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Abstract: The eLoran system is an international standardized positioning, navigation, and timing
service system, which can complement global navigation satellite systems to cope with navigation
and timing warfare. The eLoran receiver measures time-of-arrival (TOA) through cycle identifica-
tion, which is key in determining timing and positioning accuracy. However, noise and skywave
interference can cause cycle identification errors, resulting in TOA-measurement errors that are
integral multiples of 10 µs. Therefore, this article proposes a cycle identification method in the joint
time–frequency domain. Based on the spectrum-division method to determine the cycle identification
range, the time–domain peak-to-peak ratio and waveform matching are used for accurate cycle
identification. The performance of the method is analyzed via simulation. When the signal-to-noise
ratio (SNR) ≥ 0 dB and skywave-to-groundwave ratio (SGR) ≤ 23 dB, the success rate of cycle
identification is 100%; when SNR ≥ −13 dB and SGR ≤ 23 dB, the success rate exceeds 75%. To
verify its practicability, the method was implemented in the eLoran receiver and tested at three test
sites within 1000 km using actual signals emitted by an eLoran system. The results show that the
method has a high identification probability and can be used in modern eLoran receivers to improve
TOA-measurement accuracy.

Keywords: eLoran; cycle identification; skywave interference; time of arrival; spectrum division

1. Introduction

With continuous improvements in informatization, positioning, navigation, and tim-
ing (PNT) systems have become indispensable for social development and modern na-
tional defense infrastructure, reflecting a country’s international status and comprehensive
strength [1–3]. Although global navigation satellite systems (GNSS) are currently the most
widely used type of PNT system, GNSS signals are weak, ineffective at penetration, and
susceptible to interference. GNSS systems are thus not suitable for applications in special
scenarios, including underground, underwater, and indoors [4–6]. Therefore, relying solely
on GNSS involves serious risks.

The enhanced long-range navigation (eLoran) system evolved from the Loran-C
system. It is an internationally standardized medium and a long-range land-based radio
system [7,8]. It can satisfy the requirements of PNT applications in most fields in terms of
accuracy, reliability, and continuity. It can also provide a time service better than 100 ns
and a position service of 20 m after differential correction [7,9]. When a GNSS signal is
unavailable, the eLoran system can be used as a backup, which reduces the risk caused
by relying on GNSS; this also allows for coping with timing warfare and navigation
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warfare in modern war [10–12]. Therefore, several countries are developing and upgrading
their eLoran systems. In August 2019, the US Department of Defense (DoD) released a
report titled “Strategy for the DoD Positioning, Navigation, and Timing (PNT) Enterprise—
ensuring a US military PNT advantage”, which stated that Loran-C should be listed as the
PNT source, second only to GNSS [13]. China also planned to build three eLoran stations
in its western region in 2018 to achieve national coverage of eLoran signals together with
the existing eLoran system [14]. The construction of the three stations officially started in
2020. Russia has developed a new land-based radio navigation system called “Scorpion,”
with the aim of achieving balanced development of satellite-based and land-based PNT
systems [15]. South Korea began to develop and deploy its own eLoran system in 2013
due to the deliberate interference of North Korea on its GPS; in 2021, it was announced
that the developed eLoran system had commenced operation [16,17]. Although eLoran can
be used as to supplement GNSS, the current global eLoran application technology is not
sufficiently advanced. Compared with those of GNSS, the accuracy and reliability of the
application terminals of eLoran remain inadequate. Therefore, eLoran cannot fully satisfy
the requirements of users of PNT services.

The eLoran signal is a long-wave (LW) signal with a frequency of 100 kHz. According
to the propagation theory of this frequency band, the eLoran signal is a composite wave
consisting of a groundwave signal and a skywave signal [18,19]. The eLoran receiver
provides timing and positioning services by measuring the time-of-arrival (TOA) of the
groundwave signal in the composite wave. Cycle identification is an important task for
the eLoran receiver. It involves correctly identifying the standard zero-crossing (SZC)
of the eLoran ground wave signal to measure the TOA [20,21]. Because the SZC point
of the eLoran signal has no prominent characteristics, the skywave interference (SWI)
signal generated by ionospheric reflection arrives at the receiver a certain cycle after the
groundwave signal does, which affects the cycle identification result. The carrier frequency
of the eLoran signal is 100 kHz. If the cycle identification is incorrect, it produces errors
in the TOA measurement that are integral multiples of 10 µs; this severely affects the
positioning and timing accuracy. Moreover, the cycle identification is affected by not
only SWI but also noise [19,21]. As the receiving distance increases, the signal amplitude
decreases, and the signal-to-noise ratio (SNR) deteriorates, which considerably affects the
accuracy of cycle identification.

To solve the problems with eLoran signal cycle identification, in [22], a delayed-
addition method was proposed, which uses an eLoran pulse signal to subtract the signal
after a certain time delay to achieve phase inversion of the signal at 30 µs. This is achieved
by detecting the position of the phase inversion point to realize SZC detection. However,
this method exhibits poor anti-noise performance, and SWI causes the result to have
multiple phase-reversal points. In [23], the polarity-judgment method was proposed, in
which a positive zero crossing is selected, and the signals are accumulated at t− 32.5 µs,
t − 22.5 µs, and t − 12.5 µs for a long duration. If the accumulated result exceeds the
threshold, then t is the SZC; otherwise, t is moved forward or backward by 10 µs, and
the process is repeated. This method is time-consuming, and it is challenging to find a
suitable threshold. In [24], a cross-correlation method was proposed, which uses the local
standard eLoran signal to correlate with the received signal and calculates the SZC by
detecting the maximum value of the correlation result. This method is only applicable to
situations where the amplitude of the groundwave is greater than that of the skywave.
In [25], the peak-to-peak ratio detection method was proposed, in which the ratio of the
signal amplitude at t + 2.5 µs to that at t− 7.5 µs is calculated. If the ratio is close to a
standard value, then it is considered as the standard zero-crossing. However, this method
is affected by the skywave and noise, which can produce multiple values, resulting in
identification errors. In [26], a delay-locked loop (DLL) method was proposed, wherein the
lag envelope is subtracted from the advance envelope to obtain the envelope with a peak
point of 0, and the SZC is obtained by detecting the zero point of the envelope. This method
uses the peak value of the envelope of the ground wave signal; thus, the premise of the



Remote Sens. 2022, 14, 250 3 of 20

method is to eliminate the skywave. Bian and Last [27] proposed the method of spectrum
division to estimate the starting positions of the skywave and groundwave to realize cycle
identification. However, this method has a poor estimation resolution under the condition
of low SNR. Other researchers have proposed the autoregressive moving average model
(ARMA) and multiple signal classification algorithm (MUSIC) methods based on spectrum
division to improve the resolution of estimation; however, these methods are not only
difficult to implement but are suffer from inaccurate parameter estimation [28–30].

Based on the foregoing account of previous research, cycle identification methods can
be divided into two types: signal-waveform reconstruction and parameter estimation. In
signal-waveform reconstruction methods, cycle identification is realized by constructing
the characteristics of SZC. This method can fail under low SNR, and multiple identification
results under SWI can be produced; hence, relying solely on this method is hazardous.
The parameter-estimation method is mainly based on spectrum-division theory, and the
estimation error is high at under SNR. Therefore, a single-cycle identification method
is unreliable and has poor anti-noise ability. Hence, this paper proposes a joint time–
frequency domain method to realize cycle identification of an eLoran signal. On the basis
of improving SNR and repairing the envelope using a digital bandpass filter (BPF) and
linear digital averaging (LDA), the range of SZCs is determined via spectral division in
the frequency domain, and accurate identification of the SZC is realized through peak-to-
peak ratio detection and waveform matching. In this study, the performance of the cycle
identification method was simulated, and the method was verified via field testing. The
methods, findings, and conclusions of this study are presented in the following sections.

The rest of the paper is organized as follows. Section 2 presents the format of the eLoran
signal and skywave interference and describes the impact of the skywave interference on
cycle identification. The principle and model of the joint cycle identification method in
the time–frequency domain are also described. Section 3 describes the verification of the
effectiveness of the cycle identification method and the simulation of the performance of
the period identification method under different signal-to-noise ratios (SNRs) and skywave
interference. The eLoran signals actually received in three places were used to verify the
cycle identification method, and the test results were verified. Section 4 summarizes the
main conclusions of this study.

2. Materials and Methods

In this section, we first describe the single-pulse signal format and pulse group signal
characteristics broadcast by the eLoran system. Second, along with the propagation channel
of the eLoran signal, the influence of SWI on cycle identification is analyzed. Finally, the
principle of the cycle identification method based on the joint time–frequency domain is
presented, and the key parameters of the algorithm are discussed.

2.1. eLoran Signal Format

The working frequency allocated to the eLoran system by the International Telecom-
munication Union (ITU) is 100 kHz, and the bandwidth is 90–110 kHz. It is required that
99% of the transmitted signal energy be concentrated within the specified bandwidth. At
the beginning of the system design, the center frequency, signal-waveform, transmission pe-
riod, and data-modulation mode of the transmission signal are considered comprehensively,
and the existing pulse-phase signal system is formed. The single-pulse signal waveform of
the eLoran system is defined by the United States Coast Guard (USCG) as [31].

s(t) =


0 f or t < τ

A(t− τ)2 exp
[
−2(t−τ)

65

]
sin(2π f t + Pc) f or τ ≤ t ≤ 65 + τ

unde f ined f or t > 65 + τ

, (1)

where t is time (µs), A is a normalization constant related to the peak amplitude, f is
the carrier frequency of 100 kHz, τ is the envelope-to-cycle difference (ECD) (µs), and Pc
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is the phase-code parameter, which is 0 for positive phase-coded (PC) pulses and π for
negative PC pulses. The eLoran pulse signal is generated according to Equation (1). The
time–domain and frequency–domain characteristics of a single eLoran signal are shown
in Figure 1. It can be seen that the leading edge of the signal first rises rapidly, reaching a
peak at 65 µs, and then falls rapidly.
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Figure 1. Characteristics of a single eLoran signal: (a) eLoran pulse signal; (b) eLoran signal amplitude
spectrum.

The eLoran system can be a timing station or a navigation chain. The timing station
generally has only one master station, and the navigation chain generally consists of
one master station and two to five secondary stations. The master station is generally
represented by M, and the secondary station is represented by letters such as W, X, Y, and
Z. To distinguish between the signals of the master and secondary stations, each group
of the master station transmits nine eLoran pulse signals. The interval between the first
eight pulse signals is 1 ms, and that between the eighth and ninth pulse signals is 2 ms. The
secondary station transmits only eight pulses. The pulse-group signals of the master and
secondary stations are shown in Figure 2.
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Figure 2. Characteristics of an eLoran pulse group signal: (a) pulse-group signal of master station;
(b) pulse-group signal of secondary station.

The interval between the eLoran pulse groups is called the group-repetition interval
(GRI). The GRI cycle range is defined as 40,000–99,990 µs, with a resolution of 10 µs. The
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eLoran system continuously emits pulse-group signals according to its own GRI. The
phase-code cycles are listed in Table 1. The two code cycles are alternately modulated with
the signal; “+” indicates a phase code of 0 radians, and “−” indicates a phase code of π
radians. Each pulse signal in the eLoran pulse group of the master and secondary stations
is phase-coded. The third to eighth pulse signals of each pulse group are used for the Loran
data channel (LDC), which is used for transmitting system status, time information, etc.
The modulation mode adopts Eurofix data-modulation technology [32,33].

Table 1. Phase codes of eLoran signals.

Ground Master Secondary

A + + − − + − + − + + + + + + − − +
B + − − + + + + + − + − + − + + − −

In the eLoran system, the sixth zero crossing (30 µs) of the first pulse of the pulse group
is designated as the SZC. The SZC has two key functions: (i) it serves as the pulse-time
reference (PTR) for measuring the signal specification of the eLoran broadcasting station;
(ii) it allows the eLoran receiver to measure the TOA of the signal to realize high-precision
positioning and timing.

2.2. Skywave Interference and Cycle Identification

The eLoran signal belongs to an LW frequency band with a carrier frequency of 100
kHz. According to the propagation theory of this frequency band, the eLoran signal
mainly reaches the receiving point through two paths: (i) as a groundwave signal (surface
wave) transmitted along the surface of the Earth, and (ii) as a skywave signal (space wave)
produced by one or more reflections between the ionosphere and the ground when the
signal is projected to the ionosphere at a certain elevation angle. Generally, only one-
hop skywave is considered for receiving points with a receiving distance of less than
2000 km [34]. The propagation path of the eLoran signal is shown in Figure 3.
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The composite wave comprising the eLoran groundwave and skywave signals re-
ceived in space can be expressed as:

x(t) = As(t) + Ass(t− ∆T) + n(t), (2)

where s(t) is the standard eLoran signal with a normalized amplitude, A is the amplitude
of the groundwave signal, As is the amplitude of the skywave signal, ∆T is the delay
difference of the skywave relative to the groundwave, and n(t) is noise.

The skywave-to-groundwave ratio (SGR) is the amplitude ratio of the skywave relative
to the groundwave, expressed as:

RSGR = 20 log(rSGR) = 20 log
(

As

A

)
, (3)
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The time-delay difference ∆T of the skywave relative to the groundwave is expressed as:

∆T = Ts − TTOA, (4)

where TTOA and Ts are the propagation delays of the groundwave and skywave, respec-
tively.

Figure 4 shows two typical eLoran received-signal waveforms. The first case is where
the phase difference is 0◦ due to the time delay of the skywave relative to the groundwave,
which increases the amplitude of the composite signal. The second case is where the
phase difference is 180◦ due to the time delay of the skywave relative to the groundwave,
which reduces the amplitude of the composite signal. In both cases, the groundwave is
distorted, and the signal amplitude exhibits two extremes. This significantly affects the
cycle identification result of the eLoran groundwave.
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Cycle identification is the process of finding the SZC of the first pulse of the ground-
wave after the eLoran pulse acquisition. Ideally, only the pure groundwave signal is
received, and the SZC can be detected by measuring the peak value (65 µs) of the eLoran
groundwave envelope. However, the skywave is generated due to reflection from the
ionosphere, and it always arrives at the receiver a certain cycle after the groundwave does.
Therefore, the eLoran groundwave signal is susceptible to interference by the skywave
delay [21,35]. According to the minimum receiver performance standards for marine eLo-
ran receiving equipment issued by the Radio Technical Commission for Maritime Services
(RTCM), the time delay range ∆t of the skywave relative to the groundwave is 37.5–1500 µs,
and the amplitude ratio SGR of the skywave relative to the groundwave is 12–26 dB [36].
Therefore, to consider both the stability and the SNR, the positive zero crossing (30 µs) in
the third week is usually selected as the SZC [37].

2.3. Time–Frequency Domain Cycle Identification Method

Because the phase of the first pulse signal in the eLoran pulse group is “+” and there
is no data modulation, cycle identification is performed using the first pulse in the eLoran
pulse group. To overcome the low identification probability and poor anti-interference
ability of existing cycle identification methods, we propose a time–frequency domain
method to identify the SZC of the eLoran signal. The frequency–domain method uses
spectrum division to estimate the approximate starting positions of the skywave and
groundwave, which is also the cycle identification range; the time–domain method uses the
peak-to-peak ratio and waveform matching to determine the SZC accurately. The specific
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implementation process of the method is shown in Figure 5. We assume that the received
signal is as follows:

x(t) = s(t− T1) + rSGRs(t− T2) + n(t), (5)

where rSGR is the amplitude ratio of the skywave to the groundwave, T1 is the delay
difference of the groundwave relative to the local standard eLoran signal, T2 is the delay
difference of the skywave relative to the local standard eLoran signal, ∆T = T2 − T1 is the
delay difference of the eLoran skywave relative to groundwave, and n(t) is noise in the
signal.
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2.3.1. Digital Bandpass Filtering and Linear Digital Average

Before the cycle identification, the received signal must be filtered to suppress noise
and interference and improve the SNR, to obtain relatively clean composite signals of the
groundwave and skywave.

From the eLoran frequency band, the cycle identification results are mainly affected
by noise and continuous wave interference (CWI). We used BPFs to suppress out-of-band
noise and interference. The BPF includes a Hamming window with a bandwidth of 30 kHz
and an order of 128, and its out-of-band suppression capability can exceed 30 dB. The
bandpass-filtered signal is:

xBPF(t) = s(t− T1) + rSGRs(t− T2) + n1(t), (6)

where n1(t) is the residual noise in the bandpass-filtered signal.
In the eLoran frequency band, the cycle identification results are mainly affected

by noise. After bandpass-filtering, we used LDA to suppress in-band noise, which not
only suppresses the noise and improves the SNR of the received signal, but also repairs
the eLoran signal and reduces the signal distortion. The LDA is the cumulative average
processing of the received signal for M times according to the GRI cycle. Assuming that
there are M signals with a length equal to the GRI, the LDA result can be expressed as:

xLDA(t) =
1
M ∑M

i=1 xBPF(t) = ∑M
i=1[s(t− T1) + rSGRs(t− T2)] + n2(t), (7)

where n2(t) is the residual noise in the signal after LDA.
When the number of LDA is M, the gain of the SNR can be increased by 10 log10 M.

We chose the linear digital average of M = 64 to ensure that the SNR of the signal can be
improved by 18 dB. A relatively clean composite signal with a length equal to the GRI
can be obtained using the linear digital average. The cycle identification method in the
time–frequency domain was subsequently used to identify the SZC.
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2.3.2. Spectrum Division in Frequency Domain

The fast Fourier transform (FFT) was used to obtain the signal spectrum after LDA,
and the approximate starting positions of the skywave and groundwave were determined
via spectrum division. The FFT of xLDA(t) is:

X( f ) = S( f )
[
ej2π f T1 + rSGRej2π f T2

]
+ N( f ), (8)

where S( f ) is the FFT result of the eLoran signal and N( f ) is the FFT result of the noise.
The spectrum-division method, proposed by Bian and Last, is based on high-resolution

time delay estimation under multipath conditions [38]. When Equation (8) is divided by
the Fourier transform S0( f ) of the standard eLoran signal, the spectrum-division result is:

Y( f ) =
X( f )
S0( f )

= kg

[
ej2π f T1 + rSGRej2π f T2

]
+ W( f ), (9)

where kg is the amplitude ratio of the received groundwave signal to the standard signal,
and W( f ) is the result of dividing the noise by the standard eLoran signal. According to
Euler’s formula:

ej2πT f = cos(2πT f ) + jsin(2πT f ), (10)

The Equation (10) is a sine wave with variable f , and the frequency of sine wave is T.
Therefore, the result of the spectrum division of the received signal in Equation (9) becomes
an estimate of two continuous wave frequencies T1 and T2. The amplitude ratio rSGR is the
ratio of the amplitudes of the two continuous waves.

Figure 6 shows the results of spectrum division without noise and with SNR = 5 dB.
The waveform of the spectrum division result in the absence of noise was composed of
continuous waves formed by different time delays, which is consistent with the theoretical
analysis. However, after noise was added, the out-of-band noise was amplified by the
spectrum division, which increased the out-of-band noise of the eLoran signal and reduced
the SNR sharply. The waveform of the two continuous waves was difficult to distinguish.
The Hamming window offered the advantages of low side-lobe attenuation and strong
out-of-band suppression. Therefore, a Hamming window with a bandwidth of 50 kHz was
selected to suppress out-of-band noise in the spectrum-division results. After windowing,
Equation (9) became:

Z( f ) = H( f )Y( f ) = H( f )
{

kg

[
ej2π f T1 + rSGRej2π f T2

]
+ W( f )

}
, (11)

where H( f ) is the window function.
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Finally, the inverse fast Fourier transform (IFFT) was used to estimate the parameters
of the skywave and groundwave [39,40]. The IFFT of Equation (11) is:

F−1(Z( f )) = δ(t− T1) + rSGRδ(t− T2) + F−1[H( f )W( f )], (12)

where F−1 represents the IFFT.
It can be seen from Equation (12) that δ(t) is the impulse response function resulting

from the IFFT of the synthetic signals of the groundwave and skywave. The time delays
T1 and T2 and amplitude ratio rSGR can be estimated by detecting the time–domain pulse
peak value after IFFT. However, the time delay only represents the approximate starting
positions of the skywave and groundwave, and the estimated position has a bias; thus, the
SZC had to be further determined in the time domain.

2.3.3. Peak-to-Peak Ratio and Waveform Matching in Time Domain

The result of spectrum division determined the starting position range T1–T2 of the
groundwave and the skywave in the composite wave. Therefore, we determined the
position of the SZC using the peak-to-peak ratio and waveform methods in the time
domain.

The peak-to-peak ratio method first determined all positive zero crossing points (t)
in the range of T1–T2 and then calculated the ratio of the positive peak value in the next
week (t + 2.5 µs) and the previous week (t− 7.5 µs) of each positive zero crossing. If the
calculated peak-to-peak ratio was close to the peak-to-peak ratio of the standard eLoran
signal a certain range, then it was considered as a possible SZC [23]. The theoretical formula
for calculating the peak-to-peak ratio is:

h(t) =
s(t + 2.5)
s(t− 7.5)

=

[
s(t + 2.5)
s(t− 7.5)

]2
e−10/65, (13)

The peak-to-peak ratios of positive zero crossings in the theoretical calculation are
displayed in Table 2. It can be seen that the peak-to-peak ratio at 30 µs was 1.5338.

Table 2. Theoretical calculation results of peak-to-peak ratio at different zero-crossing points.

Time (µs) 10 20 30 40 50 60 70

h(t) 18.3790 2.3819 1.5338 1.2571 1.1218 1.0419 0.9892

The peak-to-peak ratios of all positive zero crossings in the range T1–T2 after LDA are
calculated first; then, the errors of the peak-to-peak ratios are calculated:

∆h(n) = |hn(t)− 1.5338|, (14)

where hn(t) is the peak-to-peak ratio of zero crossings, and n is the number of zero crossings.
Because the eLoran signal was distorted during propagation and signal processing,

which can lead to deviations in the peak-to-peak ratios, when ∆h(n) < 0.3, we determined
that the zero crossing n was the closest to the SZC. Thus, the peak-to-peak ratio results
contained multiple possible SZCs. Therefore, we used waveform matching to calculate the
root mean square (RMS) error between the received signal and the standard waveform over
a cycle of time. The minimum value of the RMS error corresponded to the zero crossing to
determine the SZC. The waveform-matching calculation formula was as follows:

σ(n) =

√√√√∫ t2
t=t1

[s(t)− sn(t)]
2

t2 − t1
, (15)

where s(t) is the standard eLoran signal, sn(t) is the received eLoran signal, and t1–t2 is
the waveform-matching range. To prevent the influence of SWI, we adopted a waveform
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matching range of 10–50 µs. Therefore, when σ(n) was the smallest, the corresponding n
was the SZC.

3. Results

In this section, we analyze the effectiveness and performance of the joint time–
frequency cycle identification method through simulation. Then, we validate the cycle
identification method by receiving actual eLoran signals at different locations.

3.1. Validation of Cycle Identification Method

To verify the effectiveness of the proposed method, we performed a simulation, the
parameters of which were set as follows. The GRI of the eLoran signal generated by the
simulation was 60 ms. After adding noise to the signal, the SNR of groundwave was −5 dB;
the amplitude ratio of the skywave to the groundwave was SGR = 10 dB; the time-delay
difference between the skywave and the groundwave was ∆T = 62.5 µs; and the sampling
rate of the simulation process signal was fs = 2 MHz. The simulation results are shown in
Figure 7.
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Figure 7. Simulation results of cycle identification: (a) the signal generated by the simulation;
(b) bandpass-filtering result; (c) linear digital averaging result; (d) spectrum-division result; (e) peak-
to-peak ratio error; (f) third zero-crossing waveform match; (g) fourth zero-crossing waveform
match.

As can be seen from Figure 7a, the composite wave of the skywave and groundwave
generated in the simulation is submerged in noise, and the groundwave signal is severely
distorted. Figure 7b presents the bandpass-filtered signal. It can be seen that although the
noise in the signal is suppressed, the signal distortion is relatively large. Figure 7c shows
the signal after LDA. It can be seen that the signal not only became cleaner, but the signal
waveform also became complete through repair. The spectrum-division method was then
used to obtain the initial positions of the groundwave and skywave on the linearly averaged
signal, as shown in Figure 7d. The range of the SZC was observed to be 320–445. The
results of calculating the peak-to-peak ratio errors of all zero crossings in the determined
range are shown in Figure 7e. As observed, the peak-to-peak ratio errors of zero crossings
3 and 4 were less than 0.3. Waveform matching was performed on the two zero-crossing
points, and the results are shown in Figure 7f,g. The waveform-matching coefficients of
the two zero-crossings were calculated to be 0.0456621 and 0.1117095, respectively. Thus,
zero crossing 3 was the SZC. The SZC determined using the cycle identification method
was consistent with that set based on the simulation, which proves the effectiveness of the
method.

3.2. Performance Analysis of Cycle Identification Method

Noise and SWI are the most important interference sources that affect cycle iden-
tification, and they are inevitable. According to the minimum performance standard
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for eLoran receivers, the requirements for an eLoran receiver to function normally were
SNR ≥ −10 dB, SGR < 12 dB, and ∆T > 37.5 µs [36]. Therefore, to verify the performance
of the proposed cycle identification method, we analyzed the skywave and groundwave
parameter-estimation performance of the spectrum-division method and the probability of
cycle identification based on the joint time–frequency domain under different SNRs.

We simulated the parameter-estimation performance of the spectrum-division method
under SNR = 5, 0, and –10 dB. For SGR = 5–10 dB and ∆T = 37–150 µs, the amplitude-ratio
error and delay-difference error after spectrum estimation are shown in Figure 8.
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Figure 8. Performance simulation of spectrum-division method: (a) delay-difference estimation error
at SNR = 5 dB; (b) amplitude-ratio estimation error at SNR = 5 dB; (c) delay-difference estimation error
at SNR = 0 dB; (d) amplitude-ratio estimation error at SNR = 0 dB; (e) delay-difference estimation
error at SNR = −10 dB; (f) amplitude-ratio estimation error at SNR = −10 dB.
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Figure 8 shows that with a decrease in SNR, the estimation error of the time-delay dif-
ference and the amplitude ratio of the skywave to the groundwave based on the spectrum-
division method increased. When SNR = 5 dB, the amplitude-ratio estimation error was less
than 1 dB, and the delay-difference estimation error was less than 2 µs. When SNR = 0 dB,
the amplitude-ratio estimation error was less than 1 dB, and the delay-difference estimation
error was less than 10 µs. When SNR = −10 dB, the amplitude-ratio estimation error
was less than 2 dB, and the delay-difference estimation error was less than 10 µs in most
cases; however, when ∆T > 50 µs and SGR < −3 dB, the delay-difference estimation error
was greater than 10 µs. In the actual received signal, the SNR may deteriorate, resulting
in a greater estimation error in the delay difference. Therefore, based on the simulation
results, the spectrum-division method cannot be used for complete cycle identification;
more accurate cycle identification based on spectrum division using the time–domain
method is necessary. To address the large estimation error of the spectrum-division method
under a low SNR, we proposed a cycle identification method based on the combined
time–frequency domain. Through spectral division, we further improved the accuracy of
cycle identification in the time domain.

We simulated the parameter estimation performance of the cycle identification method
under SNR = 0, −5, −10, and −13 dB. Figure 9 shows the error rate of cycle identification
when SGR = 5–10 dB and ∆T = 37–150 µs.
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Figure 9. Performance simulation results of cycle identification method: (a) SNR = 0 dB; (b) SNR =−5 dB;
(c) SNR =−10 dB; (d) SNR =−13 dB.

The simulation results in Figure 9 show that when SGR ≤ 23 dB and SNR ≥ 0 dB, the
success rate of cycle identification was 100%. When SGR ≤ 23 dB and SNR ≥ −10 dB, the
success rate was better than 75%. When SGR ≤ 23 dB and SNR ≥ −13 dB, the success rate
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was better than 55%. The cycle identification was mainly affected by the relative amplitudes
of the skywave and groundwave, especially under a low SNR. Although the success rate
of cycle identification decreased with an increase in SGR, accurate cycle identification
could be achieved via multiple cycle identification calculations. Therefore, the-simulation
results showed that the proposed cycle identification method is effective and offers a high
identification probability.

3.3. Experimental Verification of Cycle Identification Method

We validated the cycle identification method with actual signals transmitted by a
real eLoran system. The test scheme is shown in Figure 10. The eLoran receiver obtains
the signal transmitted by the eLoran station through the antenna, filters and amplifies
the signal received by the radiofrequency (RF) unit, and converts it into a digital signal
through the A/D chip. Next, the digital-signal-processing unit of the receiver captures the
eLoran pulse-group signal to obtain the approximate position of the pulse signal. Finally,
the proposed cycle identification method was used to identify the SZC of the first eLoran
signal of the pulse group, and the identification result was saved in a computer. The digital
signal processing in Figure 10 was completed on an FPGA chip. The test platform built
according to the test scheme is shown in Figure 11.
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Figure 11. Test platform for cycle identification method: (a) outside of the test platform; (b) inside of
the test platform.

The actual received signal is the signal emitted by the BPL timing system in China. The
coordinates of the BPL timing system are (034◦57′N, 109◦33′E). Its GRI and transmission
power are 60 ms and 2 MW, respectively. In July 2021, we selected three test sites within
1000 km of the system to receive actual signals. The coordinates, great circle distances, and
electric-field strengths of the test sites are listed in Table 3.
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Table 3. Information of the three test sites.

Test City Coordinates Great Circle
Distance (km)

Electric-Field Strength
(dBµV/m) SNR (dB)

1 Lintong City,
Shaanxi Province (34◦22′06.84′′N, 109◦13′018.32′′E) 71.2 60.4 9.8

2 Fuyang City,
Anhui Province (32◦49′37.00′′N, 115◦55′118.05′′E) 635.1 65.5 12.1

3 Nanjing City,
Jiangsu Province (32◦45′54.54′′N, 118◦29′030.49′′E) 862.5 45.1 −4.9

The environments of the three selected test points were different. Test 1 was in a closed
indoor environment, and Figure 12 shows the collected eLoran signal. It can be seen that
although the receiving distance was short and there was only a groundwave signal, the
signal was full of pulse interference. Test 2 was in the surrounding open environment, and
Figure 13 shows the collected eLoran signal. It can be seen that there was SWI in the signal,
which made the second half of the groundwave distorted. Test 3 was in a mountainous
location at a large circle distance, and Figure 14 shows the collected eLoran signal. Not
only was the skywave interference for this test strong, but the SNR was also very small,
which made the groundwave signal severely distorted.
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Figure 14. eLoran signal collected in Test 3.

The results after the received signals of the three test sites were processed via the
joint time–frequency domain cycle identification method are shown in Figures 15–17. The
number of cycles identified is 700. The peak-to-peak ratio errors of the three test points
were 0.0124, 0.0676, and 0.0266, respectively, and the errors were all less than 0.3, meeting
the peak-to-peak ratio evaluation conditions. However, as the distance increased, the
dispersion of the eLoran signal became significant in the propagation process, leading to a
larger standard deviation of the calculated result of the peak-to-peak ratio. The standard
deviations of the peak-to-peak ratios were 0.0199, 0.0292, and 0.0938, but these results
had no influence on the evaluation of the peak-to-peak ratio. The cycle identification
results of the actual signals showed very high cycle identification success rates of tests
1 and 2 and only one identification error at test point 1. Although test point 3 was in
a far-off mountainous area, the success rate of cycle identification for this test reached
72.86%. Comparing the experimental results with the simulation results, it can be seen
that the cycle identification success rate of the actual measurement results is slightly worse.
The main reason is that the actual eLoran signal received contains pulse interference,
continuous wave interference and other interference, which would cause the quality of the
eLoran signal to deteriorate and affect the success rate of cycle identification. In practical
applications, accurate cycle identification can be achieved through multiple identification
calculations. Therefore, the experimental test fully verifies the practicality of the proposed
joint time–frequency domain eLoran cycle identification method.
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Figure 15. Results of cycle identification for Test 1: (a) peak–peak ratio; (b) cycle identification result.
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Figure 16. Results of cycle identification for Test 2: (a) peak–peak ratio; (b) cycle identification result.

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 20 
 

 

  
(a) (b) 

Figure 16. Results of cycle identification for Test 2: (a) peak–peak ratio; (b) cycle identification result. 

  
(a) (b) 

Figure 17. Results of cycle identification for Test 3: (a) peak–peak ratio; (b) cycle identification result. 

4. Discussion 
As an important part of the PNT system, the eLoran system can form a powerful 

supplement and backup to GNSS. Therefore, many countries are developing and improv-
ing eLoran systems to improve the service capabilities of the national PNT systems. Com-
pared with GNSS, the accuracy and reliability of the eLoran system needs to be improved. 
Cycle identification is a key factor in determining the positioning and timing accuracy of 
eLoran receivers. However, due to noise in the space and the SWI caused by the signal 
propagation channel, the cycle identification success rate in the eLoran receiver is affected. 
The existing methods are poor in reliability and anti-interference; thus, this paper pro-
poses a joint time–frequency domain cycle identification method. After the cycle identifi-
cation range was determined by the spectrum division method, the peak-to-peak ratio and 
the waveform matching method were used to determine the accurate SZC, which can im-
prove the success rate of cycle identification. 

Firstly, based on the analysis of the propagation channel and interference character-
istics of the eLoran signal, the principle of the joint time–frequency domain cycle identifi-
cation method was given. The effectiveness of the method was verified by simulation, and 
the anti-noise and SWI performance of the method was analyzed. Simulation results 
showed that this method had a high success rate of cycle identification. When SNR ≥ 0 
and SGR ≤ 23 dB, the success rate of cycle identification was 100%; when SNR ≥ −10 and 
SGR ≤ 23 dB, the success rate of cycle identification was greater than 75%; when SNR ≥ 

0 100 200 300 400 500 600 700
Cycle identification times

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Pe
ak

-to
-p

ea
k 

ra
tio

 

Average value: 1.6014, standard deviations:0.0292

C
yc

le
 id

en
tifi

ca
tio

n 
re

su
lts

 (μ
s)

0 100 200 300 400 500 600 700
Cycle identification times

1.4

1.5

1.6

1.7

1.8

1.9

Pe
ak

-to
-p

ea
k 

ra
tio

 

Average value: 1.5072, standard deviations:0.0938

C
yc

le
 id

en
tifi

ca
tio

n 
re

su
lts

 (μ
s)

Figure 17. Results of cycle identification for Test 3: (a) peak–peak ratio; (b) cycle identification result.

4. Discussion

As an important part of the PNT system, the eLoran system can form a powerful
supplement and backup to GNSS. Therefore, many countries are developing and improving
eLoran systems to improve the service capabilities of the national PNT systems. Compared
with GNSS, the accuracy and reliability of the eLoran system needs to be improved. Cycle
identification is a key factor in determining the positioning and timing accuracy of eLoran
receivers. However, due to noise in the space and the SWI caused by the signal propagation
channel, the cycle identification success rate in the eLoran receiver is affected. The existing
methods are poor in reliability and anti-interference; thus, this paper proposes a joint
time–frequency domain cycle identification method. After the cycle identification range
was determined by the spectrum division method, the peak-to-peak ratio and the waveform
matching method were used to determine the accurate SZC, which can improve the success
rate of cycle identification.

Firstly, based on the analysis of the propagation channel and interference character-
istics of the eLoran signal, the principle of the joint time–frequency domain cycle identi-
fication method was given. The effectiveness of the method was verified by simulation,
and the anti-noise and SWI performance of the method was analyzed. Simulation results
showed that this method had a high success rate of cycle identification. When SNR ≥ 0 and
SGR ≤ 23 dB, the success rate of cycle identification was 100%; when SNR ≥ −10 and SGR
≤ 23 dB, the success rate of cycle identification was greater than 75%; when SNR ≥ −13
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and SGR ≤ 23 dB, the success rate of cycle identification was greater than 55%. When the
success rate of the current cycle identification method reached 100%, the delay-locked loop
method required SNR ≥ 20 dB, the waveform matching method required SNR ≥ 23 dB,
and the delayed-addition method required SNR ≥ 24 dB. Although the performance of
these methods can be improved by 10–18 dB after filtering, these methods can only meet
the requirements under the condition of SGR ≤ 6 dB. Obviously, the cycle identification
method proposed in this paper was better than the single cycle identification method for a
combination of noise and skywave interference.

Finally, we applied the cycle identification method to the developed eLoran receiver
and receive actual signals within 1000 km for testing. The test results show that under the
condition of high SNR, the cycle identification success rate can reach 100%. Even in the
862.5-km mountain test environment, the method can achieve a 72.86% cycle recognition
success rate. In practical applications, higher identification success rates can also be
achieved by counting the results of multiple cycle identifications. Thus, the method has
high engineering application value, and it is optimized for the design of the new eLoran
navigation and timing receivers. It will be able to improve the accuracy of the application
of modern eLoran systems, making it a more reliable backup for GNSS.

5. Conclusions

In this paper, a cycle identification method based on a joint time–frequency domain
was proposed for the standard zero crossing detection of groundwave signals in eLo-
ran positioning and timing receivers. We proved that this method has a good ability of
anti-skywave and anti-noise detection and can address the limitation of poor detection
performance of the current cycle identification method. This method also has a greater
application potential, because it can be used for period identification as well as to obtain the
time delay and amplitude of the skywave in the received signal, which is important for the
receiver. In the future, we will use this method to separate the skywave and groundwave,
in order to reduce the impact of skywave instability on the groundwave measurement.
This can improve the TOA measurement accuracy of the eLoran signal and the information
demodulation ability of the signal.
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