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Abstract: Multispectral image change detection is an important application in the field of remote
sensing. Multispectral images usually contain many complex scenes, such as ground objects with
diverse scales and proportions, so the change detection task expects the feature extractor is superior
in adaptive multi-scale feature learning. To address the above-mentioned problems, a multispectral
image change detection method based on multi-scale adaptive kernel network and multimodal
conditional random field (MSAK-Net-MCRF) is proposed. The multi-scale adaptive kernel net-
work (MSAK-Net) extends the encoding path of the U-Net, and designs a weight-sharing bilateral
encoding path, which simultaneously extracts independent features of bi-temporal multispectral
images without introducing additional parameters. A selective convolution kernel block (SCKB)
that can adaptively assign weights is designed and embedded in the encoding path of MSAK-Net
to extract multi-scale features in images. MSAK-Net retains the skip connections in the U-Net, and
embeds an upsampling module (UM) based on the attention mechanism in the decoding path, which
can give the feature map a better expression of change information in both the channel dimension
and the spatial dimension. Finally, the multimodal conditional random field (MCRF) is used to
smooth the detection results of the MSAK-Net. Experimental results on two public multispectral
datasets indicate the effectiveness and robustness of the proposed method when compared with other
state-of-the-art methods.

Keywords: multispectral images; change detection; convolution kernel; multi-scale adaptation

1. Introduction

Change detection technology is used to identify and extract information from two
or multiple temporal images in the same area at different times [1]. Due to the increasing
frequency of changes in human activities, timely analysis of changes in surface ecology is
of great significance to the rational development of environmental resources [2]. Change
detection technology has become an important task in the field of remote sensing [3].
Relying on the advancement of spectral imaging technology, we can obtain multi-temporal
spectral images more conveniently, which further promotes the development and practical
engineering application of change detection in related research fields [4]. The multispectral
image-based change detection technology has been widely used in different disciplines
such as the military, agriculture, environment, and urban planning [5].

In early multispectral change detection research, the information of independent pixels
or adjacent pixels was mainly used to discriminate the change area [6]. For example, Bovolo
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et al. proposed a change vector analysis method (CVA), which calculates the degree of
change through the size and direction of the pixel vector between different phases, and
obtains the change intensity map, and finally according to the threshold segmentation to
determine the changing areas [7]. Multivariate change detection (MAD) and its improved
iterative weighting method (IR-MAD) detect change pixels by maximizing the difference
of change vectors through canonical correlation analysis [8,9]. Wu et al. proposed a
new slow feature analysis theory, which attempts to find pixels with a small degree of
change in multi-temporal images [10]. L. Bruzzone et al. treated the image data as a
Markov random field (MRF) model [11]. Each pixel can be seen as a random variable,
and its state is related to the gray value of the field pixel. Thus, the spatial domain
information is used, and an iterative algorithm is used to calculate the final converged
change detection result. For MRF, in the global probability framework, the neighborhood
system is used to model the interaction of adjacent pixels. However, MRF is modeled under
the assumption of independence, which leads to over-smoothing problems [12]. In order
to overcome this problem, Hoberg et al. [13] introduced conditional random field (CRF)
into classification and change detection. Zhao et al. [14] proposed a classification algorithm
based on conditional random field. By modeling the probability potential, the spectral
clues can provide basic information for distinguishing various types of land cover. The
pair-wise potential considers the spatial context information by establishing the adjacent
interaction between pixels, which is beneficial to spatial smoothing. Although MRF can
solve some problems of salt-and-pepper noise, because it does not have the limitation of
remote dependence, it will lead to inaccurate edge location. Fully connected conditional
random field (FC-CRF) overcomes this problem, fix fine mis-segmented areas, and obtain a
more detailed segmentation boundary by establishing the connection relationship between
all pixels in the image [15,16]. On the other hand, the above method based on conditional
random field only considers a single piece of difference information to construct the pair-
wise potential function, which easily causes the lack of information.

These classical methods only use the original shallow features and have poor detection
performance in the face of complex scenes [17]. The high spatial resolution of multispectral
images results in complex ground object details, and a complex environment brings more
challenges to change detection [18–20].

Deep neural networks were recently shown to be suitable for handling detection
tasks in such complex scenes [21,22]. Since the input of the change detection task is multi-
temporal data, one of the most common network structures is to use the Siamese neural
network to input images of different phases into multiple sub-networks with the same struc-
ture, and then integrate the sub-network extraction through subsequent networks to obtain
the final change detection result. For example, Zhang et al. [23] used two sub-networks
with shared weights to extract high-dimensional features of image patches in different
phases, respectively, and then used a multilayer perceptron to discriminate the changes of
the features extracted from different image patches. This Siamese network is a late fusion
method, which extracts features from multi-temporal images, respectively, and then inputs
the extracted features into another network in a certain combination to identify changing
features. Another common method is early fusion [24,25], which is to superimpose data of
different phases first, and then input it into a deep network for end-to-end change detection.
The network structure used is generally a fully convolutional network (FCN) [26]. The FCN
uses multiple upsampling and downsampling layers to directly output the changing binary
image, and this structure allows its input size to be arbitrary. Rodrigo [27] designed three
change detection networks to study the effect of early fusion and late fusion on change
detection results, and summarized the change detection scenarios and tasks that different
network structures are suitable for. Chen et al. [28] proposed a novel fully convolutional
network that uses a long short-term memory network (LSTM) to extract time-varying infor-
mation, which enhances the use of features and achieves good results on urban datasets.
Kusetogullari et al. [29] proposed a parallel binary particle swarm optimization (PBPSO)
algorithm. First, the difference image is calculated by multi-temporal multispectral image
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fusion, and the difference image is manipulated by PBPSO algorithm through iterative
minimization of cost function to produce the final result. Hou et al. [30] directly used the
pre-trained VGG-16 network as a feature extraction extractor for multi-temporal images.
Liu et al. [31] proposed a new change detection method using convolution neural network
to extract change features under the framework of object-based image analysis (OBIA).
This method combines deep learning technology and OBIA technology, and effectively
improves the detection effect and accuracy. The above methods based on deep learning
only use a single size convolution kernel to extract features. However, multispectral images
often contain many different land covers, such as buildings, vehicles and pedestrians, and
these objects are often displayed at different sizes in the image. Therefore, more robust
multispectral image change detection methods often require the ability to detect objects at
multiple scales.

Due to the development of convolutional neural networks, multi-scale feature extrac-
tion is possible. For example, Chen et al. [32] added a multi-scale convolution module to
the Siamese network in order to extract multi-scale features in complex ground objects.
Compared with traditional single-scale features, this module can extract multi-scale fea-
tures. The spatial spectral features of the neural network are refined by the conditional
random field (CRF) to obtain more accurate change results. Song et al. [33] used transfer
learning and recurrent fully convolutional networks with multiscale three-dimensional (3D)
filters, which can extract meaningful features better and improve the detection accuracy.
Zhang et al. [34] proposed a Siamese change detection method called SMD-Net, which used
multiscale difference maps for stepwise enhancement of information in change regions.
The results show that the method has excellent performance in detecting object integrity,
small object detection and object edge detection. Several of the above methods showed
that the multi-scale feature extraction capability can be very helpful for change detection.
However, for a multispectral image, different scales have different percentages. Therefore,
it is necessary to consider assigning adaptive weights to different scales when extracting
features, so as to obtain finer multi-scale features.

Since Volodymyr [35] applied the attention mechanism to the field of computer vision,
scholars from various countries have been interested in it. For example, Zhang et al. [36]
first used a fully convolutional dual-stream structure to extract highly representative deep
features in parallel, and used the attention mechanism in the feature difference recognition
module to enhance the feature expression, and the whole method of deep supervision
training was used to enhance the network performance. Peng et al. [37] proposed a dense
attention method consisting of multiple upsampling attention units in order to model
the internal correlation between high-level features and low-level features. The method
employed both upsampling spatial attention and upsampling channel attention, and could
use high-level elements with rich category information to guide the selection of low-level
elements, as well as spatial contextual information to capture the changing elements of
ground objects. Fang et al. [38] proposed a densely connected Siamese network (SNUNet)
and an ensemble channel attention module (ECAM) for in-depth monitoring. Through
ECAM, the most representative features at different semantic levels can be extracted and
used in the final classification. Chen et al. [39] proposed a spatial-temporal attention neural
network and designed a self-attention mechanism to simulate the spatial-temporal relation-
ship. The experimental results show that the self-attention module can well suppress the
false detection caused by registration errors in bitemporal images, and is more robust to
the changes of color and scale. These examples show the effectiveness and reliability of
the attention mechanism. Spatial attention can focus on the areas related to the detection
task in the image, while channel attention enhances or suppresses different channels for
different tasks by calculating the importance of each feature channel. Therefore, the spatial
channel joint attention gives the feature map a better expression of change information in
both the channel dimension and the spatial dimension [40].
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Multispectral images with high spatial resolution have rich detail of ground objects,
and changing objects may show different scales. Compared with the feature extraction
module using a single-scale convolution kernel, extracting more representative multi-scale
change features in multispectral images can better maintain the structural integrity of the
change region. For different change scenarios, the detection network assigns different
weights to convolution kernels of different scales to extract features without human partici-
pation, which is very meaningful. Another limitation is that the deep neural network will
lose part of the original image information during the information transfer process, which
leads to inaccurate positioning of the detected boundary of the changed region, and requires
subsequent processing techniques to solve the problem of small-scale misclassification and
refine the classification boundary. The method based on FC-CRF can solve this kind of
problem, but only consider the single difference information when constructing pair-wise
potential function will cause the lack of information. Therefore, it is necessary to consider
the use of multimodal differential information to construct the pair-wise potential function.

According to the above analyses, a multispectral image change detection method
based on multi-scale adaptive kernel network and multimodal conditional random field
(MSAK-Net-MCRF) is proposed. Facing the complex environment of multispectral images,
a selective kernel convolution block is used to extract spatial features of different scales,
which has convolution branches with different sizes of convolution kernels and can enhance
the feature extraction capabilities of the network. At the same time, the neural network
assigns an automatically learned convolution kernel weight to each convolution branch
to measure the importance of features at different scales. Then the attention model is
used to selectively enhance and filter the fusion of shallow features and deep features
in the network. Finally, use the multimodal conditional random field to subdivide the
detection results of the neural network, refine the boundary information of the change
object, and obtain more accurate change detection results. The contributions of this paper
are summarized as follows:

(1) A multispectral image change detection framework based on multi-scale adaptive
kernel network (MSAK-Net) is designed, which is an encoder-decoder architecture.
The framework extends the U-Net bilaterally and retains the jump connection. The
encoding path effectively mines the multi-scale deep features in the original image.
An attention mechanism is introduced into the decoding path to enhance the use of
useful information. After that, the multimodal conditional random field is used to
post-process the network results to refine the classification boundary.

(2) A selective convolution kernel block (SCKB) is designed to fully exploit the complex
spatial features in multispectral images. SCKB assigns an adaptive weight to the
convolution branches of different scales to obtain better multi-scale features. In
addition, the designed upsampling module is embedded in the decoding path, which
uses the attention mechanism to integrate the change information and improve the
use of the useful information of the task.

The rest of this paper is organized as follows. In Section 2, the proposed method
is represented in detail. In Section 3, we describe the datasets and the environmental
conditions of the experiments. In Section 4, we carry out experiments and analyze the
experimental results in detail. Then, in Section 5, we explain in detail the impact of various
parts of the network on the results. Finally, conclusions are drawn in Section 6.

2. Methodology

In this section, the overall architecture of the proposed change detection method is
elaborated first. Subsequently, we introduce the structure of the MSAK-Net in detail. Finally,
we provide a detailed account of the proposed multimodal conditional random field.

2.1. The Framework of the Change Detection Algorithm

To effectively extract adaptive multi-scale features, resolve small range misclassifica-
tion, and refine classification boundaries, a multispectral image change detection algorithm



Remote Sens. 2022, 14, 5368 5 of 24

is proposed, whose framework is shown in Figure 1. The first step is to use sample equal-
ization and sample augmentation to reduce the impact of sample imbalance on MSAK-Net.
The second step trains MSAK-Net in an end-to-end manner and outputs a change proba-
bility map. The third step is to construct the unary potential function and the pair-wise
potential function of fully connected conditional random fields (FC-CRF) with change
probability map and multimodal difference map. The multimodal conditional random field
is used to fully consider the correlation information between pixels, and change detection
result is obtained.

Figure 1. The pipeline of the change detection algorithm.

The loss function of MSAK-Net using weighted cross-entropy loss is:

Loss =
1
N

N

∑
i=1
−ti log(yi)wc − (1− ti) log(1− yi) (1)

where ti represents the label of the ith pixel. When the ith pixel belongs to the changing
pixel, ti is 1, otherwise ti is 0. yi represents the prediction result of MSAK-Net for the
ith pixel, because the activation function of the last layer of the network is Sigmoid, so
the value of yi is a probability between zero and one. The larger the yi, the greater the
probability that MSAK-Net considers the pixel to belong to the changing area. On the
contrary, 1− yi represents the probability that MSAK-Net predicts a non-changing pixel.
It can be seen from the above formula that the optimization process of cross entropy is
to increase the predicted probability yi of the change pixel corresponding to ti = 1, and
increase the predicted probability 1− yi of the non-change pixel corresponding to ti = 0. wc
is the class weight, which is generally the ratio of the number of non-changing samples to
the number of changing samples, usually a value greater than 1. We first set it empirically
to 5. In Section 5.3, we detail the effect of this weight parameter on the experimental results
The weighted cross-entropy is to give a class weight when calculating the cross-entropy of
the change class samples with a small number of samples. In this way, the cross entropy
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calculated by the change samples is larger, which makes the network pay more attention to
the change samples, and can improve the recall rate of detection.

2.2. The Architecture of the MSAK-Net

Since change detection can be treated as a binary image segmentation, MSAK-Net
adopts U-net as the backbone, which is an advanced image segmentation network. U-Net
is divided into encoding path and decoding path, but the single encoding path limits the
full use of original information from dual-temporal multispectral images. Some scholars
extract the difference information, merge the dual-temporal multispectral images into
a single difference features map, and then perform deep feature extraction through the
encoding path. Another method is to superimpose the dual-temporal multispectral images
along the channel dimension, and then input the encoding path. In order to preserve the
original features of the dual-temporal multispectral images, we extend the encoding path
of the U-Net. A weight-sharing bilateral encoding path is designed to extract independent
features of two images without introducing additional parameters. The encoding path
consists of four layers of convolutional modules, and the architecture of MSAK-Net is
shown in Figure 2. The first two convolutional modules map the original image space
into a high-dimensional feature space and consist of two convolutional layers with 3× 3
convolution kernels and a batch normalization layer. The next two layers of convolutional
networks use two consecutive SCKBs to extract rich multiscale features, and then a batch
normalization layer is used to prevent overfitting. A max pooling layer is set between
every two layers convolutional module to filter out robust high-dimensional features. Each
convolutional modules reduces the resolution of the output feature map to half of the input
feature map, but doubles the number of channels.

Figure 2. Architecture of the proposed MSAK-Net.

The decoding path consists of four upsampling modules (UM) introduced in Section 2.4.
Our proposed change detection framework preserves skip connections in U-Net networks.
The shallow features and deep features are superimposed along the channel dimension and
handed over to the subsequent channel attention for channel reorganization. The input of
the first upsampling module is the superposition of the results of the two encoding paths.
The input features of the latter three upsampling modules are directly superimposed by the
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output of the previous upsampling module and the output features of the two encoding
paths of the same level. In contrast to the change of feature maps in the encoding path,
each upsampling module in the decoding path doubles the feature map resolution. The
output features of the last upsampling module go through a convolutional layer with a
1× 1 convolution kernel to adjust the number of channels of the final change detection map.

In the MSAK-Net, all convolutional layers use the ReLU activation function to alleviate
the gradient disappearance, except that the last convolutional layer in the decoding path
uses the Sigmoid activation function to calculate the probability intensity of the change map.

2.3. Selective Convolution Kernel Block

In response to the above situation, some scholars proposed using the Inception network
to extract spatial features of different sizes [41]. The main idea of the Inception network is
to improve the network performance by increasing the width of the network. The network
uses 1× 1, 3× 3, and 5× 5 convolution kernels to extract features of different scales, and
finally fuses multi-scale features through concat operation. Because the weights of each
branch in the Inception network are the same, the network pays the same attention to
features of different sizes. However, an appropriate weight allocation strategy should
depend on the application scenario. Focusing on the above issues, we adopted a selective
convolution kernel block (SCKB) to extract multi-scale features with adaptive weights from
multispectral images. The structure of SCKB is shown in Figure 3.

Figure 3. Illustration of SCKB.

The SCKB is divided into three convolution branches, each of which includes a convo-
lution layer, a batch normalization layer, and an activation layer. The size of the convolution
kernel in each convolutional layer is 3× 3, 5× 5 and 7× 7, respectively, corresponding
to different receptive fields, which are used to extract features of three sizes. Suppose the
input feature map is F, and the three sizes of feature maps are U1, U2, and U3. Before
calculating the weight of the convolution kernel, it is necessary to integrate the feature
information of the three branches. The calculation formula of the multi-scale feature map
U is:

U = [U1; U2; U3] =
[
Conv3×3(F); Conv5×5(F); Conv7×7(F)

]
(2)

Assuming that the size of the input feature map F is (w, h, c), the size of the deep
features obtained by the three convolution branches remains unchanged. These three deep
features are superimposed on the channel dimension through the concat operation to obtain
a multi-scale feature U with a size of (w, h, 3c). The global information is encoded by global
average pooling, and then a one-dimensional feature vector S is generated. The cth element
of the feature vector S is calculated as follows:

Sc = Avg Pool(U) =
1

h× w

h

∑
i=1

w

∑
j=1

Uc(i, j) (3)

Then two 1D convolutions are introduced to fuse all the statistical information to
merge the interdependence between the channels in the feature vector S, thereby enhancing
the information expression of the feature map of a certain scale. There is dimension scaling
in the above process, and the output of the second 1D convolution is reshaped into a
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score matrix of size (3, c). The score matrix is mapped into a weight coefficient matrix
through Softmax calculation, and the sum of the three values in each column is one, which
corresponds to the weight of the output results of the three convolution kernels at the
channel. The weight coefficient matrix is obtained by the network through learning, and
automatically assigns the most appropriate weights to the multi-scale features of three
different convolution kernels. Finally, the weighted value of each feature map and the
corresponding weight is calculated to obtain multi-scale fusion features.

The SCKB automatically adjusts the weights assigned to the three multi-scale features
U1, U2, and U3 according to different application scenarios, thus enabling the network to
choose the most appropriate convolution kernel size.

2.4. Attention Module-Based Upsampling Unit

Although CNN can extract rich high-dimensional features from multispectral images,
not all high-dimensional features contain useful change information, and irrelevant high-
dimensional features can also bring challenges to change detection. In addition, in order to
improve the use of information and prevent the loss of detailed information, U-Net use skip
connections to reorganize the shallow features in the encoding path and their corresponding
deep features in the decoding path [42]. However, a large number of features unrelated to
change detection are also present in the shallow features with local information. Therefore,
Attention Module (AM) is introduced to enhance the use of useful information. The AM is
inspired by the perceptual process of the human visual system. The essence of AM is to
make the network learn an attention weight. The weight corresponding to the important
feature is larger, and the subsequent network will give it more attention. We added the
Channel Attention Mechanism (CAM) and the Spatial Attention Mechanism (SAM) to the
upsampling module of the U-Net, and designed an attention module-based Upsampling
Module (UM).

An illustration of the UM is shown in Figure 4. The channel attention mechanism can
filter the relevant feature channels containing changing information in shallow features
and deep features, and suppress the feature expression of channels containing redundant
information. Since the input features of the UM are obtained by simple channel stacking
of shallow features and deep features, it is first necessary to use CAM to optimize the
channel dimension of the input features. The importance of each channel is encoded in
a one-dimensional channel weight vector, and the weight coefficient of each channel is
automatically learned by the network. The specific calculation process is as follows:

Mc = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (4)

Here, F represents the input feature, and Mc represents the weight vector of channel
attention mechanism. First, perform max pooling and average pooling on the spatial
dimension of F, and obtain two feature vectors with the same length as the number of
channels in F. The feature vectors extracted by the two pooling operations are different. The
max pooling is to obtain the most distinguishing features on each channel, and the average
pooling is to calculate the global information of each channel. The two feature vectors are
fed into a multilayer perceptron (MLP), respectively, and then the two output results are
added at the pixel level. The addition result is mapped to a weight vector between zero
and one by the Sigmoid activation function, and the value on each weight vector represents
the importance of the corresponding feature channel. Fc

o is used as the output feature after
CAM optimization, the optimization method of the final reorganization feature of channel
attention mechanism is as follows:

Fc
o = F⊗Mc (5)

Here,⊗ is an element-wise multiply operation. Before the deep features are transferred
to the next upsampling module, in order to enable the transposed convolutional layer
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to learn more significantly changing features from the feature map, a spatial attention
mechanism is used to optimize and reorganize the feature map in pixel dimension.

Similar to CAM, SAM encodes the information at each pixel position in the input
feature, and the network adaptively learns the spatial attention map. The structure of the
spatial attention mechanism is shown in the SAM dotted box in Figure 4. The calculation
method of the spatial attention map is as follows:

Ms = σ(Conv 2D([AvgPool(F); MaxPool(F)])) (6)

where F represents the input feature and Ms represents the spatial attention map. Simi-
lar to CAM, the input features are first encoded, average pooling obtains global information,
and max pooling extracts robust information. Both pooling operations are one-dimensional
pooling in the channel dimension, and finally two feature maps of size (w, h, 1) are ob-
tained. The [; ] in Formula (6) represents the concat operation. We superimpose feature
maps encoded by two pooling layers into a (w, h, 2) feature map. Then, the information
is fused through a 2D convolution with a convolution kernel size of 7× 7, and finally the
Sigmoid activation function is used to obtain the spatial attention map. After obtaining
the spatial attention map, the calculation method of the spatial reorganization feature is
as follows:

Fs
o = F⊗Ms (7)

Channel attention mechanism enables the selective fusion of shallow features and
deep features in U-Net results, while spatial attention mechanism suppresses the feature
information of non-changing pixels and enhances the difference features of changing pixels.
After the optimization of channel attention mechanism and spatial attention mechanism,
the feature map has better expression of change information in both channel dimension and
spatial dimension. The optimization process of the entire module requires the introduction
of additional computation and parameters with just two MLPs and one 2D convolutional
layer. However, it can greatly improve the significant expression of changing features,
which improves the accuracy and generality of the model. Our proposed upsampling
module restores the lost pixels of the image by transposed convolution after the feature
map is optimized by attention mechanism.

Figure 4. Structure of Upsampling Module (UM).
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2.5. Secondary Classification Method Based on Multimodal Conditional Random Field

MSAK-Net has been able to achieve the classification and localization of change pixels,
but there is still the problem of inaccurate localization due to information loss. In response
to this problem, we use multimodal conditional random field (MCRF) to perform secondary
classification on the results of MSAK-Net. The fully connected conditional random field (FC-
CRF) is the optimization of the conditional random field, which overcomes the limitation
of no remote dependence in the conditional random field by establishing the connection
relationship between all the pixels in the image. The main idea of FC-CRF is to regard all
pixels in the image as random variables in the random field model and to use an energy
function to define the relationship between the pixels to describe the spatial correlation in
the image, and map a set of input random variables to another set of random variables
through modeling. At present, many related literatures have proved that using FC-CRF as
the post-processing of the depth neural network can better recover the local information,
so as to optimize the salt-and-pepper noise points in the classified image, fix fine mis-
segmented areas, and obtain a more detailed segmentation boundary [15,16,43,44].

In the change detection, it is assumed that the input images I1 and I2 have N pixels,
respectively, and Id is the difference map of I1 and I2. Vector X = (X1, X2, . . . , XN) is
used to represent the classification result of the network output, and Xi represents the
category (change, non-change) of the ith pixel. The output result of FC-CRF is represented
by Y = (Y1, Y2, . . . , YN), and Yi represents the result of the secondary classification of the
ith pixel. The probability distribution function of a conditional random field conforms to
the Gibbs distribution, and the Gibbs distribution is calculated by the product of a series of
non-negative energy functions of maximal cliques in the undirected graph model, so the
probability distribution of the FC-CRF output Y is defined as follows:

E(Y | X) =
N

∑
i=1

φu(xi) + ∑
i<j

φp
(

xi, xj
)

(8)

where i and j range from 1 to N, φu represent unary potential function, and φp represent
pair-wise potential function. φu is usually calculated from the output of MSAK-Net, and
the formula is:

φu(xi) = − log P(xi) (9)

P(xi) represents the probability intensity of MSAK-Net that the pixel i belongs to the
change pixel. The result of MSAK-Net contains more noise points and discontinuities, so it
is necessary to introduce pair-wise potential function to consider the positional relationship
between pixels. Most of the current pair-wise potential function are defined by the differ-
ence image Id, and only considering a single difference information to construct pair-wise
potential function is likely to cause information loss. Therefore, we use the multimodal
information as the input information of FC-CRF and propose a new pair-wise potential
function to calculate the secondary classification results. The redefined pair-wise potential
function is expressed as:

φp
(

xi, xj
)
= ∑

i<j
αiφcvs.a

(
xi, xj

)
+ ∑

i<j
βiφsa

(
xi, xj

)
(10)

where φcvs.a
(

xi, xj
)

and φsa
(
xi, xj

)
are the pair-wise potential functions defined according

to the grayscale difference map extracted by change vector analysis (CVA) and the spectral
difference map calculated by spectral angle (SA). αi and βi are the weights of the two
potential functions, respectively. They are usually set to 1, so as to balance the information
provided by both, i.e., the proportion of the two difference information is the same weight.
Taking φcvs.a

(
xi, xj

)
as an example, the detailed calculation formula is:

φcvs.a
(
xi, xj

)
= µ

(
xi, xj

) K

∑
m=1

w(m)k(m)
(

fi, f j
)

(11)
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Here, µ
(

xi, xj
)

is a label, µ
(
xi, xj

)
= 1 if xi 6= xj and zero otherwise. K represents the

number of gaussian kernels. w(m) is the weight coefficient of k(m)
(

fi, f j
)
. fi and f j are the

feature vectors corresponding to pixel i and j. The gaussian kernels are defined as follows:

k
(

fi, f j
)
= w1 exp

−∥∥ci − cj
∥∥2

2
2σ2

α
−
∥∥di − dj

∥∥2
2

2σ2
β

+ w2 exp

−∥∥ci − cj
∥∥2

2
2σ2

γ

 (12)

where ci represents the position vector of pixel i, and di represents the difference intensity of
pixel i in the CVA. The first gaussian kernel is used to define whether adjacent pixels with
similar gray values in the difference map are of the same class. σα and σβ are gaussian kernel
parameters. The second Gaussian kernel is used to smooth the boundary and noise of the
classification result, and the smoothing effect is determined by the parameter σγ. w1 and
w2 are the weights of the above two Gaussian kernels. Calculation process of φsa

(
xi, xj

)
is

the same as that of φcvs.a
(
xi, xj

)
, the difference is that φsa

(
xi, xj

)
uses SA spectral difference

map to define the difference intensity. Finally, the class label of each pixel is derived using
mean field approximation algorithm [45].

3. Experiment Settings

This section will introduce the datasets used in the experiment, the experimental
settings, the selected comparison methods and the evaluation index of the experimental re-
sults.

3.1. Datasets Description

Two datasets are selected for experiments, and the details are introduced as follows.
OSCD dataset: The first dataset comes from the Onera Satellite Change Detection

(OSCD) dataset of the French Aeronautics and Space Administration [46]. The public
dataset contains 24 pairs of multispectral images taken from the Sentinel-2 satellite between
2015 and 2018 at locations around the world, including the United States, Europe, and
Asia. Each original multispectral image contains 13 bands, but four of them have a spatial
resolution of 10 m, six have a spatial resolution of 20 m, and the remaining three have
a spatial resolution of 60 m. The lower-resolution bands are upsampled to maintain the
same image size as the other bands. Since the spatial resolution of the last three bands
is too low, only 10 bands with high spatial resolution in the OSCD dataset are selected
in our experiments. Two pairs of multispectral images captured in the OSCD dataset in
Montpellier and Lasvegas were selected for testing and validation. The size of Montpellier
is 451 × 426, one third of the image is taken as the validation set, and the remaining
two thirds are used as the test set. The size of the Lasvegas image is 816× 704, and the
validation set is also a third of it. The ground truth maps of Montpellier and Lasvegas are
shown in Figures 5 and 6. The dataset focuses on changes in urban areas. In the ground
truth map, complex urban change categories such as new buildings and road changes are
manually marked, while natural changes (such as vegetation growth and seaweed changes)
are ignored.

There are a total of 24 pairs of multispectral images in the OSCD dataset, and we
crop the 22 pairs of images other than the test set and the validation set into 128× 128
image patches for network training. We represent the proportion of change pixels in the
1590 training samples in the form of a histogram. As shown in Figure 7a, the OSCD dataset
has a serious imbalance of positive and negative samples. The proportion of change pixels
in most training samples is less than 5%, and the number of non-change pixels in the
entire training set is approximately 33 times the number of pixels that change. If data
enhancement is performed directly on all training samples, the non-change area will also
be enhanced, and the entire ratio of positive and negative samples remains unchanged.
The direct use of this dataset by MSAK-Net can easily lead to overfitting and reduce the
general fitting ability of the model.
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(a) (b) (c)

Figure 5. Montpellier of OSCD. (a) Pre-change. (b) Post-change. (c) ground truth map.

(a) (b) (c)

Figure 6. Lasvegas of OSCD. (a) Pre-change. (b) Post-change. (c) ground truth map.

Therefore, we need to selectively enhance the samples when performing data augmen-
tation. Specifically, if the proportion of change pixels in the training sample is below 1%, it is
filtered so that it does not participate in network training. If the proportion of change pixels
in the training sample is more than 5%, image enhancement is used on it, and each training
sample is rotated and flipped by 90°, 180°, and 270°. After sample equalization and data
enhancement, 3129 training samples are finally obtained, and the number of non-changing
pixels in the training set is 9.7 times that of changing pixels. This makes the distribution of
positive and negative sample data in the training sample more balanced. The histogram of
the proportion of change pixels in the training samples is shown in Figure 7b.

(a) (b)

Figure 7. Distribution of change pixels in OSCD. (a) Before sample equalization. (b) After sam-
ple equalization.
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SZTAKI airchange benchmark: The second dataset, SZTAKI AirChange Benchmark
(ACD), comes from the public dataset of the DEVA laboratory and contains 13 pairs of
bi-temporal multispectral images. Each image has three bands of RGB, the image size is
952× 640, and the spatial resolution is 1.5 m. All images provide ground truth maps for ref-
erence. The changed areas of this dataset mainly include newly built houses, construction
areas, newly planted trees, new farmland, etc. In the ground truth map, white pixels are
used to represent the above-mentioned changed areas, and black pixels are non-changed
areas. At present, this public dataset has been widely used in the methods of other scholars.
We also adopt the same training set division method as others, using 11 pairs of multi-
spectral images as the network training set, and images from the two regions of Tiszadob
and Szada for testing and validation. The ground truth maps of the ACD dataset used for
testing and validation are shown in Figures 8 and 9.

(a) (b) (c)
Figure 8. Tiszadob of ACD. (a) Pre-change. (b) Post-change. (c) ground truth map.

(a) (b) (c)
Figure 9. Szada of ACD. (a) Pre-change. (b) Post-change. (c) ground truth map.

We also crop 11 pairs of training images in the ACD dataset into 1170 training samples
of 128× 128 size, and first analyze the distribution of changed pixels in the original training
samples. As shown in Figure 10a, this dataset also has the problem of sample imbalance.
The training samples that only contain non-changing regions are filtered, and the remaining
samples are augmented by data to obtain a total of 4266 training samples. The balanced
histogram is shown in Figure 10b, and the number of non-changing samples is 12 times
that of changing samples.

(a) (b)
Figure 10. Distribution of change pixels in ACD. (a) Before sample equalization. (b) After sam-
ple equalization.
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3.2. Experimental Setup

All experiments used the Tensorflow open-source framework under the Ubuntu
operating system. The learning rate of the network model can have an important impact
on the training process. In the initial stage of network training, a large learning rate should
be set to make the network parameters converge faster, and in the later stage of training,
a small learning rate should be given to avoid the situation that the network cannot be
converged due to oscillation. Therefore, we set the initial value of the learning rate to 1e−4.
The network is trained using Adam as the optimizer, and the Adam optimization algorithm
reduces the learning rate according to the current number of iterations. The batch size
of the network is set to 8. The smaller batch size makes the optimization direction of the
network more accurate for each training, and the number of training iterations is 150.

3.3. Compared Methods

In this research, the proposed MSAK-Net-MCRF and several state-of-the-art multi-
spectral change detection methods are compared experimentally on two datasets. The
principle of choosing these comparison algorithms is that they adopt different network
frameworks or different feature fusion methods, and have good performance and detection
effect. These comparison algorithms are listed as follows:

• Fully Convolutional Siamese-Concatenation (FC-Siam-conc)
This method belongs to a typical late fusion method proposed by Rodrigo et al. [27].
First, the siamese network is used to extract the high-dimensional features in the
bi-temporal image, and then the bi-temporal high-dimensional features are super-
imposed in the channel dimension, and then input to the discriminator to detect the
change features.

• Fully Convolutional Siamese-Difference (FC-Siam-diff)
This method is similar to the network structure of FC-Siam-conc, except that the
input to the discriminator is the absolute value of the difference between two high-
dimensional features.

• U-Net
This method adopts the U-Net network structure for change detection, but considering
the size of the input training samples, the network only contains four max pooling
layers and four upsampling layers. Furthermore, the input data of the encoding path
is spliced by early fusion.

• Deep Siamese Multiscale Convolutional Network (DSMS-CN)
The algorithm is proposed by Chen Wu et al. [32]. This is the first time that Inception
module is exploited for Siamese neural network and four convolutional branches are
used to extract deep features at different scales.

• Densely connected siamese network (SNUNet)
SNUNet, proposed by Fang et al. [38], is a combination of Siamese network and
NestedUNet with its proposed ensemble channel attention module (ECAM) added to
it for deep monitoring.

3.4. Evaluation Metrics

In order to quantitatively evaluate the performance of different change detection algo-
rithm, Precision (P), Recall (R), Accuracy (ACC), F1 coefficient (F1), and Kappa coefficient
(KC) are used as evaluation indicators to measure the performance of different algorithms.
P refers to the correct proportion of the changed pixels predicted by the algorithm. R
refers to the proportion of pixels that can be correctly predicted by the algorithm among
all changed pixels. The choice of both P and R depends on different application scenarios.
When the importance of the changed pixels is high, it is better to generate more false alarm
rates and to detect all the real changed pixels as much as possible, we can consider choosing
an algorithm with a higher R. When the changed pixels predicted by the algorithm need to
have a higher accuracy, an algorithm with a higher P can be used. P and R are calculated
as follows:
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P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

where TP, FP, TN, and FN denote the number of true positives, the number of false
positives, the number of true negatives, and the number of false negatives, respectively.

ACC refers to the proportion of correctly classified samples to the total number of
samples. Accuracy is the simplest and most intuitive evaluation index in classification
problems, but when the proportion of samples in different categories is very uneven, the
category with a large proportion often becomes the most important factor affecting the
accuracy. ACC are calculated as follows:

ACC =
TP + TN

TP + FP + TN + FN
(15)

Ideally, it is desirable to obtain both high P and R, but it is difficult to achieve in
general. We need to make a trade-off between the two indicators. In order to balance P and
R, the weighted average of the two is used to measure, which is F1, and the calculation
formula is as follows:

F1 =
(

1 + β2
)
× P× R

β2 × P + R
(16)

where β represents the weight, which is generally set to 1. The higher the β, the greater the
weight of R; conversely, the greater the weight of P.

In research, the KC can also be used to measure the performance of the algorithm
uniformly, and its calculation formula is:

KC =
OA− Pe

1− Pe
(17)

OA =
TP + TN

TP + TN + FP + FN
(18)

Pe =
Nc × (TP + FP) + Nu × (TN + FN)

(TP + FP + TN + FN)2 (19)

where, Nc indicates the total number of real changed pixels, Nu is the total number of real
unchanged pixels. The larger the value of KC, the higher the accuracy of the algorithm.

4. Results

In this section, the effectiveness of MSAK-Net-MCRF is verified by comparative
experiments. These experiments were performed on OSCD and SZTAKI datasets.

4.1. Experimental Result and Analysis on the OSCD Dataset

Two sets of bi-temporal multispectral images with complex ground objects are chosen
from the OSCD dataset, and the experimental results are shown in Figures 11 and 12.
Meanwhile, for quantitative comparisons, five quantitative metrics are summarized in
Table 1. Figure 11 shows the experimental results of six change detection algorithms on the
OSCD-Montpellier. It can be observed that the four methods of FC-Siam-conc, FC-Siam-
diff, U-Net and SNUNet have obvious discontinuities in the detection of roads. This is
because they only use a single-scale convolution kernel for change detection, which cannot
effectively extract changing features, resulting in incomplete outlines of changing objects.
Although DSMS-CN can completely detect road changes and find most of the real changing
pixels, this method does not use attention machine to screen out irrelevant information
in high-dimensional fusion features after using Siamese network to extract multi-scale
features. The deep features of the network contain noise information in the original image,
so the network’s identification of pseudo-change features is inaccurate, resulting in two
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false detection areas in the red box. MSAK-Net-MCRF not only completely extracts the road
change area, but also maintains a better detection contour and the lowest false detection
rate, so that the precision and recall are in a balanced state. The two comprehensive indexes
of F1 coefficient and Kappa coefficient are 0.7614 and 0.7392, respectively, and the best
change detection effect is achieved.

(a) (b) (c) (d) (e) (f) (g)
Figure 11. Result examples of different change detection algorithms on the Montpellier of OSCD
dataset. (a) ground truth map, (b) FC-Siam-conc, (c) FC-Siam-diff, (d) U-Net, (e) DSMS-CN,
(f) SNUNet, (g) MSAK-Net-MCRF.

(a) (b) (c) (d) (e) (f) (g)
Figure 12. Result examples of different change detection algorithms on the Lasvegas of OSCD dataset.
(a) ground truth map, (b) FC-Siam-conc, (c) FC-Siam-diff, (d) U-Net, (e) DSMS-CN, (f) SNUNet,
(g) MSAK-Net-MCRF.

Table 1. Experimental results of state-of-the-art methods on OSCD dataset.

Test Set Metric FC-Siam-Conc FC-Siam-Diff U-Net DSMS-CN SNUNet MSAK-Net-MCRF

Montpellier

Precision 0.7476 0.7375 0.8438 0.5070 0.7895 0.7482
Recall 0.6503 0.6895 0.5422 0.7694 0.5991 0.7751

Acc 0.9506 0.9518 0.9516 0.9131 0.9514 0.9593
F1 0.6956 0.7127 0.6602 0.6112 0.6813 0.7614

Kappa 0.6689 0.6865 0.6355 0.5658 0.6555 0.7392

Lasvegas

Precision 0.6619 0.6822 0.7198 0.6388 0.7586 0.7689
Recall 0.4584 0.6582 0.2610 0.7983 0.5369 0.6624

Acc 0.9356 0.9464 0.9305 0.9460 0.9476 0.9556
F1 0.5417 0.6700 0.3831 0.7097 0.6288 0.7117

Kappa 0.5084 0.6409 0.3546 0.6804 0.6015 0.6879

Figure 12 shows the experimental results of six change detection algorithms on the
OSCD-Lasvegas. There are many isolated change pixels in the ground truth map, and the
overall change area is relatively discrete. How to accurately identify small changes is the
challenge to change detection on the dataset. It can be observed that using the U-Net for
change detection has the worst effect, and there are a large number of missed pixels. Due
to the use of attention mechanism, SNUNet and MSAK-Net-MCRF enhance the spatial
information and channel information of regions of interest, while weaken irrelevant regions
and channels, thus achieving better precision. Both DSMS-CN and MSAK-Net-MCRF
extract multi-scale features for change detection. The two methods are also better than
other methods in visual effect and detection accuracy. It is worth noting that DSMS-CN has
the highest recall, and most of the changed pixels in the OSCD-Lasvegas can be detected
by this method, but this method produces more false detection points. MSAK-Net-MCRF
has the least false detection points and also has a satisfactory recall, so it is also better than
the DSMS-CN method in the two comprehensive indicators of F1 and Kappa.

4.2. Experimental Result and Analysis on SZTAKI Dataset

The qualitative results of six change detection algorithms on the SZTAKI dataset are
shown in Figures 13 and 14. Observing the ground truth map in Figure 13a, notice that
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the change region of the Tiszadob is a large-scale change with regular and continuous
boundaries. FC-Siam-conc and MSAK-Net-MCRF have the best contour integrity and the
best internal homogeneity. The outstanding performance of FC-Siam-conc and MSAK-
Net-MCRF makes them have the highest precision and recall, respectively. However,
FC-Siam-conc produces obvious salt-and-pepper noise in other regions, which makes this
method inferior to MSAK-Net-MCRF in comprehensive performance. SNUNet also obtains
good contour integrity, but due to its use of a single-scale convolution kernel, it generates a
lot of salt-and-pepper noise and contour discontinuities in the lower and lower left corners
of the resulting map. The other three methods identify a lot of changing pixels as non-
changing pixels, and the internal consistency of change objects on the change map is poor.
According to Table 2, the recall of MSAK-Net-MCRF is as high as 0.992, which is much
higher than the other four methods. This means that almost all real changing pixels can be
completely detected. However, the wrong production detected two false change areas in
the lower left corner and upper right corner, resulting in a decrease in the F1 coefficient
and Kappa coefficient, but still increased by 2.49%and 1.92%. We think this is due to the
fact that the convolution kernels of SCKB are fixed in size, such as 3× 3, 5× 5 and 7× 7.
Although our proposed SCKB module can assign adaptive weights to different scales, we
only use convolution kernels of 3× 3, 5× 5 and 7× 7. Therefore, the detection effect may
not be so good for some smaller targets, so there will be error detection areas as shown in
the figure.

(a) (b) (c) (d) (e) (f) (g)
Figure 13. Result examples of different change detection algorithms on the Tiszadob of SZTAKI
dataset. (a) ground truth map, (b) FC-Siam-conc, (c) FC-Siam-diff, (d) U-Net, (e) DSMS-CN,
(f) SNUNet, (g) MSAK-Net-MCRF.

(a) (b) (c) (d) (e) (f) (g)
Figure 14. Result examples of different change detection algorithms on the Szada of SZTAKI dataset.
(a) ground truth map, (b) FC-Siam-conc, (c) FC-Siam-diff, (d) U-Net, (e) DSMS-CN, (f) SNUNet,
(g) MSAK-Net-MCRF.

Szada of SZTAKI contains both small changing targets and large changing areas, and
it is difficult to achieve good detection results on this test set. As can be seen from the result
map, because SNUNet uses the attention mechanism to reorganize and enhance the spatial
information and channel information, most of the change regions are detected. However,
due to the loss of information in the deep layer of the neural network, it produces more
noise at the edge and interior of the contour, which leads to its unsatisfactory detection
results. DSMS-CN and MSAK-Net-MCRF use multi-branch convolutional paths to extract
features of different scales, giving these two methods the highest accuracy and recall,
respectively. We conclude that the detection performance of multi-scale convolutional
networks is better than the other four methods using a single convolution kernel for both
small objects and changing objects in large regions. Meanwhile, MSAK-Net-MCRF can
flexibly adjust the influence of different convolutional branches on the network according
to the input region. In addition, MSAK-NET-MCRF uses MCRF to make up for the lack
of deep neural network information and reduce omissions. Therefore, MSAK-Net-MCRF
has better self-adaptation than DSMS-CN, with F1 coefficient is increased by 1.6%, and the
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kappa is increased by 2.2%. This also verifies that the feature extraction capability of the
Selective Convolution Kernel Block (SCKB) is stronger. However, for the left part of the
result graph, we can see that MSAK-Net-MCRF does not well detect the roads in this area.
In our analysis, this is due to the fact that the SCKB module is better at detecting objects
with regular shapes and smooth boundaries, while the detection of irregular shapes such
as roads is slightly worse.

Table 2. Experimental results of state-of-the-art methods on SZTAKI dataset.

Test set Metric FC-Siam-Conc FC-Siam-Diff U-Net DSMS-CN SNUNet MSAK-Net-MCRF

Tiszadob

Precision 0.9428 0.7416 0.8933 0.7712 0.8607 0.7491
Recall 0.7392 0.6869 0.6848 0.7955 0.7087 0.9920

Acc 0.9476 0.9319 0.9319 0.9235 0.9438 0.9409
F1 0.8287 0.7758 0.7753 0.7832 0.7773 0.8536

Kappa 0.7983 0.7365 0.7360 0.7367 0.7455 0.8175

Szada

Precision 0.4316 0.4760 0.3709 0.4636 0.3688 0.5715
Recall 0.4029 0.4602 0.3779 0.6048 0.4759 0.5139

Acc 0.9409 0.9452 0.9477 0.9426 0.9624 0.9554
F1 0.4168 0.4680 0.3744 0.5249 0.4156 0.5412

Kappa 0.3858 0.4391 0.3584 0.4949 0.3965 0.5172

5. Discussion
5.1. Ablation Study

Our proposed SCKB is used to extract multi-scale features, which adaptively allocates
different weights to different size convolution kernels to achieve better detection results.
The attention mechanism is introduced into the upsampling module to enhance useful
spatial and channel information. MCRF is used to refine the boundary information of
change objects, so as to obtain more accurate change detection results. We designed an
ablation experiment to evaluate the performance of these three modules.

First of all, we verify the influence of post-processing MCRF on network results.
Figures 15 and 16 show ablation study of MCRF on two datasets. Table 3 shows the
impact of MCRF on the two comprehensive indicators. We can observe that MSAK-Net
has achieved relatively satisfactory results. Combined with MCRF, the comprehensive
performance of MSAK-Net can be further improved. This is because, when using MCRF,
multimodal differential information is used to compensate for the local information lost by
the deep network, which brings performance improvements.

(a) (b) (c) (d)
Figure 15. Ablation study of multimodal conditional random field on the OSCD dataset. (a) MSAK-
Net of Montpellier, (b) MSAK-Net-MCRF of Montpellier, (c) MSAK-Net of Lasvegas, (d) MSAK-Net-
MCRF of Lasvegas.

In addition, we also studied the influence of αi and βi values (in Formula (10)) of
grayscale difference information (obtained by CVA) and spectral difference information
(obtained by SA) on the experimental results in MCRF. We used the Tiszadob dataset to
carry out the experiment. The experimental results are shown in Table 4. As can be seen
from the results, when both difference maps are not considered (i.e., both are 0), MCRF is
not able to add more difference information to the network output results since it only uses
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the output of MSAK-Net to construct the unary potential function at this time, and thus
has no improvement for the network results. When one weight is 0 (i.e., this difference map
is not considered), the improvement of MCRF for accuracy increases as the other weight
increases, due to the increasing amount of difference information it can provide. However,
we also find that MCRF achieves the maximum improvement when both difference maps
are considered (i.e., both are greater than 0). This is because MCRF using multimodal
difference maps to construct pair-wise potential functions can extract the local variation
features in the original image from unused aspects, while the input to the FC-CRF model
has the effect of information complementarity.

(a) (b) (c) (d)
Figure 16. Ablation study of multimodal conditional random field on the SZTAKI dataset. (a) MSAK-
Net of Tiszadob, (b) MSAK-Net-MCRF of Tiszadob, (c) MSAK-Net of Szada, (d) MSAK-Net-MCRF
of Szada.

Table 3. Ablation study of multimodal conditional random field on OSCD and SZTAKI datasets.

Test Set Method F1 Kappa

Montpellier of OSCD dataset MSAK-Net 0.7599 0.7370
MSAK-Net-MCRF 0.7614 0.7392

Lasvegas of OSCD dataset MSAK-Net 0.7100 0.6856
MSAK-Net-MCRF 0.7117 0.6879

Tiszadob of SZTAKI dataset MSAK-Net 0.8514 0.8147
MSAK-Net-MCRF 0.8536 0.8175

Szada of SZTAKI dataset MSAK-Net 0.5407 0.5166
MSAK-Net-MCRF 0.5412 0.5172

In the experiment of the previous chapter, we set αi = βi = 1. However, we can
find that the experimental result is the best when αi = 3, βi = 0.5 or αi = 0.5, βi = 3, and
the kappa reaches 0.8189, which is higher than the accuracy of our initial setting (0.8175).
Furthermore, from the ablation experiment of MCRF, we can see that the Kappa value
after removing the MCRF module is 0.8147, which is lower than the result when we set
the weight arbitrarily. Therefore, we think that these two weight coefficients are robust
to the experimental results, and the effect of MCRF is the best when αi = 3, βi = 0.5 or
α0.5 = 3, βi = 3.

After that, we verify the impact of SCKB and attention mechanism on the MSAK-Net
network on the Tiszadob of SZTAKI dataset without the application of post-processing
MCRF. Figure 17 shows ablation study of SCKB and attention mechanism on the MSAK-
Net network. Table 5 shows the impact of SCKB and attention mechanism on the two
comprehensive indicators. It can be seen from the table that MSAK-Net performs relatively
poorly when removing SCKB or attention mechanism. As can be seen from the result
diagram, for the SCKB module, due to the use of ordinary convolution instead of SCKB,
the network loses the ability to extract multi-scale features, so its performance on Tiszadob
data sets is poor, resulting in a large number of false detection and missed detection,
but because it retains the attention mechanism, it performs well in internal consistency.
For the attention mechanism, the network retains the SCKB, but removes the attention
mechanism, so it performs well in detecting the integrity of the overall contour, but because
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the attention mechanism loses the enhancement and fusion of spatial information and
channel information, there are internal inconsistencies, and there are many misdetection
areas inside the contour.

Table 4. Ablation study of αi and βi on Tiszadob of OSCD datasets.

Kappa βi
0 0.5 1 2 3

αi

0 0.8147 0.8155 0.8164 0.8175 0.8183
0.5 0.8155 0.8164 0.8172 0.8179 0.8189
1 0.8164 0.8172 0.8175 0.8184 0.8188
2 0.8175 0.8179 0.8183 0.8188 0.8177
3 0.8183 0.8189 0.8188 0.8177 0.8161

(a) (b) (c) (d)
Figure 17. Ablation study of SCKB and attention mechanism on Tiazadob of SZTAKI datasets.
(a) ground truth map of Tiszadob, (b) MSAK-Net of Tiszadob, (c) MSAK-Net without SCKB,
(d) MSAK-Net without attention mechanism.

Table 5. Ablation study of SCKB and attention mechanism of MSAK-Net on Tiazadob of SZ-
TAKI datasets.

Method F1 Kappa

MSAK-Net 0.8514 0.8147

MSAK-Net without SCKB 0.8306 0.7888

MSAK-Net without attention mechanism 0.8489 0.8129

5.2. Effect of Kernel Size in SCKB Module

In order to test the influence of SCKB module on the results more comprehensively,
we also designed a set of experiments on convolution kernel size. In previous experiments,
the convolution kernel size was empirically set to 3× 3, 5× 5 and 7× 7. To test the effect
of convolution kernel size on the results in SCKB module, we set the convolution kernel
size to three different sizes, respectively, and carried out experiments on Tiszadob datasets.
The experimental results are shown in Figure 18. It can be seen from the experimental
results that the accuracy of the network decreases with the increase of the convolution
kernel size in the SCKB module. This is because in the deep layer of the network, the size
of the feature map gradually shrinks after convolution and pooling, and a small piece of
the feature map represents the large-scale target in the original image. At this time, the
features of large-scale target can be extracted using small or moderate convolution kernel
for convolution operation. However, when using too large receptive field (such as 9× 9),
the extracted features contain not only large-scale target, but also surrounding irrelevant
information, so that the extracted features contain too much irrelevant information and
reduce the accuracy of the network.
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Figure 18. The effects of kernel size in SCKB module on the accuracy of MSAK-Net.

5.3. Effect of Class Weight

For the loss function of MSAK-Net, the class weight wc indicates how much the model
pays attention to change samples during training. In multispectral images, the proportion
of changing areas is small, and there is a problem of sample imbalance, which easily makes
the loss function fall into the local optimal value. Therefore, the class weight plays an
important role in the training process of MSAK-Net. To verify the impact of wc on change
detection, we explore the experimental results of different wc on the SZTAKI dataset, as
illustrated in Figure 19. When wc is 0.5, MSAK-Net pays more attention to non-changing
samples on training, and it is easy to increase Recall and Kappa. As wc increases, the
detection rate for changing samples increases, hence the performance is improved. It is
worth noting that Kappa reaches its maximum value when wc is 5, which means that the
effect of changing samples reaches a state of equilibrium. However, the Kappa evaluation
metrics show a downward trend with the further increase of parameter wc. Hence, we set
wc to 5.

Figure 19. The effects of parameter wc on the accuracy of MSAK-Net.

5.4. Computation Time Analysis

To show the running cost and computational cost of the proposed algorithm, we
employ a running time analysis to quantitatively analyze it. The calculation time is shown
in Table 6. The results show that MSAK-Net-MCRF has less training time compared to
U-Net and SNUNet and more than the remaining comparison methods, but these time costs
are acceptable due to the effectiveness of MSAK-Net-MCRF. The proposed method does
not have an advantage in test time, because the MCRF post-processing needs to be used for
secondary classification after the network test is completed, thereby reducing omissions.
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Table 6. Comparison of calculation time of six methods.

Method Training Time (s/epoch) Testing Time (s)

FC-Siam-conc 45.97 0.27
FC-Siam-diff 47.27 0.18

U-Net 55.98 0.40
DSMS-CN 42.08 5.84
SNUNet 62.60 1.73

MSAK-Net-MCRF 50.11 6.97

6. Conclusions

In this paper, a multispectral change detection method based on multi-scale adaptive
kernel network and multimodal conditional random field (MSAK-Net-MCRF) is proposed.
Combined with the characteristics of multispectral images, a Selective Convolution Kernel
Block (SCKB) that can adaptively assign weights is proposed to solve the problem of insuf-
ficient use of multi-scale information in current multispectral change detection methods
using a single convolution kernel. First, the proposed MSAK-Net adopts U-Net with dual
encoding paths as the overall framework, since the U-Net framework retains more origi-
nal image information through skip connections. Furthermore, in order to overcome the
problem of feature heterogeneity fusion, an attention mechanism is added to the decoding
path to selectively fuse shallow features and deep features. Finally, the multimodal condi-
tional random field is used to perform secondary classification on the detection results of
the neural network, recover the local information lost by MSAK-Net, and make the final
detection boundary more accurate. The effectiveness of MSAK-Net-MCRF is verified by
analyzing the experimental results of five change detection methods on two public datasets.
Compared with the other four state-of-the-art methods, the proposed approach achieves
the best results on both comprehensive metrics.
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