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Abstract: Automatic extraction of the skeleton lines of river systems from high-resolution remote-
sensing images has great significance for surveying and managing water resources. A large number
of existing methods for the automatic extraction of skeleton lines from raster images are primarily
used for simple graphs and images (e.g., fingerprint, text, and character recognition). These methods
generally are memory intensive and have low computational efficiency. These shortcomings preclude
their direct use in the extraction of skeleton lines from large volumes of high-resolution remote-
sensing images. In this study, we developed a method to extract river skeleton lines based entirely
on run-length encoding. This method attempts to replace direct raster encoding with run-length
encoding for storing river data, which can considerably compress raster data. A run-length boundary
tracing strategy is used instead of complete raster matrix traversal to quickly determine redundant
pixels, thereby significantly improving the computational efficiency. An experiment was performed
using a 0.5 m-resolution remote-sensing image of Yiwu city in the Chinese province of Zhejiang.
Raster data for the rivers in Yiwu were obtained using both the DeepLabv3+ deep learning model
and the conventional visual interpretation method. Subsequently, the proposed method was used
to extract the skeleton lines of the rivers in Yiwu. To compare the proposed method with the
classical raster-based skeleton line extraction algorithm developed by Zhang and Suen in terms of
memory consumption and computational efficiency, the visually interpreted river data were used to
generate skeleton lines at different raster resolutions. The results showed that the proposed method
consumed less than 1% of the memory consumed by the classical method and was over 10 times
more computationally efficient. This finding suggests that the proposed method has the potential for
river skeleton line extraction from terabyte-scale remote-sensing image data on personal computers.

Keywords: remote sensed image; skeleton line; river system; boundary tracing; run-length encoding

1. Introduction

River data are the most important basic data in the fields of hydrology and water
resources research. In the context of river systems, a hydrographic network often refers
to a river with a branched structure comprising a mainstream and several tributaries
interconnected within a basin, while a river network refers to a river with a network
structure formed by multiple rivers interconnected in a plain area [1]. The skeleton lines of
rivers are an abstract description of their shape and generally refer to the curves at their
center that reflect their main extension direction and shape characteristics [2]. River skeleton
line extraction is required in numerous application scenarios. For example, dual-line rivers
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are often simplified as single-line rivers in the thematic mapping of water resources [2].
Skeleton line extraction is also required to detect and identify rivers from remote-sensing
(RS) images [3–5]. Moreover, river skeleton lines have great application significance as
a reference for applications such as water resource monitoring, land planning, and ship-
based transportation [6]. In many provinces of China, such as Zhejiang Province, provincial
water area surveys are carried out every few years. The basic information and spatial
data of rivers, lakes, reservoirs, mountain ponds, artificial waterways, flood storage and
detention areas, and other water areas in the province were comprehensively identified
and mapped using technologies such as aerospace remote sensing, geographic mapping
information, the Internet and big data, so as to clarify the specific scope of water area
protection and shoreline control, and delineate the “three lines” space of water surface line,
shoreline and water area management scope line. The skeleton line of the river system is
one of the basic information of the water area to be extracted.

Rapid advances in RS technology have enabled the identification of water bodies from
RS images to become the most important means to acquire river data. Methods commonly
used to obtain river data from RS images include the conventional visual interpretation
method, spectral feature methods (e.g., single-band threshold, multi-band threshold, and
water-body index methods) [7,8], classifier methods (e.g., support vector machine, object-
oriented, and decision-tree methods) [9], and deep-learning (DL) artificial intelligence
algorithms (currently the most popular methods) [10,11]. These methods can be used to
directly obtain river data in a binary raster format, from which specific raster algorithms
can be employed to extract river skeleton lines.

A multitude of methods have been developed to extract skeleton lines from raster
images, which can be grouped based on the design principle into two categories: non-
iterative and iterative algorithms. Common non-iterative algorithms include central-axis
transformation [12], surface clustering [13], thermodynamic equations [14], cellular au-
tomata [15], mathematical morphology [6], and neural network models [16]. Iterative
algorithms mainly include the classical raster thinning algorithm [17] and its improved
variants [18–20]. Currently, the classical raster thinning method developed by Zhang and
Suen (1984) is recognized as a relatively mature method and is the most widely used. This
method is a multi-iteration shrinkage algorithm that gradually removes the boundary
points or reduces the unnecessary points from a raster until advancing to its interior to
extract the skeleton line while maintaining the topological invariability of the polygon.

Owing to their simple program design and ease of parallelization [21], raster-based
skeleton line generation methods have been applied extensively in the fields of image
processing and virtual simulation [13,14], such as fingerprint recognition [16], text and
character recognition [22,23], and 2.5- and 3-dimensional vision [12]. A raster image is,
in essence, matrix-based direct raster-encoded data, the volume of which increases exponen-
tially as the number of rows and columns in the grid increases. Previous researchers often
used various simple cartoon images in their investigation of skeleton line extraction [14]
while giving little consideration to the volume of raster data. For example, Mahmoudi
et al. [24] used images containing only 512 rows and 512 columns in their study. RS images
are characterized by high resolution and large data volume. The spatial resolution of
RS images can easily reach 1 m or even the sub-meter level. Conventional raster-based
skeleton line extraction methods are susceptible to computational failure due to computer
memory limitations. Here, the river system in an area with a size of 100 × 100 km is used
as an example. Assuming that the spatial resolution of the RS image of the area is 0.5 m
and that each grid cell stores 1 B of data, if all the data are read into the memory, the raster
data volume can reach 37.25 GB, which is a heavy burden for a personal computer. The
extraction of the skeleton lines of the river system in the Yangtze River basin in China
is a more representative case. Because the Yangtze River basin spans 6000 km from east
to west and 4000 km from north to south, the data volume can reach 223 GB even when
calculated based on a raster resolution of 10 m. In contrast, unlike block cartoon images,
the high spatial resolution of RS images means that finer information on the mainstreams
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and tributaries of rivers can be obtained. The extraction of the skeleton lines of these types
of long and narrow rivers with a large number of tributaries has always been a challenge in
skeleton line extraction research [25].

The various reasons presented above preclude the use of conventional raster-based
skeleton line extraction methods to achieve high accuracy and efficiency in the extraction
of river skeleton lines from RS images of large areas. For example, Meng et al. [6] used
the Rosenfeld algorithm [26] to extract river skeleton lines from RS images with a spatial
resolution of only 16 m that only covered partial sections of the Li River basin. In the study
by Guo et al. [4], the study area was limited to the area shown in a single aerial photograph.
As a result, only the skeleton lines of the sections of the river in a local area could be
extracted. Hence, in this study, based on the approach of Zhang and Suen’s classical raster
method, we propose to compress raster data for rivers using run-length encoding (RLE)
with consideration for the presence of extensive data redundancy in binary raster images of
rivers, as well as provide a solution for the efficient extraction of river skeleton lines based
entirely on run-length-encoded data.

2. Methods

Figure 1 shows the process of extracting river skeleton lines from an RS image. First,
raster data for the river system are extracted from the RS image. Subsequently, the raster
data for the river are converted to run-length-encoded data using the proposed run-length
method. In addition, raster data for the river skeleton lines are automatically generated
through run-length boundary tracing in conjunction with iterative calculations integrated
with pixel removal. Finally, the raster is automatically vectorized to generate vector line
data for the river skeleton lines (Section 2.4). The key steps are elaborated on in the
following sections.

Figure 1. Flowchart of river skeleton line extraction from an RS image.

2.1. Extraction of Raster Data for a River System from an RS Image

Conventional methods based on the spectral signatures of RS images establish models
for single or multiple image bands. They focus more on the calculation of pixel values and
less on other spatial features (e.g., image texture). Although they are simple and easy to
implement, these methods tend to identify shadows or buildings as water bodies, which
considerably limits the extraction accuracy for water bodies. The classifier approach designs
classifiers for image features and extracts water bodies based on specific algorithmic rules
and, therefore, can somewhat eliminate the effects of shadows and buildings. However,
in this approach, feature extraction and classifier design depend on expert knowledge.
In addition, classifiers are not versatile for different regions and effects [27].

In recent years, DL has provided an effective framework for the classification and
recognition of massive RS image data, gradually advancing RS image processing. Moreover,
DL has achieved marked progress in object detection, image classification, and parameter
extraction. In this study, an attempt was made to use the DeepLabv3+ model to extract river
data from a high-resolution RS image. The DeepLabv3+ model is a DL model for semantic
image segmentation and is the latest improved version in the DeepLab series of models
developed by the Google research team. The most significant contribution of the DeepLab
series of models to semantic image segmentation is the development of dilated convolution



Remote Sens. 2022, 14, 5852 4 of 22

and a series of subsequent improvements [28]. The latest DeepLab model (i.e., DeepLabv3+)
has the following advantages: more shallow information is retained in the model network
based on the feature fusion strategy for object detection; the edge detection accuracy is
optimized by exploiting the advantages of the encoder–decoder architecture and Atrous
Spatial Pyramid Pooling, as well as gradually recovering spatial information to capture
clear object boundaries; and depth-wise separable convolution is also added to optimize
the performance of the segmentation network. When tested on the PASCAL Visual Object
Classes 2012 dataset, the accuracy of the DeepLabv3+ network exceeded the then-highest
level. The DeepLabv3+ network is one of the most mature semantic segmentation networks
currently available. Figure 2 shows the architecture of the DeepLabv3+ DL model [29].

Figure 2. Architecture of the DeepLabv3+ deep learning (DL) model proposed by Chen et al. [29].

DL models are effective in extracting permanent water bodies (e.g., large rivers). Small
streams and man-made waterways are known for their complex changes and seasonal and
intermittent drying-up periods; therefore, it is difficult to extract continuous, uninterrupted
water bodies using DL models. Hence, in this study, a more complete set of river-system
data was additionally extracted from the RS image through visual interpretation. This task
was completed primarily through direct manual extraction of the river boundaries using
ArcGIS software. First, load the remote sensing image into ArcGIS software. Second, create
a new river vector layer and visually sketch all rivers and their branches on the remote
sensing image. Third, use the “Extract by Mask” in ArcToolbox to cut the sketched river
water body vector data and remote sensing image to obtain remote sensing data that only
retains river water bodies. Finally, the remote sensing data of river water body is converted
into binary raster data.

2.2. Conversion of Raster Data to Run-Length-Encoded Data for Rivers

River data generated by a DL model and visual interpretation are direct raster-encoded
data. Reading these data simultaneously is a memory-intensive process for a personal
computer. To address this issue, raster-encoded river data can be read blockwise based
on strips and compressed in real-time through RLE [30]. RLE is a typical raster data
compression method [31] that is particularly suitable for compressing binary images [32,33];
only two values—the values of the starting and ending columns of non-zero-pixel values
in a raster row—are required to be stored in a run length.

Compared with conventional raster-based skeleton line generation methods, the pro-
posed method does not store raster-encoded data in matrix format in the computer memory
but instead directly stores run-length-encoded data in list format. Table 1 summarizes the
run-length and run-length list structures in a raster row expressed using the C language.
A single run length is expressed using struct “Runlength” that stores its starting column
number “StartColNo” and ending column number “EndColNo” along with a pointer to
the next (right) run length, “NextRunlength”. A run-length list, “RunlengthLIST”, is cre-
ated for each row in the raster field. The run-length list stores the number of run lengths,
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“RunlengthNum”, in the row along with the pointer to the first run length from the left,
“FirstRunlength”.

Table 1. Run-length and run-length list on one row of a grid.

Struct Runlength{
int StartColNo, EndColNo;
Runlength *Next Runlength;

}

Struct RunlengthLIST{
int RunlengthNum;
Runlength *First Runlength;

}

Figure 3 shows a schematic diagram of the conversion of direct raster-encoded data
to run-length-encoded data for a river section (the red grid cells are the target pixels
representing the river [value = 1], and the white grid cells are the background pixels
[value = 0]). Direct raster encoding stores a matrix comprising 9 rows and 15 columns
and needs to store a total of 135 values for the whole river data. If the data are stored in
RLE format, no values need to be stored for the non-river area, and only the run-length
information for the river in each row of the raster field needs to be marked. As shown
in Figure 3, seven run lengths are generated in the graph, which are located in rows l2
and l8. For example, run length (2, 8) is stored in row l2. A total of seven run lengths
(14 values) need to be stored for the whole raster field. Compared to direct raster encoding,
RLE compresses data at a ratio of 89%.

Figure 3. Schematic diagram of run-length encoding (RLE)-based compression of raster data for
a river.

2.3. River Skeleton Line Generation Based on RLE
2.3.1. Rules for Determining Redundant Pixels

Based on the rules used by Zhang and Suen to determine pixel connectivity, redundant
pixels are gradually eliminated from an image through multiple iterations. In a single itera-
tion, the preset rules are used to determine the redundant pixels that need to be removed.
As shown in Figure 4a, p1, p2, p3, p4, p5, p6, p7, and p8 are the eight pixels adjacent to
pixel p0. The basic relationship between any two adjacent pixels is defined below:

ϕ(w) = 1, if
{

p(w) = 0
p(w + 1) = 1

(1)

where w is a value in the range of 1–8. In particular, when w = 8, because p9 does not exist,
the relationship between p8 and p1 should be examined. In other words, when p8 = 0 and
p1 = 1, ϕ(8) = 1. The sum of the relationships of pixel p0 with all of its adjacent pixels is
given below:

Flag(p0) = ∑8
w=1ϕ(w) (2)
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Figure 4. Schematic diagrams of the determination of redundant pixels in (a) direct raster encoding
and (b) run-length encoding (RLE).

As shown in Equations (3) and (4), J1(p0) and J2(p0) are the rules for determining the
connectivity of pixel p0. If p0 = 1 and J1(p0) = 1 or J2(p0) = 1, then p0 is a redundant pixel
and can be directly removed (p0 is set to 0):

J1(p0) = 1, if


p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 ≥ 2
p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 ≤ 6

p1 ∗ p3 ∗ p5 = 0
p3 ∗ p5 ∗ p7 = 0

Flag(p0) = 1

(3)

J2(p0) = 1, if


p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 ≥ 2
p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 ≤ 6

p1 ∗ p3 ∗ p7 = 0
p1 ∗ p5 ∗ p7 = 0

Flag(p0) = 1

(4)

In direct raster encoding, a pixel value is stored as a two-dimensional (2D) array. There-
fore, to determine whether a pixel is redundant, an operation can be directly performed on
the 2D array to access the values of the eight adjacent pixels. Operations on run-length-
encoded data are more complex. As shown in Figure 4b, to determine the connectivity of
pixel p0, the run-length list needs to be first searched sequentially in row l5 to find whether
pixel p0 is located in the run lengths. To access the values of the eight pixels adjacent to
pixel p0, the run-length lists in the rows above and below l5 also need to be searched.

2.3.2. Run-Length Boundary Tracing and Redundant Pixel Removal

In the classical raster method developed by Zhang and Suen (1984), all pixels need
to traverse twice in one iteration. During the first traversal, a set of pixels that need to be
removed is determined based on Equation (3). After the removal of these pixels, the second
traversal begins, during which a set of pixels that need to be removed is determined based
on Equation (4). After the removal of the pixels, the algorithm begins another iteration.
Finally, the iterative calculation process is terminated when there are no more removable
pixels. The remaining target pixels constitute the skeleton lines of the image.

As shown in the above analysis, determining the connectivity of all the pixels using
the above approach can inevitably gravely affect the computational efficiency in RLE.
Considering that removable pixels only appear at the boundaries of a graph in one iteration
of the calculation, the connectivity of the pixels located in the interior of the graph does
not need to be determined. As shown in Figure 5, an efficient strategy is to trace along the
boundary of the set of run lengths to search all the boundary pixels (the pixels labeled with
black dots in Figure 5). Therefore, only the connectivity of the boundary pixels needs to be
determined. This method turns the determination of redundant pixels from a line-by-line
and pixel-by-pixel process to a run-length boundary tracing process, thus cleverly removing
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redundant pixels at the boundary. As shown in Figure 5, only 35 boundary pixels need to
be determined if they are redundant in the first iteration, compared with 57 pixels in the
original process. This translates to a 38% decrease in the computational load.

Figure 5. Run-length boundary tracing and redundant pixel determination.

2.3.3. Design of Boundary Tracing Direction Templates

A real-world river system may contain an island structure, resulting in multiple
boundaries. In Figure 6, the red and blue lines are the outer and inner boundaries of the
river, respectively. Run-length boundary tracing may occur on either the outer or inner
boundary of the river. In Figure 5, arrows are used to indicate the run-length boundary
tracing directions. There are four directions: up, down, left, and right. Setting a reasonable
run-length boundary tracing rule is crucial as it determines whether run-length boundary
tracing can form a closed loop (i.e., return to the starting edge). Hence, for rivers with
complex inner and outer boundaries, templates for determining the run-length boundary
tracing direction were developed in this study.

Figure 6. Inner and outer boundaries of a river (the red and blue lines are the outer and inner
boundaries, respectively).

As shown in Figure 7, a 2× 2 window is used to search along the run-length boundary
to locate all of the boundary pixels and determine whether they are redundant. There are
a total of 24 scenarios for the determination of the run-length boundary tracing direction.
The first three columns (from the left) show the scenarios of the tracing of the outer
boundary of an image, and the last three columns show the scenarios of the tracing of the
inner boundary of an image.
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Figure 7. Twenty-four run-length boundary tracing templates.

During each iteration of the calculation, run lengths are searched row by row, starting
from the bottommost row and moving up. When the left (right) side of a run length is
found untraced, it is used as the starting tracing edge, with the tracing direction marked
as “up”. This step is followed by boundary tracing and determination of the connectivity
of the boundary pixels while ensuring that the left and right sides of each run length are
traced. If the left side of a run length is the starting tracing edge, it means that tracing
occurs on the outer boundary of the river. Conversely, if the right side of a run length is the
starting tracing edge, it means that tracing occurs on the inner boundary of the river. In the
set of run lengths in Figure 5, the left side of the run length in row l2 is the starting tracing
edge. Figure 8a,b shows the first two steps of determination of the tracing direction for the
left side of the run length in row l2 based on a 2 × 2 window, which uses the “up to up”
and “up to right” templates in the second row in Figure 7, respectively.

Figure 8. Determination of the run-length boundary tracing direction. (a) up to up. (b) up to right.

2.4. Vectorization of River Skeleton Lines

After the removal of the redundant pixels, all the run lengths in the raster field
constitute river skeleton lines. The points in Figure 9 represent the pixels where the
skeleton lines are located. The extraction of skeleton lines from run lengths refers to the
automatic generation of skeleton lines based on the order in which pixels are stored after
they are located sequentially based on their adjacency. Analysis of the pixels comprising
the skeleton lines reveals that these pixels can be grouped into three categories, namely,
endpoint pixels, junction pixels, and bifurcation pixels. An endpoint pixel refers to a pixel
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at which skeleton line tracing starts or ends (starting or ending pixels, respectively). There
is only one target pixel among the eight pixels adjacent to an endpoint pixel. If such
a pixel has already been searched, the endpoint pixel is an ending pixel; otherwise, the
endpoint pixel is a starting pixel, as shown in Figure 10a. Junction pixels refer to the pixels
that act as connections in skeleton lines. Among the eight pixels adjacent to a junction
pixel, there is only one unsearched pixel, or there are two adjacent pixels, as shown in
Figure 10b. Bifurcation pixels refer to points at which multiple branches occur in skeleton
lines. An unsearched pixel has two nonadjacent target pixels, resulting in a bifurcation, as
shown in Figure 10c.

Figure 9. The three categories of pixels obtained by skeleton line extraction.

Figure 10. The skeleton line tracing direction of pixels ((a): endpoint; (b): junction; and (c): bifurcation).

In this study, considering the complex characteristics (e.g., bifurcations) of rivers,
searching is terminated at each bifurcation pixel during the extraction of skeleton lines,
followed by the generation of three skeleton lines from the bifurcation pixel. In Figure 10a,
the red pixels are pixels that are currently searched. Among the eight pixels adjacent to each
red pixel in Figure 10a, if there is only one target pixel and it has not been searched, then
this pixel is to be searched next; otherwise, this pixel is the ending pixel of a skeleton line.
As shown in Figure 10b, junction pixels can be divided into two categories: pixels with only
one adjacent pixel that is unsearched and is to be searched next and pixels with two adjacent
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pixels (out of a total of eight) that are unsearched and adjacent to each other. If there is more
than one unsearched adjacent pixel, the pixel above is searched next, followed by the pixel
to the right, the pixel below, and the pixel to the left. As shown in Figure 10c, searching is
terminated if two unsearched pixels that are not adjacent to each other are found among the
pixels adjacent to the pixel that is being searched currently. Each time a pixel is searched,
this pixel is removed from the run length until no run length can be found in the run-length
list, which means that all the skeleton lines are extracted. The skeleton lines obtained from
tracing are jagged line segments with a large number of redundant pixels; they can be
smoothed using software such as ArcGIS.

3. Study Area and Data Set

Located in the city of Jinhua in the Chinese province of Zhejiang, the city of Yiwu
(119◦49′–120◦17′ E; 29◦2′–29◦33′ N) (as shown in Figure 11) spans 58.15 km from north to
south and 44.41 km east to west, and encompasses a total land area of 1105 km2. Yiwu has
a river system composed of intertwined natural and man-made rivers that vary dramatically
in width, which is typical in southern China. There are five types of water bodies in Yiwu,
namely, rivers, reservoirs, mountain ponds, man-made waterways, and other water bodies,
which collectively cover an area of 52.17 km2. This means that 4.72% of the ground surface
in Yiwu is covered with water. The Yiwu River is the longest mainstream river in Yiwu,
crossing the city from west to east over a distance of 40 km. Figure 11 shows the high-
resolution satellite RS image provided by Yiwu Natural Resources and Planning Bureau
used in this study, with a spatial resolution of 0.5 m and 116,326 rows and 90,801 columns
in the grid.

In this study, the DeepLabv3+ DL model was used to extract data for the water bodies
across Yiwu. A small portion of the data for the river system in Yiwu collected in this study
was rasterized to create a raster image of the real water bodies at a resolution consistent
with that of the RS image. A raster grid with 1024 × 1024 cells was used to crop the RS
image and the raster image of the real water bodies. Ultimately, in total, 982 DL samples
were obtained to form a sample set for the DeepLabv3+-based DL model for water-body
extraction. Based on the general training and testing requirements for DL models, the
DL sample set was divided into a training set, a validation set, and a test set at a ratio
of 8:1:1 to train and test the Deeplabv3+-based DL model for water-body extraction. The
three types of samples were divided randomly based on their ordinal numbers to allow the
samples with different roles to be evenly distributed in space. Figure 12 shows the spatial
distribution of the sample set in the study area.

The DeepLabv3+ model was trained to distinguish between water bodies and non-
water bodies in the image on the prepared DL training set. Cross entropy (CE) was used
as the loss function of the model to optimize the grid parameters. Specifically, CE was
primarily employed to describe the difference between the predictions yielded by the model
and the reality and guide the DL model to reduce its error. In this study, the DL model
was trained 100 times, each of which involved four samples. After each time of training,
the training accuracy was examined using the samples in the validation set. As shown in
Figure 13, two metrics, intersection-over-union (IoU) and accuracy (ACC) were used to
evaluate the capacity of the model to distinguish water bodies during training. IoU refers
to the ratio of the categories correctly extracted by the model to the union of the categories
output by the model and the real categories. In Figure 13b, the orange line represents the
IoU of the non-water body and the gray line represents the IoU of the water body. ACC
refers to the proportion of the pixels that are correctly identified. Figure 13a–c shows the
training results for the DeepLabv3+ model.
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Figure 11. Satellite RS image of Yiwu at 0.5 m resolution.
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Figure 12. Schematic distribution of the deep learning (DL) sample set (the training, validation, and
test sets are marked in yellow, blue, and orange, respectively).



Remote Sens. 2022, 14, 5852 13 of 22

Figure 13. Variation in the value of the loss function (a), IoU validation value (b), and ACC validation
value (c) for the DeepLabv3+ model during training.

The actual capacity of the trained DeepLabv3+ model to extract water bodies was
tested using the samples in the test set. The model was used to produce a prediction
for each sample, which was compared with the reality. IoU and ACC were used as the
comparison metrics. Table 2 summarizes the test results.

Table 2. Water-body extraction test results for the DeepLabv3+ model.

IoU for Non-Water Bodies IoU for Water Bodies ACC

0.9725 0.6013 0.9736

The test results showed that the model correctly identified more than 97% of the pixels,
suggesting that the DeepLabv3+-based water-body extraction model was sufficiently accu-
rate for extracting water bodies from the RS image in this study. Figure 14 shows the Yiwu
water-body (partial) data extracted by the trained Deeplabv3+ DL model from the image of
the entire city of Yiwu. The extracted water-body raster image was vectorized and checked
using topology rules in ArcGIS. Conspicuously erroneous water bodies (e.g., damaged and
incomplete water bodies) were removed. Thus, a total of 9458 water-body elements were
extracted, covering a total area of 55 km2.
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Figure 14. Yiwu water-body (partial) data generated based on Deeplabv3+ DL model.

The data generated by the Deeplabv3+ DL model consisted of all the water-body
elements in Yiwu. However, most of the water bodies are not rivers. Therefore, only
the mainstream of the Yiwu River and its major tributaries were retained in this study to
generate raster data for the major rivers in Yiwu, as shown in Figure 15a. The raster data for
the rivers in Figure 15a had a resolution consistent with that of the RS image and contained
91,460 rows and 69,586 columns in the grid. Many tributaries of the Yiwu River are small
streams that dry up seasonally and intermittently. Identifying narrow, long, continuous
rivers on RS images is a challenging task. Therefore, to obtain relatively complete data for
the mainstream and major tributaries of the Yiwu River, the rivers were outlined through
visual interpretation, as shown in Figure 15b. This set of raster data contained 74,170 rows
and 58,234 columns.

Figure 15. Extraction of raster data for the mainstream and tributaries of the Yiwu River from
a high-resolution RS image. (a) Deeplabv3+ DL model. (b) Visual interpretation.
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4. Results and Analysis
4.1. Analysis of the Extracted Skeleton Lines

Based on the proposed run-length-based skeleton line extraction method, the program
automatically reads two sets of raster river data. The data were read blockwise and com-
pressed once to directly generate run-length-encoded river data in the computer memory.
Thus, skeleton line data for the Yiwu River system were obtained. Figure 16a shows the
visually interpolated river data, the generated skeleton lines, and the corresponding pixels.
Figure 16b shows the river data generated by the DL model, the generated skeleton lines,
and the corresponding pixels. It is evident that the skeleton line pixels with a resolution of
0.5 m can satisfactorily indicate the central axis of the river and the direction of its branches.

Figure 16. Extracted skeleton lines and partial enlargement of the Yiwu River system. (a) Deep
learning (DL) model-generated river data. (b) Visually interpreted river data.

As shown in Figure 17a, the skeleton line can satisfactorily characterize the direction
of a single river with gentle changes in direction and width; however, natural river sys-
tems have complex characteristics such as numerous bifurcations. Therefore, researchers
are concerned regarding whether the generated skeleton lines preserve the bifurcation
characteristics of rivers. Figure 17b shows the bifurcations of the Yiwu River in a local
area. At each bifurcation, the width of the mainstream differs markedly from that of the
branch. The skeleton lines of the mainstream and branches satisfactorily show the char-
acteristic bifurcations of the river. Furthermore, rivers are often connected to other water
bodies (e.g., lakes, reservoirs, and ponds), resulting in sudden changes in their direction
and an abrupt increase in their width. As shown in Figure 17c, the proposed method
was also effective in extracting satisfactory skeletal lines from water bodies (e.g., lakes,
reservoirs, and ponds), which led to an increase in the width of the river. The skeleton
lines also satisfactorily connected the river sections upstream and downstream of the lakes,
reservoirs, and ponds and remained continuous. Figure 17d shows an example where the
river bifurcates, and the branches converge later. This is a common island structure in
rivers. The bifurcation and convergence characteristics of the river were retained in the
skeleton lines generated using the proposed method.
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Figure 17. Extracted skeleton lines of the Yiwu River system in local areas. (a) Gentle changes in river
width. (b) Marked changes in river width. (c) The river is connected to ponds. (d) An island structure
in the river.

4.2. Skeleton Line Extraction Performance Analysis

In general, the run-length method is, in essence, a special raster method, the perfor-
mance of which is still affected by the spatial resolution of the image and the number
of rows and columns in the raster image. To analyze its application potential in dealing
with large volumes of data, the proposed run-length method was compared with the
algorithm developed by Zhang and Suen using the C# development language on a com-
puter equipped with an Intel® CoreTM i7-10750H central processing unit at 2.60 GHz and
32.00 GB of memory and running on a 64-bit Windows 11 operating system.

First, the sweep-line algorithm was used to convert the vectorized river boundaries
outlined by visual interpretation to raster data with different spatial resolutions [34,35].
Because the sweep-line algorithm can directly read the river-boundary vector data and
subsequently complete RLE memory compression [30], generating raster image files with
different spatial resolutions in advance is not required. A statistical analysis of memory
consumption revealed the following: Zhang and Suen’s method required the construction
of two 2D sets of data—one for storing the raster river data and the other for marking
whether pixels should be removed. Therefore, each grid cell was required to store 2 B of
data. The proposed method uses a List object in the C# language to store the run-length
list. Each run length stored the values of the starting and ending columns which amounted
to a total of 8 B. As shown in Table 3, 11 tests were conducted based on different spatial
resolutions, in which the grid cell width was gradually refined from 10 to 0.1 m. The
computational time and memory usage were determined for Zhang and Suen’s method
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and the run-length method. In Table 3, “Time” is the total time taken to execute the core
algorithms, and “Total memory” is the total memory allocated to the direct raster-encoded
and run-length-encoded river data during the execution of the algorithms. At a grid cell
size of 0.6 m, Zhang and Suen’s method failed because the computer was unable to allocate
a large 2D array.

Table 3. Comparison of performance between Zhang and Suen’s method and run-length method.

Cell Size Zhang and Suen’s Method Run-Length Method

(m) Lines × Columns Time (s) Total Memory (MB) Lines × Columns Time (s) Total Memory (MB)

10 3718 × 2922 4 21 3718 × 2922 2 0.18
8 4646 × 3650 7 33 4646 × 3650 3 0.23
6 6191 × 4863 15 60 6191 × 4863 5 0.31
4 9281 × 7289 45 135 9281 × 7289 11 0.47
2 18,552 × 14,568 283 540 18,552 × 14,568 43 0.95
1 37,095 × 29,127 2333 2160 37,095 × 29,127 193 1.9

0.8 46,366 × 36,406 6944 3376 46,366 × 36,406 283 2.38
0.6 61,808 × 48,528 551 3.17
0.4 92,712 × 72,792 1199 4.76
0.2 185,425 × 145,594 4944 9.5
0.1 370,850 × 291,168 20,615 19.08

(1) Computational efficiency. It is evident from Table 3 that the run-length method was
superior in terms of computational efficiency. At a grid cell size of 1 m, the run-length
method still took only approximately 3 min to complete the computation, compared
to more than 30 min for Zhang and Suen’s method. A data comparison revealed that
the ratio of the time consumed by Zhang and Suen’s method to the time consumed by
the run-length method increased rapidly as the grid cell size decreased. As the grid
cell size was refined to 0.1 m, the number of rows and columns in the grid reached
the order of hundreds of thousands. Under this condition, the proposed method still
exhibited excellent stability.

(2) Memory consumption. In the extraction of the skeleton lines of a bifurcated river, the
memory to be allocated is related to the complexity of the bifurcated river in addition
to the raster resolution. The more complexly the river is bifurcated, the more run
lengths there are in the raster rows, and the more memory is required. However, the
run-length method can completely deal with all types of complex river data, with
almost no requirement to consider memory limitations. As seen in Table 3, even if the
spatial resolution was set to 0.1 m, which increased the number of rows and columns
in the grid to 300,000, less than 20 MB of memory was used to store the run-length
data. At a resolution of 0.1 m, Zhang and Suen’s method required 215 GB of memory.
The run-length method is hugely advantageous in terms of memory consumption
and can theoretically handle terabyte-scale raster data.

5. Discussion

The proposed run-length method is consistent with Zhang and Suen’s method in
terms of the rules for determining redundant pixels. Accordingly, the boundary mor-
phology of a river has a marked impact on the extraction of its skeleton lines. As shown
in Figure 18, compared to the DL model (Figure 18a), visual interpretation (Figure 18b)
yielded a continuous river with smoother boundaries and generated skeleton lines with
a smoother course and fewer bends. In contrast, as shown in Figure 18a, the skeleton
lines generated by the DL model contained a large number of unnecessary branches (red
box (3) in Figure 18a) that require removal through post-processing treatments. In addition,
a breakup in the river led to a ruptured skeleton line with two parts that needed to be
connected (red boxes (1) and (2) in Figure 18a). Meng et al. [6] developed a method to
automatically connect ruptured skeleton lines based on mathematical morphology and



Remote Sens. 2022, 14, 5852 18 of 22

topology constraints. Similar problems will also be encountered in the research of road
centerline extraction. Yuan and Xu [36] proposed a Loss Function (GapLoss) method for the
Semantic Segmentation of roads, which can well solve the problem of road route fracture.
Overall, the skeleton lines generated from the visually interpreted river data were finer and
required fewer post-processing treatments.

Figure 18. Comparison of skeleton lines extracted from the river data yielded by the (a) DL model
and (b) visual interpretation.

The raster resolution has a significant impact on the extraction of skeleton lines. The
higher the raster resolution (i.e., the smaller the grid cell size), the finer the skeleton lines.
In addition, it is imperative to ensure that the grid cell size is smaller than the river width;
otherwise, the river is unable to cover a grid cell, resulting in seriously distorted skeleton
lines. Figure 19 compares the skeleton lines extracted at grid cell sizes of 10, 2, and 0.1 m.
It is evident that the skeleton lines extracted at a resolution of 0.1 m were appreciably
better than those extracted at resolutions of 10 and 2 m. As shown in Figure 19a, at
a raster resolution of 10 m, part of the river could not completely occupy a single grid
cell. Consequently, part of the water body was marked as background pixels, and the
generated skeleton lines were composed of broken lines. For a large river system with
many tributaries, the effect of skeleton line extraction depends not on the main river but
on the tributaries with complex structures. Because the mainstream and tributary are at
the same raster resolution, while the river width of the tributary is narrower, in order to
obtain a good extraction result, the requirements for raster resolution will be higher, and
the focus should be on the river width of the tributary. The comparative test analysis in
this study revealed that a grid cell width of one-tenth of the river width can ensure that the
generated river skeleton lines are of good fidelity. Visual interpretation revealed a general
width of approximately 5 m for the narrowest portions of the mainstream and tributaries
of the Yiwu River. Therefore, the 0.5 m-resolution raster data for the river obtained through
visual interpretation and the DL model generally met the requirements.

It is also a feasible method to extract river skeleton lines from the perspective of
a vector algorithm. Through triangulation of river polygons, the midpoints on the edges
are reasonably extracted from the triangles, and these midpoints are connected in sequence
with complex design strategies to generate skeleton lines. Lewandowicz et al. [37] proposed
a Base Point Split (BPSplit) algorithm for extracting lake skeleton lines. Compared with the
raster method, the vector method does not care much about the accuracy of skeleton lines,
but the implementation of the vector algorithm is generally too complex. In the vector
algorithm, it is necessary to deal with the complex polygon holes, provide a feasible solu-
tion, and reasonably design to accurately trace the skeleton line from the triangles [38–40].
In addition, some pre-processing operations are difficult to avoid. For example, Lewandow-
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icz’s method [36] needs to select all the base points at the entrance and exit of the lake.
Some software, such as ArcGIS, also provides similar centerline extraction tools [41], but it
is susceptible to graphics boundaries. The vector boundaries on both sides of the centerline
must have certain parallel features.

Figure 19. Comparison of skeleton lines extracted at resolutions of (a) 10 m, (b) 2 m, and (c) 0.1 m.

At present, the resolution of remote sensing image data has been greatly improved.
Remote sensing data with sub-meter resolution has been particularly common. Under
this resolution, it is almost unnecessary to pay too much attention to the accuracy of river
skeleton lines. As shown in Table 3, multiple resolution data (10 m~0.6 m) are simplified
from the original resolution data (0.5 m). The proposed method can deal with a large
number of raster images without considering the limitation of computer memory.

Run-length-encoded data are still a special type of raster data that can be easily
parallelized. The case examined in this study, in which the raster field is divided into strips,
is used as an example. For example, a raster field with 10,000 rows can be automatically
divided into five strips (each containing 2000 rows) for parallelization. Outward expansion
by a few rows of raster cells from the strip boundaries alone can allow for the skeleton lines
generated from the calculation of each strip to be connected.

Figure 20a shows a river polygon and its run-length data; the entire raster field is
divided into 20 rows. If the raster field is divided into two blocks, rows 1–10 are divided
into the lower block and rows 11–20 are divided into the upper blocks. Figure 20b,c are
schematic diagrams of the upper block and lower block run-length boundary tracing. In
a parallel environment, the boundary tracing of two blocks is carried out synchronously;
that is, the lower block starts to traverse the run from line 1 until line 10 stops, and the
upper block starts to traverse the run from line 11 until line 20 stops. When tracing to the
block boundary, adjacent blocks will not be entered. For an independent river polygon,
after each block completes boundary tracing, delete redundant pixels at one time and then
start block tracing again.

Figure 20. Parallel processing of grid connectivity judgment: (a) converting raster data into run-length
data; (b) lower block connectivity judgment; (c) upper block connectivity judgment.
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6. Conclusions

This study presents a method to generate skeleton lines for complex river systems
based on RLE. The method can address the problem associated with common raster
methods—they are unable to handle large volumes of raster river data generated from high-
resolution RS data—and has the two advantages of low memory consumption and high
computational efficiency. Skeleton line extraction is required for graphical data (e.g., for
road networks and river systems) and also has a wide range of applications in image
processing. As demonstrated, the proposed run-length-based skeleton line extraction
method can be used for river systems; however, it can also be extended to generate skeleton
lines for buildings, road networks, and images. The main work of this study is summarized
as follows:

(1) An RLE structure for storing large-scale river raster data is proposed, which can com-
press the amount of raster data to less than 1%. The link list structure is particularly
suitable for representing complex river systems with islands.

(2) A river boundary pixel deletion strategy based on RLE data is designed, which is
implemented by using run length boundary tracing iteration operation and provides
a template for judging the direction of boundary tracing.

(3) A method of vectorizing skeleton lines from RLE data with skeleton line pixels only
reserved is designed. By identifying endpoints, junctions, and bifurcation, skeleton
lines are automatically reorganized.

Zhang and Suen’s research gives a complete method of generating skeleton lines from
binary grid images and also gives its parallel implementation scheme. This study only
compares the proposed method with Zhang and Suen’s method in the non-parallelization
case. Follow-up studies will be focused on further improving the run-length algorithm in
terms of its parallelization capabilities to enhance its application potential when dealing
with massive volumes of RS data.
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