1
(18)

kp
+ =

yi+2 − yi+1

xi+2 − xi+1
(19)

To regroup components, a connection matrix CM is designed

CM =
∣∣∣k−p − k+q

∣∣∣, p, q ∈ 1, . . . , C (20)

The values of the elements in the connection matrix are the absolute values of the
difference of the slopes, which are estimated to be less than 103. The best combination pair
of components can be obtained by finding the minimum element of the connection matrix,
which can be represented as

(p0, q0) = argmin
p,q∈1,...,C

CM (21)

After that, the first i elements in the position set of p0 are combined with the last i + 1
elements in the position set of q0. To regroup other components, the elements in the p0-th
row and the q0-th column of CM are set to 109. Then the above process is repeated until we
find C pairs. The procedure is repeated for each CP.

3.3.2. Interpolation

Since the components are extracted on the down-sampled locations, we interpolate
the regrouped set to generate smooth component curves in the origin spectrogram. A
univariate cubic spline interpolation [29] is applied to fit curves to the provided sets. The
number of knots can be specified to control the degree of curve smoothness.

4. Numerical Results

To evaluate the proposed approach, we performed experiments on simulated scenarios
and measured data. The data used in the simulation scenario were generated by the model
established in the M-D signal model section. The measured signal data were collected by a
millimeter-wave radar.

4.1. Simulation Experiment Setup
4.1.1. Dataset

As a typical multi-scatter target, a cone-shape target is widely used to model ballistic
targets with micro-motion (The proposed method is model agnostic. The cone model is
taken as an example, and the trainset is generated by this model). For simplicity and conve-
nient analysis, a cone-shape target was considered in this paper. The reference coordinates
system O− XYZ and the target local coordinate system O− xyz were established with the
center of mass as the coordinate origin O, as shown in Figure 13. ν is the azimuth of radar
line of sight (LOS) at the reference coordinate system. The angle between LOS and Z was
set to α.
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For the l-th point scatterer on the target, the instantaneous range to the radar could be
expressed as

rl(t) = rT(t) + Rn ·Rc ·Rs ·Rinit · r0 · n (22)

where rT(t) is the range corresponding to the target translation, r0 is the initial position
of the scatterer in local coordinate and Rinit is the initial rotation matrix that represents
the initial attitude of the target. Rn, Rc and Rs are the rotation matrixes of oscillating,
coning and spinning motion, respectively, and n is the unit direction vector of radar line
of sight. The specific derivation can be obtained in [30]. Due to the cone-shaped target
being rotationally symmetrical, the spinning has no modulated effect on the scattering
characteristics of electromagnetic waves. The precession is the combination of coning and
spinning, while the nutation is the combination of precession and oscillating. Figure 14
shows TFR of precession and nutation without translation. The time–frequency curves of
precession appeared to be sinusoidal, while the time–frequency curves of nutation had
obvious distortion. Affected by noise, the curve appeared discontinuous, but it still had a
strong shape prior and global context information, which enabled the neural network to
capture its global continuity.
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We assumed that the radar operated at 10 GHz, and the pulse repetition frequency
(PRF) was 1024 Hz. Gaussian white noise was added, with the signal-noise ratio (SNR)
between −5 and 15 dB randomly. To make the simulation more realistic, a translation was
added to the target. The translation was rT(t) = −t + 0.4t2 + 0.02t3. A Hamming window
with a length of 65 was employed in the computation of STFT.

The observation time was set to t = 2 s. This paper mainly considered precession
and nutation. In addition to the case where there was only one motion, we considered a
more complex case where the state of motion changed. In this case, the precession became
nutation after 1 s. The settings of simulation parameters are listed in Table 1. For simplicity
and convenient analysis, we chose two strong effective scatterer points whose positions
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were P0 = (0, 0, 1.6) m and P1 = (0,−0.2,−0.4) m to simulate the radar signal model.
We assumed each point scatterer had the same scattering intensity. With comprehensive
consideration of computing efficiency and accuracy, we set w = 128 and h = 64 for training,
respectively.

Table 1. Parameters of simulation.

Target Height (m) 2 Bottom Radius (m) 0.2

Precession frequency (Hz) 0.8:0.2:2 Precession angle (◦) 10:1:15

Nutation frequency (Hz) 0.7:0.1:1 Nutation angle (◦) 3:1:6

α (◦) 30:4:70 ν (◦) 270

It is worth mentioning that although the data set was established based on the cone
model, the method proposed in this paper is not limited to the model and motion form and
has good generalization.

4.1.2. Implementation Details

The experiment was conducted with PyTorch on Tesla V100 GPUs. The input size
of TFR was 512 × 512. All models were trained for 40 epochs with a batch size of 16. An
Adam optimizer with cosine decay learning rate strategy was applied to train our model.
The initial value of the learning rate was 0.01.

To improve the performance of network generalization, a data augmentation operation
was conducted. In each iteration, we randomly chose augmentation operations from resize,
crop, flip horizontally or vertically and spatial shift.

4.1.3. Evaluation Metrics

The evaluation metrics of the CULane dataset [31] and TuSimple dataset [32] were
introduced in this paper, which were referred to as the F1 metric and accuracy metric.

For the F1 metric, the components in TFR were viewed as curvilinear targets with
widths equal to 20 pixels. The true positives (TP) were components whose intersection-
over-union (IoU) between the ground truth and the prediction was larger than a certain
threshold. The Precision and Recall could therefore be obtained. The F1-measure could be
calculated as

F1 =
2× Precision× Recall

Precision + Recall
(23)

In this paper, we set 0.5 and 0.7 thresholds corresponding to loose and strict eval-
uations. By comparing the F1 scores of different settings, the effectiveness of the post-
processing stage could be verified.

The accuracy metric was obtained by calculating the ratio of the number of correctly
predicted points to the number of all points, which was calculated by

Accuracy =
∑clip Cclip

∑clip Sclip
(24)

in which Cclip is the number of points predicted correctly, and Sclip is the total number of
ground truths in each clip.

Apart from the evaluation metrics mentioned above, we further quantitatively ana-
lyzed the performance by computing root mean square error (RMSE) between the estimated
IF and the original IF. The RMSE is represented as

RMSE =
1
M

M−1

∑
m=0

√√√√ 1
N

N−1

∑
n=0
| p̂m(n)− p(n)|2 (25)



Remote Sens. 2022, 14, 4764 13 of 18

where p(n) are the true instantaneous frequencies of the signal and p̂m(n) are the estimated
instantaneous frequencies, n is the discrete time and the superscript m represents the m-th
simulation.

4.2. Results and Analysis
4.2.1. Effectiveness of the Proposed Method

Firstly, we verified the effectiveness of the proposed methods. A total of 800 simulations
were generated randomly according to the parameters in Table 1 for SNR varying from
−5 to 15 dB. The baseline stands for Resnet-50 with vanilla conventional convolution. As
we can see from Table 2, the post-processing stage brought out improvement in F1 scores
by correcting false associations. Baseline stands for Resnet-50 with vanilla convolution.
As we can see, the FFC module brought a slight improvement in performance, while the
accuracy and F1 score of the SA-FFC module increased by 0.93% and 1.13, respectively. The
post-processing modules brought further improvements to performance. The proposed
method finally brought 1.33% and 1.51 improvement in accuracy and F1 score, respectively.
The validity of the combination of the SA-FFC module and post-processing was verified.

Table 2. Effectiveness of the proposed module.

Baseline FFC SA Post-Processing F1 (0.7) Accuracy (%)

3 87.62 96.20
3 3 87.65 96.38
3 3 3 88.75 97.13
3 3 3 3 89.13 97.53

We further analyzed the network performance from the amount of parameters and
complexity by conducting quantitative experiments. As shown in Table 3, the experiments
were carried out with the same training settings and different module combinations. The
SE in the table represents the squeeze-and-excitation block. As we can see, the performance
of the proposed module surpassed the original backbone. With less complexity, the perfor-
mance of the proposed module was comparable to FFC SE ResNet-50, which proved the
effectiveness of the proposed modules.

Table 3. Experimental results with different backbone.

Backbones F1 (0.5) F1 (0.7) Accuracy (%) Params (M) GFLOPs

ResNet-50 95.37 87.62 96.20 282.34 41.13
SE ResNet-50 95.50 87.87 96.96 284.85 41.16
SA ResNet-50 95.37 87.62 96.95 282.34 41.14

FFC ResNet-50 95.50 87.65 96.38 286.96 43.55
SE- FFC ResNet-50 96.50 88.75 97.17 290.02 43.59
SA- FFC ResNet-50 96.50 88.75 97.13 286.96 43.57

4.2.2. Comparison with Traditional Methods

To further demonstrate the effectiveness of the proposed method, we compared it
with several commonly used component extraction methods: RPRG [12], VA [11] and
ADTFD-RT [13]. The F1 score, accuracy and running time on the test dataset mentioned
above are listed in Table 4. The comparison algorithm was based on MATLAB with an
R7-4800H CPU, while the proposed method was based on PyTorch with a Tesla V100 GPU.
The running time was the average time of simulations.

It was shown that with the use of GPU, the proposed method had the least computation
time. Though other methods may have the possibility to be accelerated by GPU, there is
still much effort to rebuild them, which is not available currently.

Figure 15 shows the visualization results of the proposed method along with the RPRG
and VA. The proposed method could effectively extract the m-D components with CP, while
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the performance of RPRG was affected by the quality of the detected ridge curves. VA still
had the switch problem at CP, as shown in Figure 15c.

Table 4. Experimental results of different methods.

Methods Proposed Method RPRG VA ADTFD-RT

Accuracy (%) 97.5 56.5 66.5 74.0
F1 (0.7) 89.1 38.2 52.5 59.5

Running time (s) 0.0267 1.95 0.772 4.85

The curves in TFR corresponded to the instantaneous frequencies of the target’s
scattering centers. We further quantitatively analyzed the performance of the proposed
method with the VA, ADTFD-RT and RPRG by computing root mean square error (RMSE).
In total, 100 simulations, the parameters of which were selected randomly from Table 1,
were performed for each SNR, varying from −5 to 15 dB.
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As is shown in Figure 16, the RMSE of VA and RPRG decreased significantly with the
increase of SNR, while the proposed method was hardly affected by SNR. The ADTFD-
RT extracts signal components by recursive filtering the strongest components based on
adaptive directional time–frequency distribution, but the repetitive computation of ADTFD
is computationally expensive. The figure indicates that the proposed method achieved the
best performance for non-sinusoidal components. The RMSE of the proposed method was
less than 1 Hz for all SNR levels.
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4.2.3. Effects of Size of Grid w and h

The influence of the size of the grid on the results was analyzed as shown in Figure 17.
With the increase of w and h, cells became smaller, so location was more precise, which
consequently resulted in a decrease of the RMSE. However, more gridding cells means a
more complex classification is required, and the computational costs increase accordingly.
There is no significant improvement when the number of grids is greater than 64× 128.
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4.2.4. Experiment with Measured Radar Data

In order to further verify the effectiveness of the proposed method, we presented an
experiment with measured radar data. The experimental setup is shown in Figure 18. A
frequency modulated continuous wave (FMCW) radar was used to collect the target echo.
The parameter settings of the radar are listed in Table 5. Two cylindrical targets covered
with aluminum foil were placed on either side of the turntable, rotating around the same
center of rotation. The m-D signal obtained by two targets was analyzed.
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Figure 18. The experimental setup.

The TFR of the obtained m-D signal appeared as sinusoidal curves when the turntable
rotated at a constant speed. When the turntable started/stopped suddenly or changed its
motion state, non-uniform rotation occurred, resulting in an irregular non-sinusoidal m-D
signal. When the turntable started suddenly, the turntable accelerated, and we acquired
two non-sinusoidal m-D signal segments.
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Table 5. Radar parameter settings.

Parameters Value

Strat frequency (GHz) 77.0321
Stop frequency (GHz) 77.5450

Bandwidth (GHz) 0.5129
Range resolution (m) 0.2922

Velocity resolution (m/s) 1.9710

The amplitude of m-D increased gradually with the period decreasing gradually in
the first segment, while the amplitude and period of m-D changed gently in the second
segment. Affected by the uneven surface of the target, the scattering intensity was unevenly
distributed and varied periodically. The model trained on simulation data was transferred
directly to extract components of the measured data, and the variation of the time–frequency
curve of the collected data was not included in the simulation data set. As the result in
Figure 19 shows, the proposed method could effectively extract the cross components in the
TFR. Even if the signal was fuzzy, weak, or incomplete due to noise or other interference, it
could be extracted by the strong processing ability of the neural network. The proposed
algorithm’s validity and superiority were proven in these experiments.
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5. Discussion

The estimation of the m-Ds is of great importance. By estimating m-Ds, the exact
state of the target and the components of it can be obtained, which is helpful for the
subsequent recognition and classification. In this paper, we conducted experiments based
on a cone-shaped model for simplicity, although the proposed method can apply to any
model. There are three kinds of evaluation metrics that were applied to the experiment. The
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effectiveness of each module was proven, and the computational complexity and precision
of the network were further studied.

In the case of low SNR, the performance of the proposed algorithm degraded, which is
consistent with existing research findings. However, compared with the previous research,
the SNR had less interference on the proposed method, which reflects its robustness and
effectiveness. By making use of global features and contextual information, the method
in this paper achieved better m-D estimation performance, while existing methods only
utilize local and adjacent features to achieve extraction and association processes. The
performance is further improved by quadratic association in the post-processing module.

We only discuss a simple case of the double-scattering point model in this paper. It
should be pointed out that the performance of the proposed method will be degraded
when it is applied to more complex cases where the m-D signal curves are discontinuous or
experience strong signal interference due to clutter as they raise new problems. To deal
with this case, it is suggested to incorporate novel modules that can deal with these new
cases. Moreover, since this method is a data-driven method, to ensure the generalization of
the model, abundant annotated data are required, which are difficult to obtain in real life.
How to achieve m-Ds estimation in a small sample or unsupervised situations will be a
future research direction.

6. Conclusions

Unlike most prevailing radar applications such as radar target recognition and de-
tection, this paper is a new attempt to apply neural networks to radar signal processing.
A method combining a dual-branch network and post-processing is proposed to extract
crossing non-sinusoidal micro-Doppler components. The network backbone with an SA-
FFC module can exploit global and multi-scale features that output good features for later
processing modules, while the CMDC and CP branch can achieve fast, stable and effective
extraction of m-D components and cross points. The post-processing regroups and interpo-
late the extracted components and further improves the performance. The accuracy and F1
score reach 97.5% and 89.1%, respectively. Experiments using simulation and measured
data validate the generalization and effectiveness of the proposed method. This paper
mainly demonstrate the performance of the two-component m-D signal. Further research
on how to achieve extraction on a more sophisticated signal will be carried out.
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