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Abstract: High spatial resolution (HSR) remote sensing images have a wide range of application
prospects in the fields of urban planning, agricultural planning and military training. Therefore,
the research on the semantic segmentation of remote sensing images becomes extremely important.
However, large data volume and the complex background of HSR remote sensing images put great
pressure on the algorithm efficiency. Although the pressure on the GPU can be relieved by down-
sampling the image or cropping it into small patches for separate processing, the loss of local details
or global contextual information can lead to limited segmentation accuracy. In this study, we propose
a multi-field context fusion network (MCFNet), which can preserve both global and local information
efficiently. The method consists of three modules: a backbone network, a patch selection module
(PSM), and a multi-field context fusion module (FM). Specifically, we propose a confidence-based local
selection criterion in the PSM, which adaptively selects local locations in the image that are poorly
segmented. Subsequently, the FM dynamically aggregates the semantic information of multiple
visual fields centered on that local location to enhance the segmentation of these local locations. Since
MCFNet only performs segmentation enhancement on local locations in an image, it can improve
segmentation accuracy without consuming excessive GPU memory. We implement our method on
two high spatial resolution remote sensing image datasets, DeepGlobe and Potsdam, and compare
the proposed method with state-of-the-art methods. The results show that the MCFNet method
achieves the best balance in terms of segmentation accuracy, memory efficiency, and inference speed.

Keywords: semantic segmentation; high spatial resolution remote sensing images; memory efficiency

1. Introduction

Image semantic segmentation is a very important topic in remote sensing image inter-
pretation and plays a key role in various practical applications, such as urban planning [1–4],
geohazard monitoring [5,6] land change detection [7], etc. The task aims to assign semantic
category labels to each pixel with semantic information in the image [8,9]. High spatial
resolution (HSR) remote sensing images have gradually become the primary source of
interpretation data for remote sensing with the rapid development of aerospace technol-
ogy and information technology. In comparison to ordinary resolution remote sensing
images, it provides more information about the spatial structure and texture information
of target features more clearly, which is crucial to the accuracy of remote sensing image
segmentation. In comparison to traditional computer vision images, remote sensing images
have a special field of view; i.e., overhead imaging. At the same time, it also has a complex
background, and a pair of remote sensing images typically contains a large number of
buildings, vegetation, farmland and other multi-category features and geomorphological
element’s information. Furthermore, compared to lower spatial resolutions, HSR images of
the same field range have higher image sizes and greater pixel detail. This means that HSR
images requires more pixels to describe the same field range of images, and the problem of
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high-resolution image (i.e., large pixel size) input models needs to be solved in order to use
the global information of HSR images. There are two mainstream solutions for the semantic
segmentation of high-resolution images: one way is to input a model after down-sampling
the input image. The other way is to divide the image into patches and process each patch
independently. However, many segmentation objects of remote sensing images are small
targets (tens or even a few pixels), which means that the information content of segmented
objects is small; down-sampling directly will result in the disappearance of such small
targets and also lose the advantage of rich feature information in HSR images. Moreover,
as remote sensing images are characterized by a high degree of inter-class similarity and
intra-class dissimilarity, dividing the image into independent patches will lack contextual
spatial information to detect feature changes of semantically different neighboring objects,
particularly for HSR images, which have a smaller field area for the same size image.
Figure 1 illustrates the results of HSR remote sensing images using these two preprocessing
methods.
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Figure 1. Results of semantic segmentation using patch processing and down-sampling processing.
(a) is the input image and (b) is the labeled image, where the area circled in red contains two
highly confusing categories-Agriculture and Rangeland. (c,d) represent the two processing methods
respectively. As can be seen from the figures, down-sampling loses fine details, while patch processing
wrongly classifies local patches due to the lack of the global context.

One way to address the limitations of the above methods is to combine them; i.e., to
fuse the global and local segmentation processes. On the one hand, the global view of the
entire image can be used to supplement the contextual information of the local patches.
By analyzing the local patches, we can refine the segmentation boundaries and recover
the details lost due to the down-sampling process of the global segmentation process.
This approach has been successfully demonstrated by several models, such as [10] which
performs a bidirectional combination of feature maps with global context and local fined
structure at each layer. Nevertheless, for an HSR input image, there is a tremendous
gap between the scale of the whole image and the scale of the local patches. This will
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lead to training difficulties, and its feature sharing scheme will not spatially correlate
local features with global features. In addition, it treats each local image equally and
fuses them with the entire image segmentation, which will consume more computational
resources. For effective and efficient fusion of global context and local details, we considered
the importance of local images and selectively perform feature fusion. Meanwhile, to
complement the large gap between the two scales of global and local images, and we
propose to consider multiple scales in between.

In this paper, we propose a multi-field context fusion network (MCFNet), which is
centered on a patch selection module (PSM) and a multi-field context fusion module (FM).
MCFNet consists of two phases: a global segmentation stage and a local segmentation
stage. In the stage of global segmentation, the global image is input to the model in order
to obtain coarse segmentation results. To further enhance the segmentation accuracy, PSM
is used to select local patches that are difficult to be segmented by the model. In the
stage of local segmentation, FM enhances the segmentation of local patches by adaptively
aggregating the contextual semantics of multiple visual fields around the patches. As a
result of integrating the context at both levels of the local and global stages, it is possible to
capture contextual information adaptively from multiple perspectives, which can increase
the performance of the model without consuming additional GPU memory or increasing
inference time. To evaluate the effectiveness of the model, we conducted extensive experi-
ments demonstrating that our proposed model outperforms state-of-the-art methods on
the publicly available high-spatial-resolution image datasets DeepGlobe and Potsdam. The
important contributions of our study are summarized as follows.

1. We propose a patch selection module for locating poorly segmented local patches in
the global image so that further enhancement of segmentation can be performed. It
alleviates the burden of segmentation model, and the module can be used with any
popular semantic segmentation network.

2. We propose a module named FM for aggregating the semantics of multi-field contexts.
The module performs adaptive weighting of the local patches selected by PSM with
multiple fields of view to enhance the feature representation by aggregating multi-
level contextual information.

3. We demonstrate the effectiveness of our approach by achieving state-of-the-art se-
mantic segmentation performance on two publicly available high-spatial-resolution
re-mote sensing image datasets.

The rest of this article is organized as follows: Section 3 describes in detail the design
idea and composition of the proposed MCFNet framework. Experimental datasets, model
evaluation methods, experimental procedures, and analysis of experimental results are
given in Sections 4 and 5.

2. Related Work
2.1. Semantic Segmentation

Image semantic segmentation is an image prediction task for dense classification that
infers the category to which each pixel belongs based on the image’s characteristics. The
fully convolutional neural network [11] was the first CNN network structure for the image
semantic segmentation task, which replaced all fully connected layers of DCNN for image
classification with fully convolutional layers to output 2D feature maps. UNet [12,13]
utilized a symmetric encoder-decoder structure with jump connections to combine low-
level features with high-level features. DeconvNet [14] and SegNet [15] also adopted a
comparable architecture. DeepLab [16,17] applied Atrous Convolution to the network
structure in order to broaden the convolutional (filters) field of perception and establish
connections between distant pixels. Inspired by Transformer in NLP, the researchers ex-
tended Transformer to semantic segmentation tasks. The recently proposed ViT [18] fully
adopts the standard structure of Transformer in its structure, achieving the most advanced
level in multiple image recognition benchmark tasks. Ref. [19] used self-attention instead
of partial convolution to enhance CNN’s feature extraction ability, so as to improve image
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classification performance. SETR [20] deploy a pure transformer to encode the image into a
series of patches, and strengthen the segmentation effect by modeling the global context in
each layer of transformer. However, although the network model based on the transformer
has good performance in precision, it has a large number of network model parameters.
Moreover, if the training dates are insufficient, it is easy to cause overfitting. In the field of
remote sensing semantic segmentation, HMANet [21] proposed a new attention framework
to reduce feature redundancy and improve the efficiency of the self-attention mechanism
through region representation. FarSeg [22] enhanced the recognition of foreground features
by learning the foreground-related context associated with the foreground-scene relation-
ship of remote sensing images. Refs. [23,24] use HRNet to enhance the low-to-high features
extracted from different branches separately to strengthen the embedding of scale-related
contextual information. Although these models achieve good performance, they are not
applicable to the semantic segmentation of high-resolution images because they are only
concerned with improving the accuracy of semantic segmentation, and not the efficiency of
computation. To increase the segmentation speed and reduce the memory usage during
semantic segmentation, Enet [25] employed an asymmetric encoder-decoder structure
to conserve GPU memory by minimizing floating point operations. ESPNets [26,27] ac-
celerated convolutional computation by employing the split-merge or scale-reduction
principle. There were efficient segmentation models using lightweight backbone networks
(MobileNet [28–30] and ShuffleNet [31]), or some compression techniques (pruning [13],
knowledge distillation [32]). Despite the fact that these real-time segmentation networks
have low time complexity and memory consumption, they are not optimized for high-
resolution images, and their performance on high-resolution images is significantly inferior
to that of other networks. Consequently, we propose a semantic segmentation model
for local location enhancement, which can dynamically select local locations with poor
global segmentation, striking a balance between reducing model burden and enhancing
model accuracy.

2.2. Multi-Scale Context Aggregation and Refining Segmentation

Multi-Scale aggregation [10,33–36] has been demonstrated to be effective in semantic
segmentation by combing features from various stages to provide more contextual infor-
mation for each pixel. Feature pyramid networks [37] upsampled feature maps at different
scales and aggregated them with the output from lower layers. PSPNet [38] introduced
a pyramid pooling module to extract contextual information in images as well as global
information from different receptive fields. ICNet [39] introduced a cascade feature fusion
module based on PSPNet to improve the prediction accuracy of the model. HRNet [40]
achieved strong semantic information and precise location information by parallelizing
multiple branches of resolution and interacting information interaction between different
branches. In more recent approaches, attention mechanisms [41–43] are also employed to
add more contextual information to each pixel. Transferring global context information
to local locations is also an efficient method, ParseNet [44] aggregated the global context
to the local field of view in order to provide additional information. GLNet [10] retained
global and local information and interacts with each other through a deep sharing layer,
allowing it to balance its performance and GPU memory usage. MagNet [45] proposed a
new multi-scale framework that addresses local ambiguity by viewing images at multiple
zoom levels and directly outputs high-resolution segmentation. CascadePSP [46] uses
refining segmentation to improve segmentation accuracy at local patch. However, these
models select local patches without directionality, and they segment every local patch of
the image for enhancement without considering the efficiency. We believe that not every
local patch needs segmentation enhancement. Unlike previous work, our model performs
multi-field semantic feature fusion selectively only at local locations and adaptively fuses
the contextual semantic at each scale.
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3. Proposed Method

On the basis of the foregoing research status and improvement ideas, we propose
the Multi-Field Context Fusion Network (MCFNet), a segmentation network based on
high-resolution images. In Section 3.1, we first give an overview of the network. From
Section 3.2 to Section 3.4, we further introduce the composition of the network, including
backbone network, patch selection module (PSM), multi-field context fusion module (FM),
and structural adaptive weighting block (AWB).

3.1. Overview of Network Architecture

As shown in Figure 2, MCFNet consists of two stages: the segmentation stage for
global images, and the enhancement stage for local patches. The core of the segmentation
framework is comprised of a patch select module and a contextual fusion module. PSM
is used to select the patches with unsatisfactory segmentation results in the first stage
of segmentation, and FM is used to fuse the image features from different fields of view
to achieve the segmentation effect of enhanced local patches. The segmentation module
in our framework can be any segmentation backbone that is a combination of PSM and
FM relationships.
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Figure 2. Overview of our proposed MCFNet. The global and local branches are images that have
been down-sampled and cropped respectively. PSM module is used to identify poorly segmented
local patches within the global segmentation, and FM module performs segmentation enhancement
on those poorly segmented local patches. The final segmentation is created by aggregating the global
and local branch feature maps.

3.2. Backbone Network

A typical semantic segmentation network consists of an encoder and a decoder, which
encodes the input image and reduce the resolution of the image by down-sampling to
reduce the computation, respectively. Following the choices of previous studies [47,48], we
also selected ResNet [49] and pre training on ImageNet [50] as the encoder. We removed the
final pooling layer and the FC layer from ResNet-50, leaving the rest unchanged. We chose
feature pyramid network (FPN) [37] as the decoder, which mainly addresses the multi-scale
issue in semantic segmentation by up-sampling the higher-level features and concatenating
the lower-level features in a top-down manner. It substantially improved the performance
of small object segmentation without increasing the computational effort. Actually, the
MCFNet framework we proposed can use the majority of the dominant segmentation
network today as the backbone.
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3.3. Patch Selection Module

For the results of direct down-sampling for segmentation, we believe that not every
local patch requires being enhanced. In the case of HSR remote sensing images, there exist
consecutive large areas of the same class of objects, for which local patches do not need to
be enhanced. Therefore, we consider a scoring mechanism to select the local patches that
need to be enhanced.

Confidence is a commonly used metric in statistics for assessing a system’s reliability.
The significance of confidence stems from the fact that if a decision support a system’s con-
fidence level in predicting that a particular sample is too low, additional decision systems
may be required to participate in the decision process. In object detection, non-maximum
suppression (NMS) [51–54] selects an optimal bounding box from many candidate boxes
by suppressing the bounding boxes with low confidence. Inspired by this, we designed
PSM module and proposed a confidence-based local patch judging criterion. As illustrated
in Equation (1), when the score µlocal of local patch is smaller than the global image score
µglobal, the local patch will be selected by PSM for segmentation reinforcement. In the
following, we detail the structure of PSM and the process of PSM is shown in Figure 3.{

µlocal< µglobal, patch i is selected to refine
µlocal ≥ µglobal, patch i is not selected to refine

(1)

For each high-resolution image Ihr, down-sample it to Ilr and feed into the backbone of
MCFNet to extract the deep features Mglobal ∈ Rh×w×class. Subsequently, softmax function
is applied to Mglobal in the channel dimension and take the maximum value of each pixel on
the channel dimension, denoted as Pij ∈ (0, 1). Hence, the confidence level of the global
image is noted as Cglobal ∈ Rh×w×1 and Equation (2) presents the calculation formulas.

Cglobal =


p11 p12 · · · p1j
p21 p22 · · · p2j

...
...

. . .
...

pi1 pi2 · · · pij

, 1 ≤ i ≤ h, 1 ≤ j ≤ w (2)

and PSM records the score of the global image as µglobal, where

µglobal =
1

h× w ∑
1≤ i ≤ w
1≤ j ≤h

Pij. (3)

We define local patches in such a way that the global image Ihr is divided equally
into N local patches, without overlap, denoted as Xlocal ∈ Rm×n×1, where N is the
hyperparameter indicating the number of local patches.

Xglobal =
{

X1
local, X2

local, · · · , XN
local

}
(4)

Cglobal =
{

C1
local, C2

local, · · · , CN
local

}
(5)

The score of Xlocal can be calculated from Cglobal in the same way as the calculation
of µglobal.

µlocal =
1

m× n ∑
1≤ i ≤ m
1≤ j ≤n

Pij (6)

We believe that the average confidence of the image can be used to quantify the degree
of certainty of the model’s prediction for that image. To demonstrate this concept, we
tested it on DeepGlobal data. Firstly, we input the down-sampled DeepGlobe image Ilr
into the backbone to obtain the feature map Mglobal and the prediction accuracy. Then,
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Mlr is transformed into the confidence matrix Cglobal in the above manner. We crop Cglobal
uniformly into 16 local patches, i.e., N = 16, and the score of each local patch is µlocal.
Figure 3a reflects the positive correlation between the score µlocal assigned by PSM and the
prediction accuracy. Furthermore, we define the relative score µrelative = µlocal − µglobal,
Figure 3b visualizes the relationship between µrelative and segmentation accuracy. It can be
seen from the figure that the relative score is positively correlated with the segmentation
accuracy. We calculate the mean value of the local patch scores that are lower and higher
than the global image scores, and discover that the difference in accuracy between the two
is 3%. This further demonstrates the efficiency of our approach.
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3.4. Multi-Field Context Fusion Module

Generally, images with larger fields of view contain more contextual information at
the same resolution, which facilitates the identification of similar features with a wide
range of scale variation. Images with smaller fields of view have more texture details,
which are beneficial to capturing the subtle differences between different classes of features.
Therefore, we propose a module for multi-field contextual semantic fusion named FM.
It combines feature information from different fields of view to discover features with
differentiation, and considers the class of each pixel from the overall image to overcome
inter-class similarity and intra-class dissimilarity of remote sensing images. This module
accepts a multi-field image of the local patch selected by PSM as the input, and outputs
multi-field, which aggregates features that achieve enhanced segmentation by aggregating
contextual information and local texture details at various scales of the local patch. The
structure diagram of FM is as Figure 4.
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According to the score results derived from PSM, we adaptively select the local patches
that need to be enhanced from the global image. For local patches, there is a large gap
between its scale and the global image scale, which will lead to difficulties in feature fusion.
To eliminate this phenomenon, we propose to consider multiple scales in between. In
practice, we create three distinct scales of contextual regions, denoted as X1 ∈ Rh1×w1×c ,
X2 ∈ Rh2×w2×c and X3 ∈ Rh3×w3×c. X1 is the local patch selected by PSM, X2 is a different
scale image with the same centroid as X1 in the global image, and X3 is the global image that
has been down-sampled, where h1 < h2 < h3 and w1 < w2 < w3. We scale

{
X1, X2, X3

}
to

the same resolution and feed them into the encoder network, cropping the output feature
map to the corresponding position as

{
F1, F2, F3

}
.
{

F1, F2, F3
}

is the feature information
of three different fields of view at the same local location. In order for the model to make
efficient use of these features, we designed the Adaptive Weighting Module(AWM) at each
stage of decoding, which uses a pyramid structure and consider both the channel domain
and spatial domain to assign weights to each pixel feature, similar to CBAM [55]. The
specific approach is described below.
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In regard to the channel dimension, each layer of channels in the feature map repre-
sents a distinct type of feature information that contributes differently to the task. We use
the abstract property of the pooling operation to reconstruct the feature F as a 1× 1× C
channel description. The reconstructed F is mapped through the fully connected network
to obtain the channel weight matrix Mc ∈ R1×1×c; this process can be summarized as
Equations (7) and (8)

Mc(F) = σ(MLP(Avg Pool( F)) + MLP(Max Pool( F)))
= σ(W 1(W 0

(
Fc

avg)) + W1(W 0(Fc
max)))

(7)

F′ = Mc(F)� F, (8)

where σ denotes the sigmoid function and � denotes element-wise multiplication. W0 and
W1 are the shared network MLP weights.

In the spatial dimension, the use of spatial relationship features enhances the ability
of the model to distinguish the image content. To direct the network to focus on local
feature information of different field of view images, we assign feature weights at the
spatial level to determine the spatial locations where key information is aggregated. Unlike
the operations of the previous, F′ performs feature compression along the channel axis to
obtain a feature description of h×w×1. We apply a convolution layer to generate a spatial
attention map Ms ∈ Rh×w×c which encodes where to emphasize or suppress and this
process can be expressed as Equations (9) and (10).

Ms(F′) = σ(f conv( [Avg Pool( F′); Max Pool(F′)]))
= σ(f conv( [ F′savg ; F′smax]))

(9)

F′′= Ms
(

F′
)
� F′ , (10)

where σ denotes the sigmoid function and fconv represents a convolution operation with
the filter. � denotes element-wise multiplication. The above calculation process of AWM
can be simplified as Equation (11).

F′′ = AWM(F) (11)

At each stage of decoding, we use AWM to assign weights to the image features of
different fields of view. Equation (12) presents the calculation formulas, where Pi represents
the decoding of stage i. F′′1 , F′′2 and F′′3 represent the weighted feature maps of X1, X2 and X3,
respectively. In this way, the model can adaptively aggregate complementary contextual
feature information. Figure 5 depicts the feature fusion process in more detail.

Pi = AWM
(
(F′′ )i

1

)
+ AWM

(
(F′′ )i

2

)
+ AWM

(
(F′′ )i

3

)
(12)
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4. Experiment

In this section, we describe in detail the datasets used in our experiment, introduce
the evaluation indicators, and present the experimental results.

4.1. Datasets

We evaluated the performance of MCFNet on two high resolution datasets: Deep-
Globe [56] and Potsdam. Table 1 contains some information about these datasets. These
two datasets have great challenges for the semantic segmentation task. DeepGlobe contains
the confusing categories of Agriculture and Rangeland. In addition, there are slender rivers
that it are difficult for the model to segment. Potsdam contains the confusing categories
of Low Vegetation and Tree, as well as smaller objects such as cars. Figure 6 shows the
two datasets.

1. DeepGlobe: DeepGlobe [56] is a dataset of high-spatial-resolution satellite images.
The dataset contains 803 images with a resolution of 2448× 2448 pixels that have been
annotated with seven landscape classes, including one that is an unknown class. Fol-
lowing the evaluation protocol of [10], the unknown class is ignored when calculating
mIoU, so there are only six classes to consider. We used the same train/validation/test
split as reported in [10], with 455, 207, and 142 images for training, validation, and
testing, respectively.

2. Potsdam: Potsdam consists of 38 ultra high-spatial-resolution images, each with
6000 × 6000 pixels and it is representative of urban remote sensing data with its large
buildings, narrow streets, and dense settlement structures. Tiles are composed of
red-green-blue-infrared (RGB-IR) four-channel images. The dataset also includes a
Digital Surface Model (DSM) and a normalized DSM (nDSM). In this study, we only
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used RGB data. We randomly divide images into training, validation and testing sets
with 26, 6 and 6 images respectively.

Table 1. Details of HSR Datasets used to evaluate of framework.

Dataset Context Resolution Spatial
Resolution No. Classes

DeeplGlobe aerial scene 2448 × 2448 0.5 m 7
Potsdam urban scene 6000 × 6000 0.05 m 6
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4.2. Experimental Setup

The Feature Pyramid Network (FPN) [37] with a Resnet50 backbone was used as
the segmentation network as in the previous work GLNet [10]. Additionally, the input
sizes 512×512 px. While training our module, we randomly cropped image patches and
applied the following data augmentations: rotation, and horizontal and vertical flipping.
We used an Adam optimizer with decayed weight of 5× 10−4, and an initial learning rate
of 1× 10−3. We trained the module for 50 epochs, and the learning rate was decreased
tenfold at epoch 10, 20, 30 and 40. We used Focal Loss [57] with fl = 2 as the loss function
for training modules. Equations (13) present the calculation formulas. We implemented
MCFNet using PyTorch to start from the public implementation of FPN with ResNet50, and
used a batch size of 8 for training on a workstation with a signal NVIDIA RTX 3090 GPU.

LFL = −(1− pt)
γ log(pt) (13)

4.3. Evaluation Metrics

Semantic segmentation task often suffers from severe class imbalance problems, e.g.,
the category “agriculture” occupies much more area (i.e., pixels) than “water” in DeepGlobe.
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The pixel-wise metric F1 and accuracy can hardly reflect how the models handle this
problem. Instead, mIoU measures the average segmentation quality of each category. Thus,
three metric are used in evaluating the segmentation performance of the proposed network.
They are intersection over union (IoU), mean intersection over union (mIoU), and Memory
Usage (MB). IoU is used to evaluate the segmentation performance of each class and mIoU
is used to evaluate the average segmentation performance of all classes as well as Memory
Usage is used to measure the GPU memory usage of a model. Suppose there are N classes
in total. Denote Pii (i = 1, 2, . . . . . . , N) as the number of pixels of class i predicted to
belong to class i, and denote Pij (i = 1, 2, . . . . . . , N) as the number of pixels predicted to
belong to class j. Then mathematical formulas of IoU and mIoU can be written by

IoU =
pii

∑N
j=0 pij + ∑N

j=0 pji − pii
, i ∈ (1, N) (14)

mIoU =
1

N + 1

N

∑
i=0

pii

∑N
j=0 pij + ∑N

j=0 pji − pii
(15)

4.4. Result
4.4.1. The Result on DeepGlobe Dataset

The results of the comparison between our method and other state-of-the-art methods
are presented in Table 2. They demonstrate that all models achieve higher mIoU under
global inference, but consume a large amount of GPU memory. With patch-based infer-
ence, memory consumption decreases, but so does the accuracy. GLNet is a segmentation
network for high-resolution images, which fuses local and global features throughout the
segmentation process. It is reasonably effective, but it is still time consuming due to the
fusion of global features with each local patch. In comparison, the PSM module only selects
local patches with poor segmentation effect for feature fusion, thereby reducing memory
usage and enhancing accuracy. MCFNet outperforms other state-of-the-art method with
the segmentation accuracy of 72.6% in mIoU and only uses 1538 MB GPU memory. Figure 7
depicts the segmentation results of MCFNet.

Table 2. Performance of MCFNet and other segmentation models on DeepGlobe Dataset.

Model
Patch Inference Global Inference

mIoU(%) Memory(MB) mIoU(%) Memory(MB)

UNet 37.3 949 38.4 5507
ICNet 35.5 1195 40.2 2557

PSPNet 53.3 1513 56.6 6289
SegNet 60.8 1139 61.2 10,339

Deeplabv3+ 63.1 1279 63.5 3199
FCN-8s 64.3 1963 70.1 5227

mIoU(%) Memory(MB)

GLNet 71.6 1865
MCFNet 72.6 1538

MCFNet-All
Fusion 73.0 1538

We present the segmentation performance of baseline, GLNet, MCFNet and MCFNet
-all fusion for all DeepGlobe classes in Table 2. Among all categories, the “Agriculture”
class gains the highest classification accuracy of 78.9%, because it has a large proportion
in the dataset. In contrast, category “Rangeland” and “Barren” has the lower prediction
accuracy, because class “Agriculture”, “Rangeland” and “Barren” are three classes of
objects that are similar in appearance but different in class. Compared with baseline,
MCFNet improves the segmentation accuracy by 2.5% and 4.7% on Rangeland and Barren
respectively. Our experimental results demonstrate that MCFNet has good discriminative
ability for ambiguous categories, such as Agriculture and Rangeland. It benefits from
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our integration of multi-field contextual semantic information. The visualization results
are shown in Figure 8. In Table 3, all referred to all classes average, and the rest single
class codes are as follows: U.-Urban, A.-Agriculture, R.-Rangeland, F.-Forest, W.-Water,
B.-Barren.

Table 3. Segmentation performance measured in IoU/mIoU(%) on DeepGlobe.

Class U. A. R. F. W. B. All

Baseline 78.3 87.2 39.0 78.9 82.4 59.4 70.8
GLNet 78.1 86.8 38.6 79.8 82.6 63.6 71.6

MCFNet 78.9 87.3 41.5 80.6 83.1 64.1 72.6
MCFNet-All Fusion 79.3 87.3 43.2 80.7 83.7 63.7 73.0
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Rangeland.

4.4.2. The result on Potsdam dataset

Compared with DeepGlobe, Potsdam has a higher image resolution and cannot be
directly input to image for model training. Accordingly, we only compared the patch
segmentation results for Potsdam. In those methods, the backbone used to extract high-
level features and low-level features was also Resnet50. The testing results are shown
in Table 4 where MCFNet yields mIoU of 70.1% and is quantitatively superior to other
methods in terms of both accuracy and memory usage. The “Impervious Surface” class
gains the highest classification accuracy of 79.6%. It s indicated that most of the pixels of
this class are correctly classified because the contextual information of the “Impervious
Surface” is not complicated, and could be easily extracted. In addition to the “background”
class, the “car” class gains the lowest classification accuracy of 63.9%. It is because cars
belong to the densely located small objects and that cars have intra-class variability, such
as different colors and parking locations. As expected, the segmentation performance
of MCFNet is superior to other models and it results in the 8% accuracy improvement
compared to baseline. Figure 9 depicts the segmentation results of MCFNet.

Table 4. Performance of MCFNet and other segmentation models on DeepGlobe Dataset.

Model mIoU(%) Memory(MB)

UNet 60.4 3480
PSPNet 64.8 3108
FCN-8s 65.9 4496

FPN 66.2 4044
Deeplabv3+ 66.8 3424

MCFNet 70.1 2594
MCFNet-All Fusion 72.2 2594

To further explore the advantages of our model in each class, we present the segmen-
tation results of all types of Potsdam in Table 5. It is not difficult to see that our method has
a huge advantage in the segmentation of small objects, which benefits from our contextual
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fusion network. This is also confirmed in Figure 10, which shows the local segmenta-
tion results. In Table 5, all referred to all classes average, and the rest single class codes
are as follows: B.-Building, T.-Tree, Cl.-Clutter/Background, V.-Low Vegetation, C.-Car,
S.-Impervious Surface.

Table 5. Segmentation performance measured in IoU/mIoU(%) on Potsdam.

Class B. T. Cl. V. C. S. All

Baseline 77.0 58.1 61.0 68.3 55.9 76.4 66.2
DeepLab v3+ 76.2 57.1 56.9 66.4 67.3 76.9 66.8

MCFNet 78.2 65.9 61.4 71.6 63.9 79.6 70.1
MCFNet-All Fusion 78.9 68.4 61.5 73.0 70.6 81.2 72.2
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4.5. Ablation Study

To further test the efficiency of our model, we designed a series of ablation experiments.
The ablative study is to test the importance and performance of each part of the model.
For the two parts of our model, PSM and FM feature correlation module, we conducted
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ablation research. Furthermore, we added a time metric to demonstrate the effectiveness of
our module. Time represents the time consumed by the model to predict an entire image.
In Tables 6–8 Random Select (R.S.) represents a random selection of five local images for
enhancement. Since the memory usage of the GPU does not change much with or without
the addition of these modules, we added inference time as a metric to evaluate the efficiency
of the model.

Table 6. The effects of different components of our method on the results.

Model Random Select PSM FM mIoU(%) Time(s)

DeepGlobe

Baseline 70.8 1.1

Ours

√ √
71.1 1.6√ √
72.6 1.8√
73.0 2.7

Potsdam

Baseline 66.2 10.3

Ours

√ √
68.1 12.4√ √
70.1 12.4√
72.2 15.2

Table 7. Segmentation performance measured in IoU(%) on DeepGlobe.

Class U. A. R. F. W. B.

Baseline 78.3 87.2 39.0 78.9 82.4 59.4
+ R.S. & FM 77.3 86.4 36.5 78.9 81.7 60.1
+ PSM & FM 78.9 87.3 41.5 80.6 83.1 64.1

+ FM 79.3 87.3 43.2 80.7 83.7 63.7

Table 8. Segmentation performance measured in IoU(%) on Postdam.

Class B. T. Cl. V. C. S.

Baseline 77.0 58.1 61.0 68.3 55.9 76.4
+ R.S. & FM 77.8 61.3 61.5 70.1 60.0 77.6
+ PSM & FM 78.2 65.9 61.4 71.6 63.9 79.6

+ FM 78.9 68.4 61.5 73.0 70.6 81.2

In Table 6, aggregating contexts obviously improves the segmentation performance,
which the improvement from 70.8% to 73% in DeepGlobe and from 66.2% to 72.2% in
Potsdam. Specially, a small field of view context provides the nonlocal self-correlation
information which facilitates in the segmentation of small objects. However, for the global
image, a large field of view context can improve the accuracy of model perception. Hence,
better results can be achieved by integrating the context information from different field of
view. For instance, the segmentation accuracy for these two datasets is the highest when
FM for all local patch, reaching 73% and 72.2% respectively. We show the DeeplGlobe
local details as shown in Figure 11. Furthermore, as shown in Tables 7 and 8, compared
to baseline, the addition of the FM module has improved the segmentation accuracy for
each category.

To demonstrate the effectiveness of the PSM module, we set up a random selection of
local patches for comparison. From the above table, the higher accuracy of segmentation
selected by PSM proves the effectiveness of our scoring mechanism. In terms of algorithmic
efficiency, PSM selects only the local patches that are less effective in segmentation which
decreases the inference time compared to semantic fusion for all local patches. In Table 7,
all referred to all classes average, and the rest single class codes are as follows: U.-Urban,
A.-Agriculture, R.-Rangeland, F.-Forest, W.-Water, B.-Barren. In Table 8, the rest single
class codes are as follows: B.-Building, T.-Tree, Cl.-Clutter/Background, V.-Low Vegetation,
C.-Car, S.-Impervious Surface.
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5. Conclusions

In this article, we propose the MCFNet framework for HSR remote sensing images
semantic segmentation in order to balance accuracy and efficiency of high spatial resolution
image segmentation. Our network consists primarily of PSM and FM modules. Specifically,
PSM is proposed to select local patches with poor segmentation effects, while FM performs
multi-field of view contextual semantic fusion on these local patches.

MCFNet can not only extract the contextual, information from the global image, but
also refine the details of objects in the local image. Therefore, it can alleviate the intra-class
similarity and inter-class dissimilarity of remote sensing images and improve segmentation
accuracy. Furthermore, an additional benefit of PSM is that context fusion of local patches
does not take up much memory.

We have demonstrated the benefits of MCFNet on two challenging high-resolution
remote sensing images. In future research, we will attempt to directly use a transformer to
represent information characteristics in a way that allows global contextual relationships to
be obtained from the beginning, to compensate for the inherent shortcomings of CNN.
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