
����������
�������

Citation: Ma, K.; Chen, Z.; Fu, L.;

Tian, W.; Jiang, F.; Yi, J.; Du, Z.; Sun,

H. Performance and Sensitivity of

Individual Tree Segmentation

Methods for UAV-LiDAR in Multiple

Forest Types. Remote Sens. 2022, 14,

298. https://doi.org/10.3390/

rs14020298

Academic Editors: Zengyuan Li,

Lin Cao and Erxue Chen

Received: 25 November 2021

Accepted: 7 January 2022

Published: 10 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Performance and Sensitivity of Individual Tree Segmentation
Methods for UAV-LiDAR in Multiple Forest Types
Kaisen Ma 1,2,3 , Zhenxiong Chen 4, Liyong Fu 1,5, Wanli Tian 6, Fugen Jiang 1,2,3 , Jing Yi 1,2,3, Zhi Du 4

and Hua Sun 1,2,3,*

1 Research Center of Forestry Remote Sensing & Information Engineering, Central South University of Forestry
and Technology, Changsha 410004, China; makaisen@csuft.edu.cn (K.M.); fuly@ifrit.ac.cn (L.F.);
jiangkriging@csuft.edu.cn (F.J.); yijing@csuft.edu.cn (J.Y.)

2 Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province,
Changsha 410004, China

3 Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in
Southern Area, Changsha 410004, China

4 Department of Forest Inventory and Monitoring, Central South Inventory and Planning Institute of National
Forestry and Grassland Administration, Changsha 410004, China; chenzhenxiong_3692@163.com (Z.C.);
duzhi6880448@163.com (Z.D.)

5 Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry,
Beijing 100091, China

6 Shanghai Huace Navigation Technology Ltd., Shanghai 201702, China; wanli_tian@huace.cn
* Correspondence: sunhua@csuft.edu.cn; Tel.: +86-13875882184

Abstract: Using unmanned aerial vehicles (UAV) as platforms for light detection and ranging
(LiDAR) sensors offers the efficient operation and advantages of active remote sensing; hence,
UAV-LiDAR plays an important role in forest resource investigations. However, high-precision
individual tree segmentation, in which the most appropriate individual tree segmentation method
and the optimal algorithm parameter settings must be determined, remains highly challenging when
applied to multiple forest types. This article compared the applicability of methods based on a canopy
height model (CHM) and a normalized point cloud (NPC) obtained from UAV-LiDAR point cloud
data. The watershed algorithm, local maximum method, point cloud-based cluster segmentation,
and layer stacking were used to segment individual trees and extract the tree height parameters
from nine plots of three forest types. The individual tree segmentation results were evaluated
based on experimental field data, and the sensitivity of the parameter settings in the segmentation
methods was analyzed. Among all plots, the overall accuracy F of individual tree segmentation was
between 0.621 and 1, the average RMSE of tree height extraction was 1.175 m, and the RMSE% was
12.54%. The results indicated that compared with the CHM-based methods, the NPC-based methods
exhibited better performance in individual tree segmentation; additionally, the type and complexity
of a forest influence the accuracy of individual tree segmentation, and point cloud-based cluster
segmentation is the preferred scheme for individual tree segmentation, while layer stacking should
be used as a supplement in multilayer forests and extremely complex heterogeneous forests. This
research provides important guidance for the use of UAV-LiDAR to accurately obtain forest structure
parameters and perform forest resource investigations. In addition, the methods compared in this
paper can be employed to extract vegetation indices, such as the canopy height, leaf area index, and
vegetation coverage.

Keywords: LiDAR; forest investigation; individual tree segmentation; tree detection; tree height
extraction

1. Introduction

Forests, representing the main type of terrestrial ecosystem, play an irreplaceable role
in maintaining the global climate system, slowing the rise of greenhouse gas concentrations,
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and achieving carbon neutrality [1–3]. Individual trees are the basic units of forests. Hence,
accurately obtaining information regarding the attributes of individual trees (tree species,
tree height, diameter at breast height (DBH), crown width, etc.) is important for under-
standing the current state of and changes in forest resources and the ecological benefits
of forests, as well as achieving the effective protection and sustainable management of
forests [4–6].

Traditional forest resource investigation methods explore individual trees in a sample
plot with simple and convenient instruments through scientific sampling [7,8]. While this
kind of survey method is highly precise and is broadly implemented by forestry depart-
ments worldwide, it is also time-consuming, laborious, and destructive to the surveyed
vegetation to a certain extent. Moreover, the survey results may not accurately reflect the
current state of forest resources across a large area [9]. Alternatively, the reflectance in
each band of an optical remote sensing image can indicate the chlorophyll content and
growth status of a stand, and these features are closely related to forest parameters [10].
However, in practical applications, image-based methods are limited by many factors, such
as the complexity of forest types, cloud cover, imaging time required, spatial resolution
of the imagery, and data saturation [11–13]. Radar images overcome the issue of cloud
coverage in optical remote sensing to some extent, but in stands with a high canopy den-
sity and a complex hierarchy, the differences in responses among different bands can be
unclear [14,15].

Light detection and ranging (LiDAR) is an active remote sensing technology used to
obtain three-dimensional information of a target structure by transmitting and receiving
laser pulses; this approach achieves very high canopy penetration and boasts both a high
range resolution and an excellent anti-interference ability [16–18]. According to the different
platforms used, LiDAR methods can be divided into spaceborne LiDAR scanning, airborne
LiDAR scanning, unmanned aerial vehicle (UAV) LiDAR scanning, and terrestrial LiDAR
scanning (TLS) [17,19]. Among them, UAV-LiDAR uses a top-down approach to scan a
target, which offers convenient and rapid data acquisition and is relatively unaffected
by the weather; additionally, this approach yields high-quality point cloud data and can
be effectively used to characterize the forest canopy structure [20–22]. An individual
tree segmentation algorithm can accurately detect the tree distribution and the structural
parameters of each tree from UAV-LiDAR point cloud data, thereby supporting forest
management endeavors. Therefore, the UAV-LiDAR technique is widely used in the field
of forest resource investigation.

Individual tree segmentation using UAV-LiDAR can be divided into two categories
according to the model applied [23–27]. The first approach uses raster data and includes
canopy height models (CHMs) and vegetation point cloud density models [23,24]. These
models are generated based on the interpolation of point cloud data, and a local maximum
algorithm (LM) is used to identify the positions of individual trees; then, the canopy area
around each maximum is depicted by a marker-controlled watershed algorithm (WA),
edge detection, morphological reconstruction or an area growth algorithm [25–27]. Wang
et al. used a CHM and a WA to segment individual Picea glauca trees and a few Abies fabri
trees in northeastern Canada, and the results showed that 75.6% of the pixels were the
same. Hu et al. proposed an LM based on adaptive average displacement [22]; their
method was shown to identify nearly 30% more suppressed trees. Ma et al. proposed a
vegetation point cloud density model and combined it with an improved WA to extract
the tree height and crown area in northern China; the overall extraction accuracy exceeded
85% [23]. These studies demonstrated that tree segmentation using raster data is most
suitable for conifers with obvious vertices above the trunk, whereas broad-leaved trees with
asymmetric crown shapes, overlapping trees, and low parts of the canopy are often over-
segmented or neglected [28]. Additionally, the main factor influencing the segmentation
accuracy is the resolution of the raster data.

The second approach uses normalized point cloud (NPC) data and the spatial relation-
ships between point clouds and the real structural characteristics of forests, thus avoiding
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the error caused by the generation of a raster model from point cloud data [29–32]. The main
related methods include K-means clustering, the voxel-based normalized cutting algorithm,
point cloud-based cluster segmentation (PCS), and layer stacking (LS) [31,33,34]. Yao et al.
used a distance discrimination clustering method based on point clouds to segment pine,
birch, and Populus tomentosa trees in southern Finland and accurately identified 75% of the
individual reference trees [32]. Lu et al. considered the distance between trees, especially
at the tops of trees, and proposed a bottom-up regional growth method combined with
threshold assessment to segment coniferous forests [25]; this approach was verified in the
Shavers Creek watershed in the United States, reaching a detection rate of 84% and achiev-
ing an accuracy as high as 97% in correctly matching detected trees. However, considering
the problem that deciduous trees are segmented directly based on NPCs, the segmentation
effect was not ideal. Ayrey et al. proposed an LS algorithm [34] that correctly identified
90% more trees in heterogeneous stands. Therefore, the tree-segmentation accuracy of
algorithms that are based directly on NPCs is strongly dependent on the point density, tree
clustering arrangement, stand age, and tree density at the study site [35].

Many previous studies have shown that factors beyond the advanced nature and
performance of segmentation algorithms influence the tree segmentation accuracy; these
factors include the type of study area and the algorithm parameter settings [36,37]. Never-
theless, most studies on the segmentation of individual trees discussed only the effect of
a certain segmentation method in a specific type of research area, whereas analyses and
comparisons of the applicability of algorithms and sensitivity of parameter settings for mul-
tiple types of sample plots remain lacking [38,39]. In addition, most of these studied areas
were located in sub-cold- and temperate-zone forests and the tree segmentation domains
were mostly simple forests. Consequently, few studies on individual tree segmentation
in subtropical complex forest areas have been reported. Therefore, we sought to address
the following questions: Do certain data-based models and methods for individual tree
segmentation have certain advantages or disadvantages in these areas? Are there corre-
lations between the parameter settings in a segmentation method and the individual tree
detection accuracy? In UAV-LiDAR individual tree detection, the key issues that influence
the individual tree detection accuracy for multiple types of forests are the data model used
for individual tree segmentation, the selection of the segmentation method, and the setting
of parameters in the method.

To address the problem of how to select the individual tree segmentation algorithm and
parameter settings, we ascertained the most suitable segmentation algorithm in multiple
forest types to obtain the optimal tree detection and tree height extraction accuracies. In this
research, according to the complexity of the sample plots in southern China, a total of 530
individual trees in nine plots were selected for analysis, and the categories ‘easy’, ‘medium’,
and ‘difficult’ were selected. Based on UAV-LiDAR point cloud and data preprocessing
methods, we generated CHM and NPC data. The WA, LM, PCS, and LS were used for
individual tree detection and tree height extraction. The segmentation performance was
evaluated by combining field survey results with tree position data, and the sensitivity of the
parameter settings in the segmentation algorithm was analyzed. In this article, we discussed
the applicability of and optimal parameter settings for various segmentation methods to
provide a reference and solution for accurately applying the UAV-LiDAR technique in forest
resource investigations involving diverse forest types. On the basis of this research, we
further evaluated the shortcomings of the existing individual tree segmentation methods.
Our findings further the development of new algorithms to improve tree segmentation
accuracy, and this research promotes research in the acquisition of regional canopy heights
and vegetation indices.

2. Materials and Methods
2.1. Study Area

Two study areas located in the subtropical monsoon climate zone in southern China
were selected, as shown in Figure 1: (1) the Lutou Experimental Forest Farm of Cen-
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tral South University of Forestry Science and Technology in Yueyang, Hunan Province
(113◦51′~113◦58′E and 28◦31′~28◦38′N), where the annual average temperature is 16.8 ◦C,
the annual precipitation is approximately 1500 mm, the forest coverage rate is 94.2%, and
the vegetation is mainly evergreen broad-leaved forest and coniferous forest, and (2) the
Guangxi Zhuang Autonomous Region (104◦28′~112◦04′E and 20◦54′~26◦23′N), which has
an annual average temperature of 20.7 ◦C and receives 1542.5 mm of rainfall on average
each year. Under these favorable hydrothermal conditions, plants can grow year-round,
and the growth of trees is 2~3 times the national average. Eucalyptus (Eucalyptus robusta
Smith) and Chinese fir (Cunninghamia lanceolata) are the main species, followed by natural
evergreen broad-leaved mixed forests that include Schima superba (Schima superba Gardn. et
Champ.), Sweetgum (Liquidambar formosana Hance), Cyclobalanopsis glauca (Cyclobalanopsis
glauca Thunb. Oerst.) and oriental oak (Quercus variabilis Bl.). The two study areas include
five coniferous forest plots with Chinese fir and four broad-leaved forest plots with Euca-
lyptus, Schima superba, Sweetgum, etc. The first seven of these plots are artificial forests,
and the last two are natural forests. All plots are mature forests, the average tree height
is approximately 10 m, and the number of trees in each plot ranges from 14 to 108. The
natural forest plots are coniferous and broad-leaved mixed forests, and there are some
shrubs under the tree canopy. The forest types in the study areas are complex, making it
very challenging to accurately segment individual trees.
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2.2. Data Collection
2.2.1. Field Experiments

For validation purposes, nine square research plots of 25.82 m × 25.82 m (0.067 ha)
were established. According to the number of trees, the complexity of tree arrangement, the
mixing degree of tree species, and the complexity of the terrain, the forests were classified
into three complexity categories, namely, ‘easy’, ‘medium’, and ‘difficult’, to represent
different stand situations, which varied in terms of natural state, species and growth stages.
These stands included both homogenous and heterogeneous forests. In the sample plots,
each tree with a DBH greater than 5 cm was measured, and the structural parameters of
each tree, such as its height, DBH, and crown size, were recorded; the results are shown
in Table 1. The tree height was measured twice by a TruPulse 200 laser rangefinder, the
average height was taken, and the measurement error was ignored. DBH was calculated
by measuring the circumference of the trunk 1.3 m from the ground with a tape measure. A
real-time kinematic (RTK) global positioning system (GPS) was used to locate and record
the coordinates of each tree, and these data were used to evaluate the accuracy of the tree
positions detected by the individual tree segmentation methods used in this study.

Table 1. Field Measurements of the Sample Plots.

Plot ID Type Near-
Nature

Dominant Tree
Species

Number
of Trees

Mean
DBH (cm)

Height (m)

min max mean SD

1
Easy

Plantation Chinese fir 44 12.87 6.1 13.5 9.38 1.65
2 Plantation Chinese fir 14 16.38 8.7 19.1 11.64 1.03
3 Plantation Chinese fir 31 13.21 7.1 15.3 10.95 1.21
4

Medium
Plantation Eucalyptus 75 8.17 6.5 13.8 11.08 1.59

5 Plantation Chinese fir 56 12.60 6.0 13.5 9.60 1.71
6 Plantation Eucalyptus 60 7.54 5.7 11.2 7.27 1.65
7

Difficult
Plantation Chinese fir 108 10.15 5.1 11.5 7.59 1.50

8 Natural Schima superba,
Liquidambar 85 8.26 2.1 18.2 10.36 5.54

9 Natural Cyclobalanopsis glauca,
oriental oak, etc. 57 8.01 5.2 16.3 9.54 2.70

2.2.2. LiDAR Data

LiDAR point cloud data were obtained using the Shanghai Huace navigation BB-4 or
DJI Matrix 600 UAV platform and a RIEGL VUX-1LR. The data were scanned in December
2020. Clear and cloudless weather was selected for data acquisition. Routes were planned
and flight tests were performed in advance, and a vertical intersection route design was
adopted. The UAV working mode and LiDAR sensor parameter settings were determined
according to the fight altitude and elevation variations in the sample plot. Specifically,
the flight altitude was 150 m, the flight belt interval was 70–100 m, the flight speed was
6 m/s, the emission frequency of the laser pulse was 300 kHz, the scanning angle was
140–180◦, and the point cloud density was greater than 300 pts/m2. After acquisition,
position and orientation system (POS) processing, aerial belt splicing, and data correction
were performed to obtain the UAV-LiDAR point cloud data for the study area.

2.3. Data Models

The data models required by tree segmentation algorithms are generally NPC mod-
els and CHMs [23–27]. Therefore, it is necessary to preprocess the UAV-LiDAR point
cloud data.

2.3.1. Data Preprocessing

Lidar 360 software was used for data preprocessing. First, a denoising method based
on spatial distance was used to remove the noise caused by sensors, leaf-related factors,
water vapor, etc. The algorithm determines whether a given point is a noisy point based on
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the average distance between the target point in the neighborhood and all other points [40].
The number of neighborhood points was set to 20, and the standard deviation multiple was
set to 5. Then, improved progressive triangulated irregular network identification (IPTD)
was used to classify ground points [41,42]. This algorithm generates a sparse triangulated
irregular network through seed points and encrypts each layer through iterative processing
until all the ground points are classified [24]. The key parameters of the algorithm in Lidar
360 software are the maximum terrain slope, iteration angle, and iteration distance, which
were set to 60◦, 10◦, and 1 m, respectively. In the stand environment, non-ground points
were treated as vegetation point clouds. Finally, an NPC and a CHM were obtained.

2.3.2. Normalized Point Cloud

An NPC is a new point cloud set obtained by subtracting the elevation value Z0i of
the ground point closest to a given point in a plane projection from the elevation value Zi
at that point [43]. The elevation value at the lowest point is 0, and the elevations at other
points reflect the canopy height.

2.3.3. Canopy Height Model

A CHM contains the raster values of a digital elevation model (DEM) subtracted from
the raster values of a digital surface model (DSM). A CHM is constructed by using inverse
distance weighting (IDW) interpolation and ground point clouds [44–46] to generate a
DEM, and a DSM is obtained by interpolating the laser point cloud of the first echo. The
result is a direct expression of the distribution of the vegetation canopy height above the
ground [47]. In this study, the CHM resolution was set to range from 0.1 m to 0.5 m.
This method was used to explore the influence of the CHM resolution on the accuracy of
individual tree segmentation.

2.4. Individual Tree Segmentation

The individual tree segmentation methods employed in this study included the WA,
(LM), PCS, and LS. The WA and LM are CHM-based segmentation methods, whereas PCS
and LS are PCS-based algorithms. In this paper, we assessed the segmentation performance
of the WA and LM segmentation algorithms at multiple CHM resolutions and evaluated the
advantages of the CHM-based and NPC-based segmentation methods. We then explored
the influences of the key parameters of the four different methods on the segmentation
accuracy; these parameters include the minimum height (hmin) and the Gaussian smoothing
factor (sigma) in the WA, the window size in the LM, the distance threshold in the PCS
algorithm, and the layer thickness in LS.

2.4.1. Watershed Algorithm

The WA is an image segmentation algorithm that can sensitively recognize subtle
changes in the gray level of a CHM and generate closed contour lines around target ob-
jects [24,48]. The formation of a watershed is based on the concept of simulating immersion.
If an image is regarded as a forest canopy surface, the gray value of each pixel represents
the canopy height at that point in the image. In Figure 2b,c, each local maximum is the
high point of a tree, and the corresponding area of influence is called the catchment basin
(individual tree canopy). The algorithm can automatically construct a barrier at watershed
boundaries (canopy boundaries) to prevent water from two adjacent watersheds (tree
models) from merging. Two important parameters of the algorithm are hmin and sigma.
The minimum height is the threshold value of the minimum tree height range used for tree
segmentation. If this value is less than hmin, the vegetation is not considered, and sigma
affects the number of trees segmented. In this study, hmin was set to 2.1 m, which means
that trees with a height below 2.1 m were not considered for segmentation. Sigma was
set to the range of 0.5–2, and the optimal parameters were adjusted according to the type
of plot.
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2.4.2. Local Maximum Algorithm

When the value of a pixel in a grid in a given window is larger than the values of the
surrounding pixels, the pixel is defined as the local maximum [49,50]. The specific steps
are as follows, as shown in Figure 2d,e. First, a CHM with an appropriate raster resolution
is created. Then, the local maximum is found from the CHM in a given size window, and
the window is moved until all the maximum values are detected. If the local maximum is
higher than the minimum tree height, the tree is considered to have been detected. The
raster resolution of the CHM and the window size (z) are affected by the forest conditions
and tree crown size. When the resolution is high, many small trees are not detected, and
when the window size is large, two or more trees in close proximity are grouped as one. In
this study, the window size was set to range from 1 × 1 to 9 × 9 pixels.
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2.4.3. Point Cloud-Based Cluster Segmentation

PCS is an algorithm that combines regional growth and threshold judgment to segment
individual tree point clouds from standpoint clouds [25]. The algorithm mainly considers
that there is a certain Euclidean distance between two trees, especially at the tops of trees,
within the tree point cloud. Assuming that the highest point in a tree point cloud is the
tree vertex, the tree vertex can be used as the seed point to establish the corresponding
regional growth and separate individual trees; this process is iterative. Each segmentation
involves regional growth from top to bottom, and the distance threshold (D) is determined.
In Figure 2f, point A is the highest point, so point A is regarded as the top of the target tree.
Next, the points lower than A are successively classified. First, point B is classified as an
outlier tree because the spacing dAB is greater than D. Then, we set point C, and the spacing
dAC of point C is less than the critical value. By comparison with the categories of point
A and point B, the category of point C is set to that of the target tree because dAC is less
than dBC. By comparison with points B and C, point D is classified as an outlier tree. If the
distance at a point is greater than the threshold interval, the point is considered the vertex
of another tree. If the point is within the interval threshold, then the point is grouped with
the existing split tree. In this study, we set the distance threshold within 0.5–3 m according
to the average spacing of trees in each plot.

2.4.4. Layer Stacking

LS is a segmentation method based on NPC data. The point cloud of an entire stand is
sliced at a given interval, the tree position is identified in each layer, and the results from
all layers are merged to produce a representative tree boundary [34]. The basic idea of the
algorithm is as follows. (1) Point cloud layering. We started from 0.5 m above the ground
and used 1 m as the layering interval until the highest point (tree top) was reached, as
shown in Figure 2g. (2) Point cloud clustering. We used K-means clustering to cluster the
sliced point cloud data to the nearest seed point and iteratively repeated this process until
the position of the seed point did not change. In doing so, we sought to obtain tree seed
points for each layer. (3) Build polygons. In each layer, we constructed a Thiessen polygon
by using tree seed points. (4) Overlapping and merging. We stacked the Thiessen polygons
of each layer to generate a large number of rasterized overlapping polygons. An area of
considerable overlap is a high-density area in the tree crown, indicating the presence of an
individual tree in the polygonal overlapping area. The layer thickness (n) used in the LS
algorithm influences the detection ability of this method for trees at different forest levels.

2.5. Accuracy Evaluation

The four individual tree segmentation algorithms were implemented using Python
software. To evaluate the performance and sensitivity of the four methods, the individual
tree segmentation results were compared with the field-observed tree heights and positions
using three indices: the detection rate (Equation (1)), accuracy rate (Equation (2)), and
overall accuracy (Equation (3)) [35,51,52]:

r =
Nc

Nc + Nm
, (1)

p =
Nc

Nc + No
, (2)

F =
2rp

r + p
, (3)

where r represents the detection rate of an individual tree; p represents the accuracy rate for
an individual tree; F is calculated from r and p; and Nc, Nm, and No represent the numbers of
correct segmentations, missing segmentations and over-segmentations, respectively. F was
calculated in SPSS software. A high F indicates an accurate individual tree detection result.
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The coefficient of determination (R2) (Equation (4)), root mean square error (RMSE)
(Equation (5)), and RMSE% between the measured tree height and extracted tree height
were calculated to evaluate the tree height accuracy:

R2 =
∑n

i=1(xi − xi)
(
Xi − Xi

)√
∑n

i=1(xi − xi)
2 ∑n

i=1
(
Xi − Xi

)2
, (4)

RMSE =

√
∑n

i=1 (Xi − x)2

n
, (5)

where n is the number of correctly segmented individual trees; Xi represents the heights of
the individual segmented trees; Xi represents the mean height of the individual trees, xi
represents the measured heights of the individual segmented trees, and xi represents the
mean value of the measured heights of the individual segmented trees.

3. Results
3.1. Data Model Generation

The NPC and CHM obtained from the UAV-LiDAR point cloud are shown for plot 6 in
Figure 3. Additionally, panels (a)–(e) plot the results at raster resolutions of 0.1 m × 0.1 m,
0.2 m × 0.2 m, 0.3 m × 0.3 m, 0.4 m × 0.4 m, and 0.5 m × 0.5 m, respectively, and (f) is
the NPC result. With increasing raster resolution, the CHM details are gradually ignored.
When the resolution decreases to 0.1 m, the jagged crown boundaries and low shrubs
in local areas affect the accuracy of individual tree segmentation. In contrast, the NPC
approach retains the complete three-dimensional information for trees and removes the
influence of terrain.
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3.2. Accuracy of Individual Tree Detection

The segmentation effects of the four individual tree segmentation methods for some
sample plots are shown in Figure 4; plot 2 is classified as ‘easy’, plot 4 is classified as
‘medium’, and plot 9 is classified as ‘difficult’. In plot 2, the four individual tree segmenta-
tion methods accurately segmented all 14 trees. The WA completely divided the boundary
of the tree crown in the CHM. The PCS approach segmented the standing forest point cloud
data into individual tree point clouds and visualized them with different colors according
to the tree IDs. The LM and LS algorithms also accurately identified the positions of tree
tops. In plot 4, 75 trees in the sample plot were Eucalyptus trees, and the crown area of
individual trees was small. Among the four individual tree segmentation methods, the
WA undersegmented some adjacent trees, and the LM and LS methods yielded satisfactory
segmentation results for the tree positions. The individual tree point cloud segmented by
the PCS method also accurately depicted the actual sizes of individual trees. In plot 9, due
to the mixture of broad-leaved tree species such as Cyclobalanopsis glauca and Liquidambar
formosana, the segmentation ability of WA was obviously insufficient; notably, this method
could segment only some trees with large crowns, while the segmentation effect for small
trees was relatively poor. In areas of broad-leaved trees with large canopies, multiple trees
with small canopies were detected by the LM. Moreover, the size of individual tree point
clouds segmented by the PCS method was relatively uniform, meaning that the actual un-
even distribution of tree sizes in the sample plot was not accurately expressed. Compared
with the other three methods, the LS method achieved the best segmentation result.
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Figure 4. The individual tree segmentation performance in some plots. (a,f,k) are the UAV-LiDAR
point clouds in plot 2, plot 4 and plot 9, respectively; (b,g,l) are the CHMs after WA segmentation;
(c,h,m) are the CHMs after LM segmentation; (d,i,n) are the CHMs after LS segmentation; and (e,j,o)
are the CHMs after PCS.
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The accuracy was evaluated by matching the individual tree segmentation results
obtained with the four segmentation methods in the nine sample plots with the measured
position data for each tree in the sample plots, as shown in Figure 5. To solve the problem
in which the top of a tree was inconsistent with the field-measured position of its trunk, we
established a buffer zone of 1–2 m around the trunk to match the detected position of the
individual tree using segmentation methods. The experimental results show that among
the three easy plots, the detection rate (r) and accuracy rate (p) were greater than 86.36%
and 85.29%, respectively, and F was greater than 0.874. In plot 2, there were 14 Chinese fir
trees, r and p were both 100%, and F was 1. Accordingly, the four methods yielded accurate
segmentation results. Among the three medium plots, r varied from 78.57% to 93.33%,
p ranged from 75.76% to 98.57%, and F varied from 0.794 to 0.952. The PCS method yielded
the highest accuracy in plot 4, while the WA yielded the lowest accuracy in plot 6. Among
the three difficult plots, the highest r and p values for the four methods were 85.96% and
89.69%, respectively, and they were obtained for plot 9 using the LM and for plot 7 using
the LS algorithm. The lowest corresponding values were 71.93% and 51.04%, which were
obtained for plot 9 using the WA and LM, respectively. F varied from 0.621 to 0.861, with
the best result obtained for plot 7 and the worst result obtained for plot 9.
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3.3. Accuracy of Tree Height Parameters

A linear relation between the extracted tree height and measured tree height was
established according to the types of plots. R2 and RMSE were calculated between the
extracted tree height and the measured tree height, and the calculation results are shown in
Table 2.



Remote Sens. 2022, 14, 298 12 of 20

Table 2. Comparison of the Tree Height Extraction Accuracies Achieved with Different Segmentation
Methods.

Forest
Type

Segmentation
Method

Correct
Segmentations r p F R2 RMSE/m RMSE%

Easy

WA 81 91.01% 89.01% 0.900 0.87 0.86 8.37%
LM 82 92.13% 91.11% 0.916 0.89 0.81 7.88%
PCS 81 91.01% 93.10% 0.920 0.87 0.94 9.14%
LS 85 95.51% 90.43% 0.929 0.85 0.96 9.34%

Medium

WA 164 85.86% 78.47% 0.820 0.83 1.12 11.85%
LM 168 87.96% 90.81% 0.894 0.86 0.97 10.26%
PCS 165 86.39% 94.83% 0.904 0.85 1.02 10.79%
LS 167 87.43% 80.68% 0.839 0.84 1.07 11.32%

Difficult

WA 197 78.80% 69.61% 0.739 0.82 1.16 12.92%
LM 201 80.40% 66.34% 0.727 0.84 1.05 11.67%
PCS 197 78.80% 80.08% 0.794 0.80 1.18 13.14%
LS 202 80.80% 81.12% 0.810 0.79 1.24 13.81%

Note: r, detection rate; p, accuracy rate; F, overall accuracy.

The experimental results indicate that different segmentation methods exhibit notable
differences in the segmentation accuracy among the three types of plots; however, the
difference between the accuracy of the segmentation results and the tree height extraction
accuracy calculated after actual matching is minimal. The difference between the maximum
and minimum values of R2 is within 0.05, and the difference in RMSE is less than 0.19 m.
These findings suggest that the tree height extraction results of the four methods are stable
and that the four methods can be applied to extract the individual tree height parameters
involving UAV-LiDAR point clouds.

3.4. Sensitivity Analysis of the Four Methods

To explore the influence of the key parameters of the four different methods on the
segmentation accuracy for the three types of plots, the sigma factor in the WA, the window
size in the LM, the distance threshold in the PCS algorithm, and the layer thickness in the
LS algorithm were adjusted, and the sensitivity differences among the four segmentation
methods were analyzed.

3.4.1. Watershed Algorithm

The segmentation results of the WA with different sigma values are shown for plot
6 in Figure 6. In region A, when sigma = 1, the small trees that are not divided when
sigma = 3 can be divided. In region B, the crown boundary details are most obvious when
sigma = 1. In region C, when sigma = 1, a complete tree in the upper right corner is divided
into two trees. Therefore, the smaller the sigma value is, the finer the segmentation of
crown boundaries. In contrast, the larger the sigma value is, the smaller the number of
segmentations; additionally, low-level trees are insufficiently segmented, resulting in a
large average forest tree height.
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Figure 6. The sensitivity analysis of the WA in plot 6. (A) is the under-segmentation, (B) is the crown
boundary details and (C) is a complete tree divided into two trees.

3.4.2. Local Maximum Algorithm

Different window sizes (z) were set for plot 8, and the segmentation results of the LM
were obtained, as shown in Figure 7. Eighty-five Eucalyptus trees were measured in the
plot, and z was set to 3 × 3, 6 × 6, and 9 × 9. The number of individual trees is 95, 82, and
75 in plot 8. In area A, three trees with obvious boundaries are accurately detected at all
window sizes. In areas B and C, the z value for a window size of 3 × 3 is significantly larger
than the z values for window sizes of 6 × 6 and 9 × 9. The results indicate that the larger z
is, the weaker the ability of the model to detect individual trees and the more prone the
approach to under-segmentation. In contrast, the smaller z is, the better the individual tree
detection results; however, over-segmentation can easily occur.
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3.4.3. Point Cloud-Based Cluster Segmentation

The distance threshold (D) in PCS is the key parameter that influences individual tree
segmentation. Different D values were set for plot 1, plot 4, and plot 8, and the individual
tree segmentation results obtained using the PCS method are presented in Table 3. The
results are based on the maximum, average, and minimum values of the crown radius of
the plot. In different types of plots, the number of individual tree segmentations decreases
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with an increasing distance threshold, and these factors are negatively correlated. When D
is set as the average crown radius, the F values of the three plots reach maxima of 0.851,
0.848, and 0.776. A comparison among the PCS segmentation details for different D values
was performed for plot 4, as shown in Figure 8. There are two adjacent Eucalyptus trees in
this plot, and over-segmentation occurs when D is set to the minimum crown radius; when
D is set to the maximum crown radius, three trees are combined into one. However, when
D is set to the average crown radius, the three trees are segmented correctly.

Table 3. Sensitivity analysis of PCS.

Distance
Threshold (D)

Number of
Detections Nt Nc No r p F

Plot 1
Min = 1.45 m 54 33 21 11 75.00% 61.11% 0.673

Mean = 2.42 m 43 37 6 7 84.09% 86.05% 0.851
Max = 4.15 m 30 28 2 16 63.64% 93.33% 0.757

Plot 4
Min = 0.95 m 117 67 50 8 89.33% 57.26% 0.698
Mean = 2.6 m 83 67 16 8 89.33% 80.72% 0.848
Max = 4.95 m 67 58 9 17 77.33% 86.57% 0.817

Plot 8
Min = 0.55 m 97 65 32 20 76.47% 67.01% 0.714

Mean = 2.17 m 85 66 19 19 77.65% 77.65% 0.776
Max = 5.49 m 78 56 22 29 65.88% 71.79% 0.687
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3.4.4. Layer Stacking

Similarly, we used different layer thicknesses in the LS method for plot 1, plot 4, and
plot 8, and the segmentation results are shown in Table 4. The layer thickness (n) was set
as 0.5 m, 1 m, and 2 m. When n = 1 m, the optimal segmentation results are obtained for
the three plots. The segmentation results for n = 0.5 m and n = 1 m are similar, whereas
when n = 2 m, the number of individual trees detected is too large, and the accuracy is
relatively poor.
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Table 4. Sensitivity analysis of the LS method.

Layer Thickness
(n)

Number of
Detections Nt Nc No r p F

Plot 1
0.5 m 48 37 11 7 84.09% 77.08% 0.804
1 m 52 43 9 1 97.73% 82.69% 0.896
2 m 63 39 24 5 88.64% 61.90% 0.729

Plot 4
0.5 m 76 61 15 14 81.33% 80.26% 0.808
1 m 78 66 12 9 88.00% 84.62% 0.863
2 m 86 64 22 11 85.33% 74.42% 0.795

Plot 8
0.5 m 88 61 27 24 71.76% 69.32% 0.705
1 m 88 66 22 19 77.65% 75.00% 0.763
2 m 98 70 28 15 82.35% 71.43% 0.765

4. Discussion
4.1. Data Model

We found that the segmentation results of the CHM and NPC data models are char-
acterized by similar detection rates (r), with no obvious difference. Kaartinen et al. [53]
summarized and compared a variety of methods, including a variety of single tree ex-
traction methods based on grid CHM and clustering segmentation methods based on
point clouds. The results showed that the extraction accuracy of all single tree extraction
methods for the heights of individual trees was better than 0.5 m, which is consistent with
the accuracy observed in this research. In terms of the accuracy rate (p), the individual
tree segmentation methods based on NPCs perform better than those based on CHMs,
and the differences between the two approaches were obvious in a difficult broad-leaved
heterogeneous forest. In the high-forest-density plots, the effect of individual tree seg-
mentation based on NPCs was better than that based on a CHM. Because a CHM is a
two-dimensional raster model that involves the projection and interpolation of point cloud
data, more data conversion steps are required than are needed for an NPC; therefore, a
CHM achieves a comparatively worse segmentation performance. Yang et al. [54] also
reached this conclusion and showed that the overall accuracies of PCS and LS methods
are higher than those of methods based on CHMs. With improvements in the airborne
LiDAR point cloud data density and quality, individual tree segmentation based on NPC
will become an even better choice.

4.2. Method Sensitivity

Analyzing the sensitivities of different algorithm parameter settings is critical for
selecting the appropriate segmentation method. The WA was suitable for individual tree
segmentation in the CHM generated by low-density LiDAR point cloud interpolation.
However, the results were significantly affected by the interpolation algorithm and grid
resolution, and the accuracy was low. When the resolution is too low or too high, a
CHM generated by interpolation does not match the actual size of the tree crown: when
the resolution is too low, there are many convex and concave CHMs, resulting in over-
segmentation; if the resolution is too high, the CHMs are too smooth, resulting in leakage,
which is consistent with the research of Sokolova et al. [55]. Alternatively, the LM can
accurately explore the positions of tree tops, which is suitable for homogeneous forests
with regular crown shapes and neat arrangements of trees. To some extent, our results
support the conclusions of Peuhkurinen et al. [56], who suggested that individual tree
segmentation is affected by the number of trees, the size of trees, the arrangement of
tree positions, the canopy coverage, and changes in the tree size. Nevertheless, if the
distance threshold of PCS is too large or too small, insufficient, or excessive segmentation
will occur. The optimal distance threshold should equal the average canopy radius of
the plot. Our results are also consistent with those of Li et al. [32], who showed that the
uncertainty in the use of the PCS algorithm for individual tree segmentation originates
mainly from the distance threshold. In sparse forests with a large tree spacing, a relatively
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large threshold can be used to isolate trees. In contrast, it is difficult to determine the
appropriate threshold in dense forests, so additional classification rules should be combined
to obtain the optimal results. Furthermore, the LS method can effectively achieve the
individual tree segmentation of multilayer forests, and using the appropriate layer thickness
(n) can improve the segmentation accuracy. Ayrey et al. [34] showed that because the crown
edges of Pinus strobus overlap more than the center of the tree, a single tree can be divided
into many parts. Especially in broad-leaved forests with more shrubs under the trees, the
LS algorithm is particularly prone to clustering errors in slices [55], and the results from this
study further support this. Overall, the adjustment of key parameters in each individual
tree segmentation method has a considerable impact on the accuracy of tree detection. The
most suitable parameters vary based on the plot considered and forest type.

4.3. Uncertainty Related to the Forest Type

The forest type is influenced mainly by the forest density, species types, degree of
species mixing, tree arrangement, and other factors. The variation in forest density was
not the predominant influencing factor on the accuracy of individual tree segmentation,
although previous studies have always emphasized the influence of tree density [24,57,58].
Instead, this study found that forest homogeneity or heterogeneity was the most important
factor. F = 0.92 was obtained for the segmentation result among the seven plots with
homogeneous tree species; this F value is much larger than that obtained for the two plots
with heterogeneous tree species. The tree density in many of these homogeneous forests
was significantly higher than that in the heterogeneous forests. In addition, the uncertainty
related to the tree species in the plot was the main factor that influenced the selection of the
best segmentation method. The results reported by Mohan et al. [52] and Wang et al. [57]
are consistent with our findings, indicating that the accuracy of tree detection is affected by
the tree species and crown shape of adjacent trees. For Chinese fir and Eucalyptus species
with obvious peaks, the segmentation accuracy of the LM was high, and for broad-leaved
species such as Cyclobalanopsis, over-segmentation easily occurred, resulting in poor
accuracy. The LS method performed best in the segmentation of deciduous broad-leaved
forests [55]. The accuracy of the individual tree segmentation algorithm based on NPC data
depends strongly on the tree arrangement obtained from airborne LiDAR. For example, in
plantation plots 5 and 6 with high forest densities and close tree spacing, the PCS method
produced under-segmented results, whereas, for plots with regular arrangements of trees
and sufficient spacing, high-precision segmentation results were obtained. This result
is consistent with the conclusion of Li et al. [33] regarding the distance threshold in the
PCS algorithm. In addition, Larjavaara et al. [59], Butt et al. [60], and Krause et al. [61]
considered the influence of the errors of tree measurements in the field. In this paper, we
directly used the field data as a reference to verify the accuracy of extracted tree heights.

5. Conclusions

In this research, we used UAV-LiDAR point cloud data to generate NPCs and a CHMs
for multiple subtropical types of forest plots and compared and analyzed the performance
and accuracy of four segmentation methods. On this basis, we discussed the sensitivity
of the key parameters of each segmentation method, thus providing a basis for accurate
forestry measurements from UAV-LiDAR products.

(1) Compared with the CHM-based methods, the NPC-based methods exhibited better
performance in individual tree segmentation. Among the nine plots considered in this
study, the individual tree segmentation results of the former methods exhibited an average
detection rate r = 81.28%, an average accuracy rate p = 86.58%, and an average overall
accuracy F = 0.835. In contrast, the results of the NPC-based methods exhibited an average
detection rate r = 87.06%, an average accuracy rate p = 86.87%, and an average overall
accuracy F = 0.869. These findings suggest that the r values of individual trees are lower for
the CHM-based methods results than for the NPC-based methods due to the limited pixel
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resolution of CHM rasters. Moreover, while the p values of the two datasets were similar,
and NPC methods yielded a higher overall accuracy F.

(2) By comparing the parameter sensitivities of the four segmentation methods, we
concluded that the key parameters of the segmentation method and segmentation accuracy
are not consistently related, and the key parameters depend on the plot conditions. Overall,
in terms of the detection capability, the sigma value of the WA, the window size (z) of the
LM, and the distance threshold (D) in PCS are negatively correlated with the detection rate
r; conversely, the layer thickness (n) in LS exhibits a positive correlation with r. However,
in terms of the overall accuracy of segmentation F, the optimal sigma and z values depend
on the individual tree arrangement in a forest plot, the optimal D is affected by the average
crown radius, and the optimal n is influenced by the tree species present and tree strati-
fication in a plot. Therefore, these results are important for selecting and setting the key
parameters of UAV-LiDAR-based methods for individual tree segmentation to accurately
obtain forest structure information.

(3) Our extensive experiments showed that different individual tree segmentation
methods can provide excellent performance for different specific types of forest plots.
In addition, the forest type and complexity have notable impacts on the accuracy of
individual tree segmentation. Specifically, the WA and LM were minimally advantageous
for individual tree segmentation using high-density point cloud data from UAV-LiDAR.
Alternatively, the PCS method can be used as the preferred scheme for the individual tree
segmentation of UAV-LiDAR point cloud data, and its segmentation performance was
better in many types of forests. LS should be used as a supplement for individual tree
segmentation in multilayer forests and extremely complex heterogeneous forests.

Ultimately, this study provides an efficient solution for precisely surveying and mon-
itoring forest resources of multiple forest types. This study can be applied to ecological
research to study the acquisition of regional canopy heights and vegetation indices.
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