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Abstract: Accurate information on grassland above-ground biomass (AGB) is critical to better under-
standing the carbon cycle and conserve grassland resources. As a climate-sensitive key ecological
function area, it is important to accurately estimate the grassland AGB of the Tibetan Plateau. Sentinel-
2 (S2) images have advantages in reducing mixed pixels and the scale effect for remote sensing, while
the data volume is correspondingly larger. In order to improve the estimation accuracy while re-
ducing the data volume required for AGB estimation and improving the computational efficiency,
this study used the Recursive Feature Elimination (RFE) algorithm to find the optimal feature set
and compared the performance of the Cubist, Gradient Boosting Regression Tree (GBRT), random
forest (RF) and eXtreme Gradient Boosting (XGBoost) algorithms for estimating AGB. In this study,
ten S2 bands, ten S2-derived vegetation indexes, 218 pieces of AGB field survey data, four types of
meteorological data and three types of topographic data were used as the alternative input features
for the AGB estimation model. The impurity and permutation importance were used as the feature
importance calculation method input to the RFE, and the Cubist, GBRT, RF and XGBoost algorithms
were used to construct the AGB estimation models. The results showed that the RF algorithm based
on the monthly average temperature (T), elevation, Normalized Difference Phenology Index (NDPI),
Normalized Difference Infrared Index (NDII) and Palmer Drought Severity Index (PDSI) performed
best (R2 = 0.8838, RMSE = 35.05 g/m2, LCCC = 2.44, RPPD = 0.91). The above findings suggest that
the RF model based on the features related to temperature, altitude, humidity and leaf water content
is beneficial to estimate the grassland AGB on the Tibetan Plateau.

Keywords: above-ground biomass; Tibetan Plateau; random forest; recursive feature elimination;
alpine grassland

1. Introduction

Grassland above-ground biomass (AGB) presents the total amount of organic matter
produced by photosynthesis of grass per unit area [1,2]. AGB, which indicates energy flow
and material circulation in the grassland ecosystem, is a critical indicator for grassland
growing state, management and protection, playing a crucial role in carbon cycling and
biodiversity conservation [3]. Hence, it is necessary to seek an appropriate method to
estimate the grassland AGB of the Tibetan Plateau.
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Currently, the methods of grassland biomass accounting contain field survey and
remote sensing monitoring. The traditional field survey approach can obtain high-precision
AGB data. At the same time, it requires a large amount of workforce, finance and time,
and it is impossible to simultaneously assess the AGB over a vast area. Remote sensing
monitoring is another option that has been widely used in AGB estimation at present. It
has the advantage of a fast response time and being able to observe a large area of the
land surface at the same time. Most previous studies on grassland AGB of the Tibetan
Plateau used coarse spatial resolution images, such as MODIS, with a resolution of 250 m
or 500 m [4–6]. However, coarse resolution remote sensing data ignore many surface
details, particularly on the Tibetan Plateau, where the grassland is highly heterogeneous
and fragmented, limiting the accuracy of ABG estimation. Therefore, higher resolution
remote sensing data are needed to improve this situation.

The Copernicus Sentinel-2 (S2) mission comprises a constellation of two high spatial
resolution multispectral imaging satellites. It has a spatial resolution of 10 m to 60 m and a
revisit time of ten days with one satellite or five days for two satellites. Punalekar et al. [7]
used S2A to estimate pasture Leaf Area Index and biomass on three sites in Southern
England. Forkuor et al. [8] used multitemporal S2 data acquired over five months to
map the AGB in the Sudanian Savanna of West Africa, achieving relatively high accuracy
(R2 = 0.83, RMSE = 60.6 Mg/ha). Compared with the 500 m resolution MODIS data,
often used in previous studies, the higher resolution S2 images have more advantages in
reducing the mixed pixels and decreasing the scale effect of remote sensing. However,
the higher resolution of remote sensing images means that their data volume will also be
more huge. This makes it difficult to use S2 data for mapping on large scales because the
dramatic increase in data volume requires more storage space and more efficient methods
of computation.

In remote-sensing-based AGB estimation, multiple features—such as spectral bands,
vegetation indices (VI) and meteorological data—can be used as independent predictive
variables for modeling [9,10]. Feature selection can select the optimal feature set among all
the features to save computing resources, reduce feature space dimensions and improve
the intelligibility and generalization of the model [11,12]. The Pearson correlation is
a traditional method to understand the relationship between features and dependent
variables, which measures the linear correlation between variables. An obvious drawback
of the Pearson correlation coefficient is that it is sensitive only to linear relationships and
does not reflect nonlinear ones. The mean impact value (MIV) increases one independent
feature of the training set by 10% and then decreases it by 10% to obtain two new training
sets. Then, the trained neural network is used to predict the two sets of results. The average
of the two differences between the two predicted outcomes is the MIV of the features. This
approach is more applicable to neural networks. Recursive Feature Elimination (RFE) is
used to select relevant features in a training dataset for the prediction of target variable,
which is an algorithm frequently applied in many machine learning approaches [13,14].
The RFE calculates the feature importance of each feature. Then, the feature set is recursively
pruned to find the optimal set of features. RFE can effectively select the features in the
training set that are relevant for predicting the target variable. Yin et al. [15] selected seven
variables from eleven to estimate the height of the grassland by using the RFE method,
increased the R2 of the model from 0.41 to 0.51 and reduced the RMSE from 6.76 to 6.16 cm.

In the choice of modeling algorithms for inversion, machine learning algorithms are
frequently used due to their ability to efficiently invert nonlinear relationships between
variables [16–18]. Zhao et al. [19,20] compared seven different algorithms (including Cubist,
RF, XGBoost, etc.) to determine the best model for DSM of clay content in topsoil and
subsoil in semi-arid Australia. Yu et al. [21] showed the applications of the Gradient
Boosting Regression Tree (GBRT), random forest (RF) and eXtremely Randomized Tree
(ERT) in building AGB estimation models. Gao et al. [6] used 1200 AGB observations,
NDVI, grassland types, latitude, longitude and altitude to develop an RF model suitable for
AGB estimation in Tibetan alpine grasslands. However, little research has been conducted
to integrate multiple features and compare different algorithms to estimate grassland AGB.
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The Tibetan Plateau is the youngest, the largest and the highest plateau in the world.
As the “Roof of the World”, the average height of the Tibetan Plateau is above 4000 m [22].
The Tibetan Plateau and its surrounding mountains serve as the Third Pole in the northern
hemisphere and is a climate-sensitive key ecological function area, acting as both the engine
and amplifier of global change, like the Arctic Pole and the Antarctic Pole [23]. Acting
as the primary land cover type of the Tibetan Plateau, grassland covers about 60% of the
region area. Therefore, the Tibetan Plateau was selected as the case study for this research.
The main goal of this study is to realize high-resolution AGB estimation using S2 as the
main data source and to research the key techniques for model building and optimal
feature selection. The major objectives were (1) to identify the significant features and
find the optimal feature set in estimating AGB using S2; (2) to compare the performance
of the Cubist, GBRT, RF and XGBoost algorithms in AGB estimation; and (3) to build an
AGB estimation model using the best algorithm and analyze the uncertainty of the AGB
estimation model.

2. Dataset
2.1. Study Area

The Tibetan Plateau (25◦57′00′′N∼39◦48′00′′N, 73◦26′24′′E∼104◦25′12′′E) is located in
central Asia, and most of it is in China. The Tibetan Plateau has a length of approximately
2800 km from east to west and a width of 1000 km from north to west, while it has an area
of about 2.5 million square kilometers [24]. The average altitude of the Tibetan plateau
is over 4000 m. The air is dry and thin, with strong solar radiation, low temperature,
and low rainfall. The average annual temperature is about 0.78 ◦C and the average annual
precipitation is about 500 mm [25]. The whole study area is located in the alpine climate
zone. The Tibetan Plateau is a sensitive area for global climate change. According to
the land cover types map over the Tibetan Plateau [26], the grassland coverage of the
Tibetan Plateau is 1.4× 106 km2, accounting for 53.65% of the total area, which is the main
vegetation type of the Tibetan Plateau. The grassland types of the Tibetan Plateau include
alpine meadow, alpine steppe and alpine desert, as shown in Figure 1.

Figure 1. Spatial distribution of alpine grasses and AGB sampling plots on the Tibetan Plateau.
The base map is the Alpine Grassland Map on the Tibetan Plateau [27].
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2.2. Field Data

The field survey was carried out during July to September from 2019 to 2021, which
is the growing season in the Tibetan Plateau. The sampling plots were mainly located on
the Qiangtang Plateau, the Cocosili region, the southern slope of the Qilian Mountains,
the Qaidam Basin, the Three-River Headwaters Region and the northern Sichuan–Tibet
route (National Highway G317). The sampling points were sufficiently distributed over
all types of grassland to ensure that the whole samples can represent the study area.
The sampling plots were established with two 100 m red lines perpendicular to each other
based on the center points, and the coordinates of the center points were recorded with
a handheld GPS. We marked 10 m, 30 m and 50 m from the center point to form a box at
10 × 10 m, 30 × 30 m and 50 × 50 m scales. Aerial photographs were taken at these three
scales using a drone as a ground identification reference. Each sample plot contained three
(for homogeneous grass) to nine (for inhomogeneous grass) evenly distributed quadrats
(1 m × 1 m). All plants from the quadrat were harvested and brought back to the laboratory
for drying using an electric drying oven. The temperature of the drying oven was set to
65 ◦C. The plants were continuously dried in the drying oven until their weights no longer
changed. Finally, the dried plants were weighed to obtain the dry matter (AGB). The data
of sample plots consisted of grass type, coordinate information, elevation and dry weight.
According to the land cover types map of the Tibetan Plateau, a total of 218 sampling plots of
the grassland ecosystem were generated.

2.3. Elevation Dataset

The digital elevation model (DEM) data were obtained from the Shuttle Radar To-
pography Mission (SRTM) digital elevation dataset (version 4) (http://srtm.csi.cgiar.org
(accessed on 14 September 2022)), which has a spatial resolution of 30 m. We calculated
the slope and the angle data because topographic factors may also affect the growth of
vegetation [28]. We extracted the pixel values of elevation, slope and aspect corresponding
to each sample point on GEE.

2.4. Meteorological Data

In this study, we used the Monthly Climate and Climatic Water Balance for Global
Terrestrial Surfaces dataset—containing Palmer Drought Severity Index (PDSI), soil mois-
ture (Soil), Precipitation accumulation (Pr), Minimum temperature (tmmn) and Max-
imum temperature (tmmx)—provided by the University of California Merced (https:
//www.climatologylab.org/terraclimate.html (accessed on 14 September 2022)). This
product covers 1958 to 2021, with a spatial and temporal resolution of 4638.3 meters and
one month. We selected PDSI, Soil and Pr from the dataset that coincided with the month
the ground survey was conducted as alternative input features. We obtained the monthly
average temperature (T), which was also used as one of the alternative input features,
by calculating the mean values of monthly tmmn and tmmx.

2.5. S2 Bands and S2-Derived VIs

We obtained the Sentinel-2 MultiSpectral Instrument Level-2A product (S2) from
GEE (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/
level-2a (accessed on 14 September 2022)). Only those pixels that covered the sampling
plots and were imaged closest to the survey date would be selected. If clouds contaminate
a pixel on the day of the survey, then the band value for the survey day is replaced by the
band value for the most adjacent date. In this study, the aerosol and the water vapor bands
are considered irrelevant for AGB estimation and are therefore not used. The remaining ten
bands were selected as features to build the grassland AGB estimation models, with res-
olutions of 10 m × 10 m and 20 m × 20 m (Table 1). Besides, the Difference Vegetation
Index (DVI), Enhanced Vegetation Index (EVI), Modified Soil Adjusted Vegetation Index
(MSAVI), Modified Simple Ratio (MSR), Normalized Difference Infrared Index (NDII),
Normalized Difference Phenology Index (NDPI), Normalized Difference Vegetation Index

http://srtm.csi.cgiar.org
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
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(NDVI), Optimized Soil-Adjusted Vegetation Index (OSAVI), Ratio Vegetation Index (RVI)
and Soil-Adjusted Vegetation Index (SAVI) were selected as the alternative features as
well. As these 10 VIs were derived from the spectral reflectance data, they can reflect
vegetation growth, physiological characteristics, growing environment and reduction of
soil background effects. The calculation of these VIs can be referred to in Table 2.

Table 1. Information about the Sentinel-2 bands selected in this study.

Sentinel-2 Bands Central Wavelength
(µm) Resolution (m) Wavelength S2A/S2B

(nm)

B2—Blue 0.490 10 496.6/492.1
B3—Green 0.560 10 560/559
B4—Red 0.665 10 664.5/665

B5—Red Edge 1 0.705 20 703.9/703.8
B6—Red Edge 2 0.740 20 740.2/739.1
B7—Red Edge 3 0.783 20 782.5/779.7

B8—NIR 0.842 10 835.1/833
B8A—Narrow NIR 0.865 20 864.8/864

B11—SWIR 1 1.610 20 1613.7/1610.4
B12—SWIR 2 2.190 20 2202.4/2185.7

Table 2. Vegetation indices used in the AGB estimation model.

Vegetation Index Formula References

DVI NIR− RED [29,30]

EVI
G × NIR−RED

NIR + C1 × RED−C2 × BLUE + L
where G = 2.5; C1 = 6; C2 = 7.5; L = 1

[31,32]

MSAVI 1
2 ×

[
(2 × NIR + 1)−

(√
(2 × NIR + 1)2 − 8 × (NIR− RED)

)]
[33]

MSR
NIR
RED−1√
NIR
RED + 1

[34]

NDII NIR−SWIR
NIR + SWIR [35]

NDPI NIR−(0.74 × RED + 0.26 × SWIR)
NIR + (0.74 × RED + 0.26 × SWIR) [36]

NDVI NIR−RED
NIR + RED [37,38]

OSAVI NIR−RED
NIR + RED + X
where X = 0.16 [39,40]

RVI NIR
RED [41]

SAVI
NIR−RED

NIR + RED + L × (1 + L)
where L = 0.5

[42,43]

3. Methodology
3.1. AGB Estimation Procedure

Figure 2 shows the procedure of establishing the AGB estimation model and the
evaluation analysis. The first step was preparing the field, meteorological, topographic
and spectral data (including S2 bands and vegetation indices). Then, they were divided into
training and test sets according to model building needs and spatial–temporal scalability
analysis. The second step was calculating the feature importance and selecting the optimal
feature set using the RFE algorithm. The third step was to build the RF model based on the
optimal feature set to estimate the grassland AGB and then recalculate the model’s accuracy
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by inputting the training and test sets with specific spatial and temporal segmentation,
respectively. The final step was to analyze the spatial–temporal scalability and uncertainty
of the model.

Figure 2. Flowchart of the grassland AGB estimation and analysis.

3.2. Recursive Feature Elimination

RFE is a feature selection method that considers smaller feature sets by recursion. First,
the initial feature set is trained to estimate the importance of each feature obtained by any
specific algorithm. In this study, two algorithms—impurity and permutation importance—
were used to calculate the feature importance (see Section 3.3 for details). Then, the feature
with the lowest feature importance score is deleted from the current feature set. This
process is repeated recursively on the pruned set. The calculation stops when the feature
set reaches a predefined number of features. The procedure of the RFE algorithm is shown
in Figure 3.

3.3. Feature Importance

Feature importance is the extent to which a feature is relevant to the target variable.
It can be calculated in several ways. The RF algorithm has built-in feature importance
computed by the index “Gini importance”. It is defined as the total impurity reduction of
all nodes averaged over all ensemble trees [44,45]. The biggest advantage of this method is
that all feature importance can be calculated during the random forest training. The disad-
vantage of this method is that it tends to select numerical features with high cardinality.
Moreover, it selects one of the features and ignores the importance of the second in the case
of having relevant features, which may lead to the wrong conclusions.
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Figure 3. The procedure of the RFE algorithm.

Permutation-based importance [46,47] can override the drawbacks of default feature
importance calculated by the mean decrease in node impurity. The calculation steps of
permutation importance are as follows: First, an initial score is evaluated on a dataset
consisting of the original features. Next, the scores are evaluated again by randomly cor-
rupting the value of a feature and permuting the corresponding feature columns on the test
set, keeping the target variable and other features unchanged. The difference between the
initial score and the scores in the permutating feature columns is defined as the permutation
importance. In this study, we weighted the permutation importance of all features so that
their permutation importance would add up to 1 to make the impurity importance and the
permutation importance comparable. We repeated the above two methods 1000 times to
calculate the average values as the ultimate feature importance scores.

3.4. Cubist

Cubist is a rule-based regression tree algorithm and an extension of the M5 model
tree [48]. The algorithm generates rule-based models with one or more rules, each rule
containing a set of criteria associated with a multivariate linear submodel. Each linear
model is a “leaf” of Cubist. Therefore, the Cubist model is efficient and easy to understand.
The number of rules was set to 500 in this study.



Remote Sens. 2022, 14, 5321 8 of 16

3.5. GBRT

The Gradient Boosting Regression Tree (GBRT) is an ensemble learning model. This
algorithm combines multiple regression trees to generate a gradient-enhanced estimation
model [49]. These regression trees are arranged in a string. The GBRT is designed to first
fit the data with the first regression tree and calculate the residuals between the fitted
results and the true values. The second regression tree then continues to fit the residuals
in the previous step to reduce the residuals between the overall fitted values and the true
values. The number of iterations depends on the number of regression trees. The number
of estimators was set to 1000 and the learning rate was set to 0.1.

3.6. RF

The random forest (RF) regression algorithm belongs to the bootstrap aggregation
method of an ensemble learning algorithm in which multiple random regression trees
are combined to achieve better regression accuracy [50]. These regression trees randomly
extract data from the training set and vote equally to obtain an average as the final result.
The regression trees in the RF are parallel and constructed by random vectors that are
sampled independently. The RF is widely used in AGB estimation due to its advantages of
processing high-dimensional vectors, reducing over-fitting, fast training speed and noise
immunity to a certain extent. The result of the model is obtained by averaging the results
of all regression trees. Theoretically, the larger the number of regression trees, the lower
the impact of extreme cases on the true results. Therefore, we set the number of regression
trees to 1000, and each split had at least two variables [51,52].

3.7. XGBoost

The eXtreme Gradient Boosting (XGBoost) is an extension of GBRT and also an ensem-
ble learning model by stringing multiple regression trees. In contrast to GBRT, XGBoost
introduces a second-order Taylor formula, while GBRT uses first-order derivatives. In addi-
tion, XGBoost can correct the residuals and create a new tree based on the previous tree [53].
The number of estimators was set to 1000 and the learning rate was set to 0.055.

3.8. Estimation Accuracy Evaluation

The accuracy of the model was assessed by using independently observed AGB field
measurements. The entire sampling plots were randomly separated into two sets without
any overlap, with one set serving as the training set and the other as the test set. The sample
plots used as the training and test set were distributed in all months and regions. Model
evaluation was performed using regression statistics, including coefficient of determination
(R2), root mean square error (RMSE), Lin’s concordance correlation coefficient (LCCC)
and the ratio of performance to deviation (RPD).

R2 = 1−
n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − yi)
2 (1)

RMSE =

√
n

∑
i=1

(yi − ŷi)2/n (2)

where yi is the observed AGB value, ŷi is the predicted AGB value, y is the arithmetic mean
of all the observed AGB values and n is the number of samples in the training or test set.
In general, a higher R2 value and a lower RMSE value indicate that the model has better
estimation performance.

The LCCC determines the predicted distance on a 45-degree line from the origin to
the measured data.

LCCC =
2sxy

s2
x + s2

y + (x− y)2 (3)
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sxy =
1
N

N

∑
n=1

(xn − x)(yn − y) (4)

where x and y are the means for the predicted and observed AGB values, s2
x and s2

y are the
corresponding variances and N is the number of samples in the validation dataset. The
level of predicted agreement was evaluated according to Rossel et al. [54], where LCCC = 1
indicates perfect agreement. An LCCC value > 0.9 indicates excellent agreement, while a
value between 0.80 and 0.90 indicates good agreement. An LCCC value between 0.65 and
0.80 indicates moderate agreement, and an LCCC < 0.65 indicates poor agreement.

Prediction accuracy is assessed using the ratio of performance to deviation (RPD),
which is calculated as the ratio of the standard deviation (SD) to the RMSE, as follows:

RPD =
SD

RMSE
(5)

According to Rossel et al. [55], the RPD can be graded as excellent (>2.5), very good
(2.0–2.5), good (1.8–2.0), fair (1.4–1.8) and poor (<1.4) prediction accuracy.

4. Results and Discussion
4.1. Spatial Distribution Grassland AGB from All the Sampling Plots

Figure 4 illustrates the spatial distribution of the measured grassland AGB from 2019
to 2021 on the Tibetan Plateau. The AGB values range from 6.47 g/m² to 602.23 g/m²,
the median value is 59.46 g/m² and the average value is 97.41 g/m². There were 96 (44.04%)
sampling plots with AGB values less than 50 g/m² and 149 (68.35%) sampling plots less
than 100 g/m². The sampling plots were scattered in the northeastern and southwestern
parts of the Tibetan Plateau, with the Qaidam Basin and the southern slopes of the Qilian
Mountains in the northeast and the sampling plots in the southwest, mainly along the
National Highway G317. In the northwestern part of the Tibetan Plateau are the Hoh
Xil region and the Qiangtang Plateau, where the harsh environment makes it difficult to
conduct ground surveys, and the main land cover type in the southwestern part is forest,
with relatively few sampling plots. The high-value sampling plots of AGB are mainly
concentrated in the eastern part of the Tibetan Plateau, and the value of AGB gradually
decreases from east to west.

4.2. Feature Importance

The feature importance scores were investigated by the total decrease in node impuri-
ties and the mean decrease in permutation accuracy (Figure 5). The distributions of feature
importance scores calculated by the impurity and permutation importance for RF models
were not similar. Feature importance scores based on the permutation importance are more
concentrated on a few features, with the top five contributing more than 60%. In contrast,
feature importance scores based on impurity importance are more evenly distributed,
with eight features required to achieve the same contribution. However, the importance
score of the temperature variable ranked first in both feature importance methods, implying
that the grassland AGB estimation may be highly sensitive to temperature. Additionally,
two feature variables related to canopy water content, NDPI and NDII, also ranked high in
both feature importance calculation methods (ranked 2nd and 3rd for impurity importance,
ranked 3rd and 4th for permutation importance, respectively).



Remote Sens. 2022, 14, 5321 10 of 16

Figure 4. The spatial distribution of the measured grassland AGB values on the Tibetan Plateau
during 2019 to 2021, including 218 sampling plots.

Figure 5. The feature importance scores based on impurity importance and permutation importance.

4.3. Performance of Feature Selection

The RFE algorithm based on impurity importance and permutation importance was
used in the feature selection. Figure 6 illustrates how the R2 values and RMSE values
vary with the number of selected features of RF models on the training and test sets. Each
line represents an individual model’s R2, and the bar at the bottom of the chart is its
corresponding RMSE.

For the training set, the models’ accuracies based on the two feature importance
methods varied little, with R2 ranging from a minimum of 0.86 to a maximum of 0.93,
and RMSE from a maximum of 36.97 g/m2 to a minimum of 25.27 g/m2. The accuracy of
the models on the training set gradually rose and eventually saturated as the number of
features increased. For the test set, the results of the two models differed. The accuracy of
the impurity importance-based model remarkably increased until it reached two features
and then gradually stabilized and reached the maximum accuracy when the number of
features reached 10. The accuracy of the permutation importance-based model increased
incrementally with the number of features until the maximum accuracy was reached at five
features. Then, the accuracy decreased slightly but the R2 was still above 0.8.

Comparing the two feature importance algorithms, the permutation importance-based
model achieved the highest accuracy with fewer input features (5 features); so, it was
superior to the impurity importance-based model in this study.
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Figure 6. The performance of the AGB estimation models with the selected feature number changes
based on the impurity and permutation importance. The left vertical axes (curves) and right vertical
axes (bars) indicate the R² and RMSE of the estimation models. (a,b) show the model performance on
the training and test sets, respectively.

4.4. Evaluation of AGB Models

Two RF models with the highest accuracy based on the impurity and the permutation
importance were obtained by the RFE algorithm. For impurity importance, model accuracy
reached a maximum of 0.8585 when the number of features reached 10 (T, NDPI, NDII,
DVI, elevation, B4, PDSI, slope, EVI and Pr). For permutation importance, the maximum
model accuracy value is 0.8838 when the number of features is 5 (T, elevation, NDPI, NDII
and PDSI). Therefore, we choose the features based on the permutation importance as the
input parameters of the models.

The performance of the Cubist, RF, GBRT and XGBoost models on the test set was
expressed as scatter plots that showed the relationship between the estimated AGB values
and the observed AGB values (Figure 7). As shown in the figure, the RF model (Figure 7c:
R2 = 0.8838, RMSE = 35.05 g/m2, LCCC = 2.44, RPD = 0.91) performs better than the Cubist
(Figure 7a: R2 = 0.6221, RMSE = 63.22 g/m2, LCCC = 1.06, RPD = 0.72), the GBDT (Figure 7b:
R2 = 0.8318, RMSE = 42.17 g/m2, LCCC = 2.18, RPD = 0.89) and the XGBoost (Figure 7d:
R2 = 0.8272, RMSE = 42.74 g/m2, LCCC = 1.99, RPD = 0.88) model. It is worth noting that
the underestimation of AGB in the high-value range and the overestimation of AGB in the
low-value range by both models are still inevitable. Therefore, the RF model based on T,
elevation, NDPI, NDII and PDSI is considered to be the optimal model for estimating the
grassland AGB of the Tibetan Plateau.



Remote Sens. 2022, 14, 5321 12 of 16

Figure 7. Scatter plots of the estimated and observed AGB based on (a) the Cubist, (b) the GBDT,
(c) RF and (d) the XGBoost model using the test set.

4.5. Advantages of S2 Images and S2-Derived VIs in Estimating Grassland AGB

The implicit premise of applying remote sensing to invert surface parameters is that
different ground objects or the same object in different growth states have different spectral
characteristics. Specifically, they may have different reflectance in different wavelength
bands. The spatial resolution of MODIS data used in previous studies is coarse, with a
resolution of 500 m. There is a high potential for mixed image pixels, where different types
of objects exist within a single image pixel, in the Tibetan Plateau region, where the ground
cover is fragmented, and the grassland heterogeneity is large. In this study, we used S2
images with a spatial resolution of 10 m (bands 2, 3, 4 and 8) and 20 m (bands 5, 6, 7, 8A, 11
and 12) to reduce the negative impact of mixed pixels.

Second, the spatial complexity of features is often reflected in the spatial structure of
features, the radiometric properties of features themselves and the differences in vegetation
components, resulting in quantitative remote sensing products with scale effects. The spa-
tial scale effect in quantitative remote sensing science is defined as the same area, the same
time, the same remote sensing model, the same kind of remote sensing data and the same
imaging conditions but the difference in resolution leads to inconsistency in remote sens-
ing inversion surface parameters. In the ground survey experiment, the sample size is
1 m × 1 m, which is much smaller than the size of a MODIS image pixel (500 m × 500 m).
The pixel size of the S2 used in this experiment is 10 m × 10 m and 20 m × 20 m, which
is still larger than the area of one sample. Still, it greatly improved the problem of spatial
heterogeneity differences and scale effects between sample data and satellite data. Our
results showed that the estimation model based on the S2 images had an accuracy of 0.8838,
which indicates that S2 images have an advantage in estimating grassland AGB.
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4.6. Influence of Features on Grassland AGB

T, elevation, NDPI, NDII and PDSI were eventually selected as input features for the
RF model. NDPI has two major advantages in the estimation of grassland AGB [36]. First,
NDPI is highly sensitive to vegetation, and many types of soil have NDPI values close to
zero. Therefore, NDPI can alleviate the negative effects of heterogeneous soil background
on AGB estimation in grasslands. Second, NDPI contains the SWIR band. Water absorption
is significantly increased in SWIR. Therefore, NDPI is sensitive to leaf water content and
can capture the change in leaf water content [36]. NDII is a vegetation index that is sensitive
to changes in plant canopy water content. It is also a valid indicator of water storage in the
root zone of vegetation during water deficit and a strong indicator for assessing drought [35].
The values of NDII increase with increasing water content. PDSI is based on the principle of soil
water balance and is used to characterize the deficit of actual soil water supply in an area at a
certain time relative to the local climate suitable water supply [56]. Precipitation is usually used
to replace the water supply, and the calculation of water demand involves evapotranspiration
and soil moisture changes. The selection of NDPI, NDII and PDSI implies that grassland AGB is
significantly influenced by leaf water content and drought conditions, which is consistent with
the results of [6,57]. T represents the monthly average temperature. The feature of elevation
has a high feature importance score, indicating that there are obvious differences in the AGB
vertical distribution on the grasslands of the Tibetan Plateau. In summary, temperature, altitude,
humidity and leaf water content greatly affect grassland AGB, and features associated with
these factors play an important role in estimating grassland AGB.

4.7. Limitations and Future Works

This study shows that although the RF model based on T, elevation, NDPI, NDII
and PDSI performs well in improving the accuracy of grassland AGB estimation model
(R2 = 0.8838, RMSE = 35.05 g/m2, LCCC = 2.44, RPD = 0.91), the accuracy of the model is
still influenced by a few factors. First, the dates of the field measurements may not match
the dates of the remotely sensed images. S2 products have a temporal resolution of 5 days,
and some of these image products cannot be used due to cloud cover. Although we selected
the image nearest to the field measurement date, it may still not reflect the true AGB of the
sampling date, even though the change in AGB between the sampling date and the date of
the S2 product may not be significant. In the future, we will consider fusing multisource
remote sensing images to reduce the discrepancy between time phases.

Second, the RF model used in this study is a data-driven ensemble learning model.
The data-driven model is very sensitive to data, and its performance usually depends on
the quantity and distribution of data. Due to the harsh natural conditions and limited
transportation conditions, the number of sampling plots distributed in the western Tibetan
Plateau is significantly less than that in the densely populated eastern region. As a result,
the model’s training data are uneven in the spatial distribution of the Tibetan Plateau.
The model learns prior information about the proportion of samples in the training set so
that it may pay more attention to the regions with a larger number of sampling plots in the
actual prediction. The uneven spatial distribution of the sample plots affects the model’s
ability to learn essential mapping relations between AGB and input features and reduces
the model’s spatial scalability.

Third, different grassland types have diverse characteristics, and the data used in this
study do not contain the feature of grassland types as the current amount of sampling data
in this study is not enough to support modeling according to different grassland types. We
had a total of 218 available data, and after grouping by different grassland types, 48, 58 and
112 data were available for alpine desert, alpine grassland and alpine meadow, respectively.
Since the random forest algorithm is a data-driven algorithm, the amount of data is very
important to the results. Only by ensuring that the amount of data is sufficient can we
ensure that the model results are stable and reliable. In addition, the field measurements
in this study were all from the growing season of the grassland. Lack of data reduced
the temporal scalability of the model and limited the model’s accuracy in estimating AGB
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in nongrowing seasons. In future studies, we will conduct ground surveys and expand
the number of sample plots in the regions with sparse sampling plots and during the
nongrowing season to improve the model accuracy.

Besides, the highly complex topographic factors of the Tibetan Plateau, such as its
varied slope and aspect, have an effect on the reflectance of the grassland, which may affect
the data received by the remote sensor and make the values of vegetation index biased.
These errors would eventually affect the accuracy of the AGB model. In future work, we
will strive to integrate machine learning algorithms and physical models or process-based
biogeochemical models [58], enhance model interpretation and reduce the influence of
terrain factors to build better models for AGB estimation.

5. Conclusions

In this study, we selected 10 S2 bands, 10 S2-derived VIs, 218 pieces of AGB field
survey data, four types of meteorological data and three types of topographic data as the
alternative input features of the model. The RFE algorithm based on two feature impor-
tance algorithms (impurity importance and permutation importance) was used to find
the optimal feature set. Then, we compared the performance of the Cubist, GBRT, RF
and XGBoost algorithms. The results showed that the RF model based on the feature set
of T, elevation, NDPI, NDII and PDSI performed best (R2 = 0.8838, RMSE = 35.05 g/m2,
LCCC = 2.44, RPD = 0.91). The results of feature selection indicate that features associ-
ated with temperature, altitude, humidity and leaf water content significantly influence
grassland AGB. To achieve more accurate estimation results, more sampling plots need
to be collected in the sparse area and during the no-growing seasons. Moreover, physical
models and process-based biogeochemical models can be introduced to reduce the impact
of terrain.
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