
Citation: Hassan, D.; Isaac, G.A.;

Taylor, P.A.; Michelson, D.

Optimizing Radar-Based Rainfall

Estimation Using Machine Learning

Models. Remote Sens. 2022, 14, 5188.

https://doi.org/10.3390/rs14205188

Academic Editor: Mark Bourassa

Received: 28 August 2022

Accepted: 12 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Optimizing Radar-Based Rainfall Estimation Using Machine
Learning Models
Diar Hassan 1,*, George A. Isaac 2 , Peter A. Taylor 3 and Daniel Michelson 4

1 WSP Global Inc., Ottawa, ON K2E 7K5, Canada
2 Weather Impacts Consulting Incorporated, Barrie, ON L4M 4Y8, Canada
3 Center for Research in Earth and Space Science, York University, Toronto, ON M3J 1P3, Canada
4 Environment and Climate Change Canada, Toronto, ON L7B 1A3, Canada
* Correspondence: dara74k@gmail.com

Abstract: Weather radar research has produced numerous radar-based rainfall estimators based on
climate, rainfall intensity, a variety of ground-truthing instruments and sensors (e.g., rain gauges,
disdrometers), and techniques. Although each research direction gives improvement, their collective
application in an operational sense still yields uncertainty in rainfall estimation at times. This study
aims to explore the concept of implementing Machine Learning (ML) models in optimizing the
radar-based rainfall estimations at the bin level from a group of estimator. The Canadian King City
C-Band radar was used with a GEONOR T-200B rain gauge (a total of 263 sample points) to establish
a group of polarimetric-based rainfall estimators (R(Z), R(Z, ZDR), R(KDP)). The estimators were
used to train three ML models, namely Decision Tree, Random Forest, and Gradient Boost, to choose
the optimal rainfall estimators based on radar variables (Z, ZDR, KDP). Data from the Canadian
Exeter C-Band radar and a Texas Electronics TE525 tipping bucket gauge at a different location were
used to verify the ML models and compare their results to the most commonly used Z-R relations.
The verification process shows promising results for the ML models, specifically the Gradient Boost
model. These encouraging results need to be further explored with more sample points to further
refine the ML models.

Keywords: rainfall estimation; radar QPE; polarimetric radar; C-band radar algorithms; Machine
Learning; Decision Tree; Random Forest; Gradient Boosting

1. Introduction

Globally, severe weather events cause injuries, fatalities, and substantial economic
damage every year. Since weather events are inevitable, monitoring and forecasting
such events with accuracy can help reduce their impacts. One of the main tools that
forecasters use for nowcasting is weather radar. Hydrologists also rely on weather radars
to quantitatively estimate precipitation amounts over an area (e.g., drainage basin, city,
etc.). Furthermore, polarimetric weather radars can detect and help identify different
non-meteorological targets such as wind farms, smoke plumes, insects, and birds. For
example, [1] used C-band polarimetric radar located at the National University of Córdoba,
Argentina, to study bat migration.

Decades of research (e.g., [2–4]) confirmed that polarimetric radar-based rainfall algo-
rithms add value in comparison to conventional Z-R relationships. Although there is no
consensus on the degree of improvement and the choice of an optimal polarimetric-based
relation for rainfall estimation [5] due to the different rainfall regimes, all studies confirm
that polarimetric-based rainfall algorithms outperform conventional Z-R algorithms in
moderate-to-heavy rainfall events.

Comparing different rainfall algorithms during two flash floods in the Ligurian Apen-
nines, Italy, using a network of tipping buckets and C-band radar [6], Cremonini et al.
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concluded that algorithms based on Specific Differential Phase (KDP) and using ZPHI (a
differential phase shift between two range gates on the same ray) perform significantly
better than non-polarimetric algorithms. While studying polarimetric rainfall retrieval
from C-band weather radar in a tropical environment in the Philippines, Crisologo et al. [7]
found that rainfall retrieval from KDP improved rainfall estimation at both daily and hourly
time scales. The daily KDP-based rainfall accumulations showed a very low estimation
bias and small random errors despite random scatter in hourly accumulations.

Using an Indo-Pacific warm pool disdrometer dataset, Thompson et al. [8] derived
new X-, C-, and S-band rainfall estimators. The authors found that the best performing
estimators were R(KDP, ξdr), R(Ah, ξdr), and R(z, ξdr), where ξdr is the linear form of
differential reflectivity (ξdr =

10 log10(zh)
10 log10(zv)

) and Ah is the specific attenuation. The authors
noticed that as the radar wavelength decreased (S- to X-band), the R(KDP, ξdr) was more
often used.

While determining the accuracy of C-band radar rainfall estimation, Schleiss et al. [9]
compared radar-based rainfall estimations to rainfall gauge data in Denmark, the Nether-
lands, Finland, and Sweden during heavy rainfall events and peak events. The algorithms
are mostly Z-R except for Finland where KDP is added. These authors deduced that
radar underestimation is 29% to 39.8% during heavy rain and 45.9% to 66.2% during peak
rainfall events.

There are difficulties in developing Quantitative Precipitation Estimate (QPE) using
radar in southern Ontario, including problems associated with ground clutter, attenuation,
radome wetting, beam blocking, partial beam filling, etc. [10,11]. Using C and S-band
radars and gauge data, Wijayarathne et al. [12,13] developed methods for quantitative
estimates of rainfall in the same area.

Several ML-based research papers were published on the weather radar subject that
were focused on image processing for nowcasting techniques. The Convolutional Neural
Network (CNN) method was studied to improve radar-based weather nowcasting [14].
The outcome showed good results in mild to moderate intensity storms. Cuomo and
Chandrasekar agreed with previous authors that the CNN smoothing effect does not allow
capturing intense storms correctly.

Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) techniques
were used [15] to improve the performance of hourly forecast rainfall using weather
radar data. Video Prediction Deep Learning (VPDL) algorithms with sequences of radar
reflectivity images were used [16] to predict 1 h lead reflectivity images in Sao Paulo, Brazil.
The authors verified the feasibility use of a VPDL model in providing precipitation trends
regardless of the weather event.

In this study we explore the benefit of Machine Learning (ML) to optimize the radar-
based rainfall estimation from a group of estimators at the radar bin level. For this purpose,
rainfall data collected from Toronto Pearson International Airport (YYZ) and radar data
from the C-band King City polarimetric radar (WKR) were used to determine a set of rainfall
estimators, R(Z), R(Z, ZDR), and R(KDP). The data were used to train three ML models
(Decision Tree, Random Forest, and Gradient Boosting) to choose the optimal rainfall
estimator based on the radar variables (Z, ZDR, KDP). The ML models were verified using
the C-band Exeter polarimetric radar (WSO) and rainfall data from the Waterloo University
in Ontario. The ML models have been compared to the currently employed rainfall
estimators by the Canadian radar network [17] and the composite estimator produced by
Bringi et al. [18]. Figure 1 shows the location of the considered sites in the current study.
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Figure 1. The location of the King City radar in comparison to the Pearson Airport (33 km) and the 
Exeter radar to the Waterloo University (67 km). 
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(43.9670N, −79.5670W) and the WSO radar is located to the north of London (43.3667N, 
−81.3833W). The C-Band WKR and WSO radars were replaced with S-Band radars in 
2020 and 2021, respectively. Both C-Band radars were designed to simultaneously 
transmit and separately receive horizontally and vertically polarized signals with several 
scan strategies [19], of which CONVOL and POLPPI are used in this study. CONVOL is a 
24-sweep polar volume containing non-Doppler processed reflectivity only. POLPPI 
collects equivalent horizontal reflectivity factor (ZH), differential reflectivity (ZDR), phase 
shift (φDP), specific differential phase shift (KDP), and co-polar correlation coefficient 
(ρHV). Different authors use different conventions of the polarimetric subscripts and in 
this study, the capital letter subscripts are used here for reflectivity (ZH) and differential 
reflectivity (ZDR) for values in the linear scale (e.g., mm6 m−3 for ZH) while the small letters 
subscripts express the logarithmic form [Z୦(dBz) =  10logଵ଴Zୌ]. 

The Canadian C-Band Radar Network scan strategy was designed to produce con-
ventional and Doppler cycles every 10 min [20]. The WKR, like the National Weather 
Service radars in the USA, uses the Simultaneous Transmit And Receive (STAR) mode 
with a slant-linear 45° technique to transmit the two orthogonally polarized waves. This 
technique would not be affected by the variability of the standard deviation of the hy-
drometeors’ canting angles. 

Data from the POLPPI scan were used at the 0.5° elevation angle. The radar’s spatial 
resolution is 0.5° (azimuth) × 0.125 km (range). For each sweep, the radar products were 
averaged over 3 × 3 bin ranges. Both radars use a least-square fit method to calculate KDP 
over a 6 km range. The radar data used in this research have been produced by Envi-
ronment and Climate Change Canada based on the moment data acquired by the radar. 

In a separate study comparing winter snow radar reflectivity over Lake Ontario, ref. 
[21] compared 90,000 point-by-point Zh (dBZ) and Zdr (dB) values from WKR and the 
Buffalo NEXRAD S-band (BUF) for common locations over the lake. ZH values from both 

Figure 1. The location of the King City radar in comparison to the Pearson Airport (33 km) and the
Exeter radar to the Waterloo University (67 km).

2. Radar Data and Ground Observations
2.1. Radar Data

The King City (WKR) and Exeter (WSO) radars are part of the Canadian weather radar
network located in Ontario, Canada. The WKR radar is located north of Toronto (43.9670N,
−79.5670W) and the WSO radar is located to the north of London (43.3667N, −81.3833W).
The C-Band WKR and WSO radars were replaced with S-Band radars in 2020 and 2021,
respectively. Both C-Band radars were designed to simultaneously transmit and separately
receive horizontally and vertically polarized signals with several scan strategies [19], of
which CONVOL and POLPPI are used in this study. CONVOL is a 24-sweep polar volume
containing non-Doppler processed reflectivity only. POLPPI collects equivalent horizontal
reflectivity factor (ZH), differential reflectivity (ZDR), phase shift (ϕDP), specific differential
phase shift (KDP), and co-polar correlation coefficient ($HV). Different authors use different
conventions of the polarimetric subscripts and in this study, the capital letter subscripts
are used here for reflectivity (ZH) and differential reflectivity (ZDR) for values in the linear
scale (e.g., mm6 m−3 for ZH) while the small letters subscripts express the logarithmic form
[Zh(dBz) = 10 log10 ZH].

The Canadian C-Band Radar Network scan strategy was designed to produce conven-
tional and Doppler cycles every 10 min [20]. The WKR, like the National Weather Service
radars in the USA, uses the Simultaneous Transmit And Receive (STAR) mode with a slant-
linear 45◦ technique to transmit the two orthogonally polarized waves. This technique
would not be affected by the variability of the standard deviation of the hydrometeors’
canting angles.

Data from the POLPPI scan were used at the 0.5◦ elevation angle. The radar’s spatial
resolution is 0.5◦ (azimuth) × 0.125 km (range). For each sweep, the radar products were
averaged over 3 × 3 bin ranges. Both radars use a least-square fit method to calculate KDP
over a 6 km range. The radar data used in this research have been produced by Environment
and Climate Change Canada based on the moment data acquired by the radar.

In a separate study comparing winter snow radar reflectivity over Lake Ontario,
ref. [21] compared 90,000 point-by-point Zh (dBZ) and Zdr (dB) values from WKR and the
Buffalo NEXRAD S-band (BUF) for common locations over the lake. ZH values from both
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radars showed good agreement while Zdr comparisons showed a less than 0.1 dB mean
difference of the upper 50% dataset.

2.2. Rain Gauges
2.2.1. Pearson International Airport

Rainfall data were collected from a suite of gauges and sensors (GEONOR T-200B,
Tipping Bucket, Belfort gauge, and FD12P) at 1 min resolution during the period of May-
September of 2011 and 2012 from the CAN-NOW project [22] at Pearson International
Airport (YYZ) near Toronto (43.6602N, −79.6064W) were used. The aerial distance between
YYZ and WKR is 33 km (20.5 mi), this ensures that the radar beam remains below 1 km
AGL. The YYZ air temperature and upper-air soundings from Buffalo Airport (BUF) were
used to ensure that the radar data are not contaminated by the bright band by establishing
the air temperature within 1 km AGL is above 10 ◦C.

Rainfall data from all the gauges were accumulated at 10 min intervals producing
(263) data point as shown in Figure 2. There is one 10 min dataset that was removed
from two gauges in Figure 2 (GEONOR 35.5 mm and Belfort 26.9 mm) on 4 September
2012, at 17:30 UTC. This makes it easier to compare the different gauges. The points were
only removed from Figure 2 for visual purposes but were included in the methodology.
Figure 2 shows that the data selected when all the gauges or sensors have simultaneously
reported precipitation; the precipitation amounts between the gauges or sensors vary
due to the differences in the measuring technique by each gauge or sensor as seen in
Figure 3. The Reference Climate Stations (RCS) and the Canadian Meteorological Service
of Canada Surface Weather and Climate Network (MSC SWCN) have been using the
GEONOR and Pluvio automated weighing gauges as part of the standard configuration
of climate monitoring since the early 2000s [23]. Despite the error associated with the
GEONOR weighing gauge [24] it is considered more reliable and accurate and was used in
the current study.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 15 
 

 

radars showed good agreement while Zdr comparisons showed a less than 0.1 dB mean 
difference of the upper 50% dataset. 

2.2. Rain Gauges 
2.2.1. Pearson International Airport 

Rainfall data were collected from a suite of gauges and sensors (GEONOR T-200B, 
Tipping Bucket, Belfort gauge, and FD12P) at 1 min resolution during the period of 
May-September of 2011 and 2012 from the CAN-NOW project [22] at Pearson Interna-
tional Airport (YYZ) near Toronto (43.6602N, −79.6064W) were used. The aerial distance 
between YYZ and WKR is 33 km (20.5 mi), this ensures that the radar beam remains be-
low 1 km AGL. The YYZ air temperature and upper-air soundings from Buffalo Airport 
(BUF) were used to ensure that the radar data are not contaminated by the bright band by 
establishing the air temperature within 1 km AGL is above 10 °C. 

Rainfall data from all the gauges were accumulated at 10 min intervals producing 
(263) data point as shown in Figure 2. There is one 10 min dataset that was removed from 
two gauges in Figure 2 (GEONOR 35.5 mm and Belfort 26.9 mm) on 4 September 2012, at 
17:30 UTC. This makes it easier to compare the different gauges. The points were only 
removed from Figure 2 for visual purposes but were included in the methodology. Fig-
ure 2 shows that the data selected when all the gauges or sensors have simultaneously 
reported precipitation; the precipitation amounts between the gauges or sensors vary 
due to the differences in the measuring technique by each gauge or sensor as seen in 
Figure 3. The Reference Climate Stations (RCS) and the Canadian Meteorological Service 
of Canada Surface Weather and Climate Network (MSC SWCN) have been using the 
GEONOR and Pluvio automated weighing gauges as part of the standard configuration 
of climate monitoring since the early 2000s [23]. Despite the error associated with the 
GEONOR weighing gauge [24] it is considered more reliable and accurate and was used 
in the current study. 

 

Figure 2. The 10 min rainfall rates comparison from all the gauges and sensors (GEONOR, Tipping
Bucket, Belfort, and FD12P) for the period between May 2011 to September 2012.



Remote Sens. 2022, 14, 5188 5 of 14

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

Figure 2. The 10 min rainfall rates comparison from all the gauges and sensors (GEONOR, Tipping 
Bucket, Belfort, and FD12P) for the period between May 2011 to September 2012. 

 
Figure 3. Rainfall accumulation (10 min) from the GEONOR T200B and Tipping Bucket for Pearson 
International Airport (YYZ) for the period May-September 2011 and 2012. 

2.2.2. Waterloo University Weather Station 
The Waterloo University weather station (https://weather.uwaterloo.ca/, accessed on 

1 May 2022). in Ontario (43.47341N, −80.5585W) is comprised of a variety of sensors in-
cluding a Texas Electronics TE525 tipping bucket rain gauge. The aerial distance between 
the weather station and WSO is 67 km (41.6 mi). A 1 min dataset (e.g., rainfall and air 
temperature) was obtained for May to September 2016. Despite the Meteorological Ser-
vice of Canada (MSC) adopting the TB3 tipping bucket rain gauge and upgrading 119 
sites with the TB3 rain gauge, twenty-four Texas Electronics tipping bucket rain gauges 
remained in operation after 2007 [24]. The Waterloo University site was chosen due to its 
proximity to the second operational C-band polarimetric radar (WSO) in Canada. The 
Doppler WSO radar was upgraded to C-band polarimetric radar in 2015. Similar to YYZ, 
the Waterloo data were filtered by ensuring the air temperature within the 1 km AGL is 
above 10 °C by using surface air temperature from Waterloo and upper-air data from the 
Buffalo Airport (BUF) and White Lake (KDTX) in Michigan. The 1 min data were accu-
mulated to 10 min producing (451) data points with precipitation measurement. 

3. Methodology: Rainfall Estimators and Decision Tree Models 
3.1. Rainfall Estimators 

The Marshall and Palmer [25] Z-R relation (using the form Z = ARb) is recognized as 
the most ubiquitous radar-based rainfall rate estimator. The first mention of the rela-
tionship using coefficients A = 200 and b = 1.6 was made in Marshall and Gunn [17] 
(hereafter referred to as RMG), but convention refers to this as the Marshall and Palmer 
estimator. In 2011, a group of rainfall estimators (RBRT(Z), RBRT(Z, ZDR), and RBRT(KDP)) 
were developed using Joss disdrometer data from Chilbolton, UK, and a C-band radar in 
convective storms during the three summer months of 2007 [18]. The authors derived a 

Figure 3. Rainfall accumulation (10 min) from the GEONOR T200B and Tipping Bucket for Pearson
International Airport (YYZ) for the period May-September 2011 and 2012.

2.2.2. Waterloo University Weather Station

The Waterloo University weather station (https://weather.uwaterloo.ca/, accessed
on 1 May 2022). in Ontario (43.47341N, −80.5585W) is comprised of a variety of sensors
including a Texas Electronics TE525 tipping bucket rain gauge. The aerial distance between
the weather station and WSO is 67 km (41.6 mi). A 1 min dataset (e.g., rainfall and air
temperature) was obtained for May to September 2016. Despite the Meteorological Service
of Canada (MSC) adopting the TB3 tipping bucket rain gauge and upgrading 119 sites with
the TB3 rain gauge, twenty-four Texas Electronics tipping bucket rain gauges remained in
operation after 2007 [24]. The Waterloo University site was chosen due to its proximity to
the second operational C-band polarimetric radar (WSO) in Canada. The Doppler WSO
radar was upgraded to C-band polarimetric radar in 2015. Similar to YYZ, the Waterloo
data were filtered by ensuring the air temperature within the 1 km AGL is above 10 ◦C by
using surface air temperature from Waterloo and upper-air data from the Buffalo Airport
(BUF) and White Lake (KDTX) in Michigan. The 1 min data were accumulated to 10 min
producing (451) data points with precipitation measurement.

3. Methodology: Rainfall Estimators and Decision Tree Models
3.1. Rainfall Estimators

The Marshall and Palmer [25] Z-R relation (using the form Z = ARb) is recognized as the
most ubiquitous radar-based rainfall rate estimator. The first mention of the relationship
using coefficients A = 200 and b = 1.6 was made in Marshall and Gunn [17] (hereafter
referred to as RMG), but convention refers to this as the Marshall and Palmer estimator. In
2011, a group of rainfall estimators (RBRT(Z), RBRT(Z, ZDR), and RBRT(KDP)) were developed
using Joss disdrometer data from Chilbolton, UK, and a C-band radar in convective storms
during the three summer months of 2007 [18]. The authors derived a composite rain rate
using disdrometer drop size distribution data and scattering simulations (T-matrix model).
The decision tree based composite estimator (hereafter referred to RBRT(RC) as described

https://weather.uwaterloo.ca/
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in [18]), uses different thresholds to choose the optimal rain estimator as described in
Figure 4.
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Figure 4. Bringi et al. 2011 [18] composite rain-rate estimator RBRT(RC).

To establish new rainfall estimators, the method of minimizing the sum of squared
error between the 10 min WKR and the YYZ GEONOR data from the summers of 2011 and
2012 was used to derive three rain estimators (hereafter referred to as RHITM), which can be
given as:

RHITM(Z) = 0.287 × Z0.450
H (1)

RHITM(Z, ZDR) = 0.0460 × Z0.718
H × Z−1.73

DR (2)

RHITM(KDP) = 24.2 × KDP0.639 (3)

where, R is in mm h−1 and ZH in (mm6 m−3), ZDR is dimensionless, and KDP is in (◦ km−1).
Three Machine Learning (ML) methods were utilized to optimize the process of

selecting the optimal RHITM estimator for each radar bin per radar sweep using the radar
variables (Z, ZDR, KDP). The sci-kit-learn software package was used in the three ML
models [26].

3.2. Supervised Decision Tree Machine Learning Method

The Machine Learning (ML) Decision Tree (DT) algorithm is a supervised machine
learning algorithm that is used to solve categorial and regression problems and is used in
pattern identifications and image processing. DT is made up of a root node that represents
the entire data set before splitting (branching) into decision nodes and sub-tree until it
reaches the leaf where a decision has been reached.

This method uses a goodness of split criterion derived from an impurity function [27].
The function can be represented by Entropy or Gini Index which represents impurity or
randomness. Ultimately, this function is used to calculate a gain function which in turn
determines the branching of the tree. This is done by measuring the entropy before and
after the split and the average entropy to determine the branching of the tree.
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In our case, the featured variables were ZH, ZDR, and KDP. There seemed to be no
weight for the $HV when included in the featured variables. The target variable was the
categorial selection of one of the three different estimators (RHITM(Z), RHITM (Z, ZDR),
RHITM (KDP)) established in this study. The DT method selects the best RHITM estimator
based on its closeness to the 10 min GEONOR gauge data. Since we have three featured
variables in our example, the DT has three possible split types at the root node (i.e., the
beginning of the tree). The DT calculates the gain function for each possible split and starts
with the feature with the highest function; in our case, it is KDP at the rood node as seen in
Figure 5. At each following node (Decision Node), a new question is asked, based on the
same or a different featured variable, and the data is split into smaller subsets as seen in
the figure. Each decision node would be answered by “True” or “False” (or Yes/No) based
on the gain function. The “True” answers always split to the left and “False” to the right.
The final split of each branch leads to a leaf or terminal node.
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In this study, the branching of the tree was limited to a minimum of 50 samples to
provide a higher sampling rate to increase the model accuracy. The rainfall estimation from
this method will be referred to as RHITM(DT).
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3.3. Supervised Random Forest Machine Learning Method

The Random Forest (RF) machine learning method is a collection of multiple Decision
Trees. To compare it to the DT above, the RF could have hundreds of trees that are different
from each other at the root node, thus each tree would end up having different branching
decisions. In other words, the RF randomness is higher than the DT as each tree could have
different decision nodes and thresholds to branch [28]. In the RF, the prediction of each
tree is calculated, and the tree with the lowest error rate will be the final predictor. Figure 6
shows the schematic of the RF model.
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The RF model uses the default or user set hyperparameters, such as node size, number
of trees, and the number of features sampled. In this study the default settings produced
similar results as the tuned ones and the forest contained 100 trees. The model selects
multiple data samples from the training data that is equal to the number of determined
trees. In this study, the sampled data was set with replacement, i.e., same data point can be
present in multiple sampled training data, due to the relatively smaller size data point in
this study. Each tree in the forest will then select a feature or subset of features, calculate
the Gini Index before and after splitting and continue branching until reaching the leaf
state. The voting process will be based on the tree with the most frequent features in it.

Similar to the DT model, the features were the same in the RF model (i.e., ZH, ZDR,
KDP) and the target variables were the RHITM estimators, and the best estimator is selected
as being closer to the 10 min GEONOR gauge data. The rainfall estimation from this
method will be referred to as RHITM(RF)
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3.4. Gradient Boosting, Ensemble Learning

The Gradient Boosting (GB) methodology [29] can be described as a set of variables
(or parameters) serving as an input to determine a target variable by training a dataset.
The GB model is based on using weak predictor models (trees) to build a stronger one but
iteratively learning from each of the weak predictor models, i.e., these predictors (trees)
are added to the model over time. Similar to the DT and RF models, the GB performs this
iteration by minimizing a loss function. The difference between the RF and GB is that the
latter does not add an entire tree at each iteration, rather creates and adds a single split tree
(also known as decision stumps). The added decision stumps are choses by their ability to
classify easy and difficult instances among the observation with more weight given to the
stumps that are able to classify difficult ones.

The featured and target variables in the GB model were similar to that of the DT and
RF models. The rainfall estimation from this method will be referred to as RHITM(GB).

3.5. Statistical Scores

A set of statistical scores were used to evaluate quantitative precipitation estimate
accuracies: Pearson Correlation Coefficient (r), Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and the Normalized Mean Error (NME). The NME was normalized
by the mean of the observation. Since radar-based rainfall estimation can be used in
hydrological models, the Nash-Sutcliffe Efficiency coefficient (NSE) [30] was used in the
verification process as it evaluates the predictive skills of the estimated rainfall. Table 1
provides the NSE score [31].

Table 1. The Nash-Sutcliffe Efficiency Coefficient values.

Performance Evaluation NSE

Very good 0.75 < NSE ≤ 1.00

Good 0.65 < NSE ≤ 0.75

Satisfactory 0.5 < NSE ≤ 0.65

Unsatisfactory NSE ≤ 0.50

3.6. Study Data and ML Models

The data used in this paper and the three trained ML models that were established
and used in the paper are available on an openly available project repository and can be
accessed via this URL (https://doi.org/10.5281/zenodo.6979720, accessed on 1 September
2022). The data and models were made available to achieve reproducibility [32].

4. Evaluation Process

Data from the Waterloo University Weather Station tipping bucket for the summer
of 2016 were used with polarimetric variables from the WSO radar to evaluate the RMG,
RBRT(RC), RHITM(DT), RHITM(RF), and RHITM(GB) rainfall estimators. After calculating the
10 min rain accumulation, the data were resampled to hourly rainfall accumulation.

Figure 7 shows the hourly tipping bucket accumulation versus the radar estimator
obtained from each method. The figure generally shows a persistent underestimation for
the RMG and the RBRT(RC) estimators, while the ML methods tend to slightly overestimate
the rainfall at the very low rain rates (below 1 mm h−1). The ML models show promising
results in light-to-moderate and heavy rainfall (e.g., ~≥ 1 mm h−1).

Table 2 present the statistical skills of the RMG, RBRT(RC), RHITM(DT), RHITM(RF), and
RHITM(GB). The NSE values can be between zero (no skill model) to one (perfect model).

The table shows that the statistical scores from the RHITM(RF) and RHITM(GB) show
superior results when compared to RMG and RBRT(RC) due to the ML techniques used in
each method that relies on multiple learning steps. The RF method relies on an ensemble
approach from multiple trees while the GB relies on a sequential learning approach from

https://doi.org/10.5281/zenodo.6979720
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each branched tree. In other words, the RF and GB methods were not produced using a
single logic gate (e.g., RBRT(RC)). The data shows that the RMG and RBRT(RC) are severely
underestimating the total seasonal rainfall by nearly ~60% (Est.% in Table 2). If the Tipping
bucket underestimation were to be considered here, perhaps RMG and RBRT(RC) could
have shown worst underestimation than what is presented in Table 2 and the RHITM(RF)
and RHITM(GB) could have been closer to the perfect (100%) estimation. The NSE score
shows “good” results (Table 1) for RMG, RBRT(RC), RHITM(DT), and RHITM(RF), while the
NSE score shows “very good” results for RHITM(GB). It is worth noting that RHITM(GB)
showed slightly better statistical scores than each of the individual RHITM(Z), RHITM(Z,
ZDR), and RHITM(KDP).
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Table 2. The statistical skills of (RMG), (RBRT(RC)), and the three Machine Learning (ML) models (DT,
RF, GB). The statistical scores are the Pearson Correlation coefficient (Corr), Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Normalized Mean Bias (NMB), the Nash-Sutcliffe coefficient
(NSE), and the percentage of the total seasonal rainfall estimation to the total rainfall measured by
the gauge (Est.%).

RMG RBRT(RC) RHITM(DT) RHITM(RF) RHITM(GB)

Corr 0.901 0.898 0.842 0.895 0.901

MAE 1.32 1.30 1.71 1.37 1.27

RMSE 2.09 1.90 2.27 1.81 1.66

NME 0.650 0.642 0.846 0.677 0.626

NSE 0.623 0.688 0.553 0.716 0.763

Est.% 57.8 58.9 141 128 124

5. Case Study

This case study is presented to verify that the ML methods, GB in this case, do not
produce any artifacts and to compare the RMG and RHITM(GB) rainfall estimations using
any available nearby gauge observations (ground truthing).

A hot and humid airmass tracked across southern Ontario during the early hours of
14 July 2016. The airmass was ahead of a cold front and was associated with thunderstorms,
high winds, and heavy rain. The high winds brought down trees and power lines across
the Greater Toronto Area. Figure 7 shows the 1 h (0900-0950 UTC) radar-based rainfall
estimation using the RMG estimator and the RHITM(GB) model. It is important to note
that the figure shows that the RHITM(GB) does not produce any artifacts that are visually
unphysical or unreasonable. Furthermore, there were no artifacts or unreasonable results
observed at the radar bin level per each sweep. This confirms that this ML method can be
applied in real-time operations.

The Waterloo University gauge measured 3 mm rainfall during that hour while RMG
and RHITM(GB) estimated 1.1 mm and 3.3 mm, respectively. Furthermore, the Region of
Waterloo International Airport (YKF) located 14.6 km (9.1 mi) to the east of the Waterloo
University measured 8.1 mm during that hour and the RMG and RHITM(GB) estimations
were 3.8 mm and 7.3 mm, respectively. This further confirms the severe underestimation of
the RMG estimator. The underestimation is also evident in Figure 8.
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6. Conclusions

Decades of research in radar meteorology have led to an upgraded generation of
radars that use polarimetric capabilities, replacing single (horizontal) polarization radars
(e.g., [33–37]), in addition to producing dozens of polarimetric rainfall estimators. The
rapid advancement in computer science and computing speed opens the door to the imple-
mentation of Machine Learning (ML) in radar-based rainfall estimation, thus improving
upon radar Quantitative Precipitation Estimation (QPE). This research aimed to explore the
ML classification capabilities to choose the optimal rainfall estimator at the radar bin level
for each radar scan.

Rainfall measurements from Pearson International Airport (YYZ) were collected at
1 min temporal resolution for two summer seasons (May-Sep), 2011 and 2012, using a
GEONOR weighing gauge. The radar data were checked for bright band contamination.
The data were accumulated at 10 min intervals and combined with polarimetric variables
(Z, ZDR, KDP) from the C-band King City Radar (WKR) to produce three power-law-based
rainfall estimators RHITM(Z), RHITM(Z, Zdr), RHITM(KDP).

The polarimetric variables and the rainfall estimators were used in training three ML
models, namely Decision Tree (DT), Random Forest (RF), and Gradient Boosting (GB) that
use different classification techniques. The rainfall estimation produced from each of the
ML models was referred to as RHITM(DT), RHITM(RF), and RHITM(GB).

The ML rainfall estimators were verified using 1 min data from the tipping bucket at
Waterloo University during the 2016 summer (May-Sep) and radar data from the C-band
Exeter radar (WSO). The tipping bucket data were resampled to 10 min accumulation to be
compared to the radar and the latter data were checked for bright band contamination. The
ML rainfall estimators were compared to the Marshall-Gunn [17] estimator (RMG) and the
composite rain estimator produced by [18] (RBRT(RC)). A study found that RMG severely
underestimates rainfall amounts while using data from the WSO radar [38]. Using drop
size distribution (DSD) data, a composite rainfall estimator was derived using a scattering
simulation [2]. Although disdrometers are often used to develop radar-based rainfall
estimators, the errors involved in calculating rainfall rates from DSDs are considerable due
to the different raindrop size spectra and the number of detected drops per spectrum by
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each disdrometer type [39]. The assumptions used in the scattering simulations can also
introduce additional errors.

The results show that among the three ML models, the GB provides the ultimate
improvements followed by RF, especially in the Root Mean Square Error (RMSE), Nash-
Sutcliff coefficient (NSE), and the total seasonal rainfall estimation. The analysis also
showed that the RMG and RBRT(RC) estimators underestimate the total seasonal rainfall
accumulation by nearly 60%.

The results also showed that all three ML models do not produce any artifacts or
unreasonable results when mapping the radar-based rainfall estimation per sweep or
producing hourly accumulation maps. It is worth noting that the data used in this work
(testing and validation) were vetted for virga, anomalous propagation, and bright band
contamination to eliminate outliers in the process. This was done by comparing the
data variables to the gauge and using upper air sounding from nearby station. It is
important to eliminate outliers during the model training phase. The one limitation
that was left unaddressed was the known underestimation of the tipping bucket data
(validation data from the Waterloo University) due to the lack of a correction formula.
Despite that, if applying any correction to the tipping bucket, it would have revealed
further underestimation of the RMG and RBRT(RC) method with a better statistical scores
for the three ML methods (RHITM(DT), RHITM(RF), and RHITM(GB)).

This research provides an insight to the implementation of ML in optimizing radar-
based rainfall estimation. Groups of estimators, regionally or seasonally, can efficiently be
used to train an ML model to optimize the rainfall estimation process at the bin level per
radar sweep.
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