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Abstract: Hyperspectral video target tracking is generally challenging when the scale of the target
varies. In this paper, a novel algorithm is proposed to address the challenges prevalent in the existing
hyperspectral video target tracking approaches. The proposed approach employs deep features
along with spectral matching reduction and adaptive-scale 3D hog features to track the objects
even when the scale is varying. Spectral matching reduction is adopted to estimate the spectral
curve of the selected target region using a weighted combination of the global and local spectral
curves. In addition to the deep features, adaptive-scale 3D hog features are extracted using cube-level
features at three different scales. The four weak response maps thus obtained are then combined
using adaptive weights to yield a strong response map. Finally, the region proposal module is utilized
to estimate the target box. The proposed strategies make the approach robust against scale variations
of the target. A comparative study on different hyperspectral video sequences illustrate the superior
performance of the proposed algorithm as compared to the state-of-the-art approaches.

Keywords: hyperspectral video target tracking; spectral matching reduction; adaptive scale 3D hog;
adaptive weight; region proposal module

1. Introduction

Target tracking is widely explored in the field of computer vision for many applications
including passive reconnaissance, security monitoring, and autonomous driving [1–4].
Generally, the purpose of target tracking is to manually select the target determined by
groundtruth in the first frame and then successively track it in each subsequent frame,
where the groundtruth is a rectangle area in space which is marked in advance to determine
the tracking target and the target is an object that we are interested in. Most of the existing
tracking algorithms, developed for grayscale or RGB videos, are not able to distinguish the
targets and backgrounds having similar color features [5]. Additionally, the non-directional
movement of a target changes its scale, which makes the tracking task more difficult [6].

Hyperspectral Images (HSIs) [7], defined as images with hundreds or thousands of
narrower bands (10–20 nm), have rich spectral information while maintaining the spatial
features, which facilitates the discrimination of even the objects having similar RGB or gray
scale color features. HSIs have two dimensions to index the spatial location and the third
dimension to index the spectral band. In this regard, HSIs are being widely used in the
field of remote sensing [8] and computer vision [9]. However, the difficulty in obtaining
HSI videos using traditional devices have limited the applicability of HSI video-based
target tracking. Recent advances in the hyperspectral imaging technology have enabled
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the capturing of hyperspectral videos (HSV) at a high frame rate. Therefore, HSI data are
beginning to be used to improve tracking performance due to its rich spectral information.
The Histogram of Gradient (HOG) features, widely used for Kernelized Correlation Filters
(KCF), do not give acceptable results for the targets with scale variations. In addition, the
huge data volume of HSIs increases the computational complexity of the video trackers.

In this paper, a Deep and Adaptive-scale Hyperspectral Video Tracker (DA-HVT)
based on deep features transformed with spectral matching reduction and adaptive-scale
3D Hog features is proposed. Similar to the traditional trackers, the proposed algorithm
constitutes three modules, namely, the feature extraction, matching, and regression modules.
The feature extraction module facilitates the separation of the objects from backgrounds,
while the matching module locates the position of the target. The regression module
estimates the size of the target box. It may be noted that the feature extraction module
transforms the hypercube frames to a more discriminative feature space composed of the
deep and adaptive-scale (Deep-AS) feature. The Deep-AS features are the deep features,
transformed using spectral matching reduction, along with the adaptive-scale 3D histogram
of gradient (AS 3D HOG) features. In the matching module, the basic KCF is used to obtain
four weak response maps, and then adaptive weights are utilized to fuse weak response
maps to locate the target. In the regression module, a region proposal model (RPM) is
used to adapt to the aspect ratio variation of the moving targets. Real hyperspectral videos,
obtained via a hyperspectral camera of 16 bands with wavelength from 470 nm to 620 nm,
are used to evaluate the proposed tracker algorithm. The model of camera used is a
snapshot VIS produced by IMEC, and the bandwidth used for each band is about 10 nm.

The main contributions of this paper are summarized as follows:

1. A spectral matching reduction method is proposed to reduce the dimensionality of
the HSI. The proposed method estimates the final spectral curve using the global and
local spectral curves. The dimensionality-reduced image is obtained by computing the
similarity between final spectral curve, and the spectral curve of each pixel of original
image. This approach makes the target more distinguishable from the background
and is helpful for subsequent target tracking;

2. An AS 3D HOG feature is proposed to extract the 3D HOG features at different scales.
The proposed approach ensures robustness against the scale variations of the target
while maintaining the original spectral discrimination ability;

3. A weighted fusion strategy of feature maps is proposed in which the adaptive weight-
ing coefficients are computed using peak-to-side lobe ratio in the time domain;

4. Inspired by Region Proposal Network (RPN), a novel target box estimation method,
named RPM, is proposed. The proposed RPM method can adaptively change the
aspect ratio of target box to obtain more accurate box estimation.

The rest of this paper is organized as follows. In Section 2, related work is given.
In Section 3, the proposed algorithm is described in detail. In addition, Section 4 presents
the experimental results of the proposed algorithm on the hyperspectral videos. Finally,
the conclusion is discussed in Section 5.

2. Related Works

Dimension Reduction. Literature reports two classes of approaches for dimensional-
ity reduction, namely, band selection and feature extraction. Band Selection methods [10–12]
select the most representative bands from the original bands, which makes the low dimen-
sional features physical significant and interpretable. Feature extraction methods calculate
the optimal projection matrix to reduce the dimensionality. The Principal Component
Analysis (PCA) [13] is a classic and widely used feature extraction method which constructs
a projection matrix by maximizing the data variance. Independent Component Analysis
(ICA) [14], another frequently used dimensionality reduction technique, simultaneously
estimates the spectra of different ground objects. Green et al. [15] proposed Minimum
Noise Fraction Transformation (MNFT) method, which used Signal-to-Noise Ratio (SNR)
to distinguish the weights of different bands. Based on these methods, kernel tricks [16,17]
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were also explored for the nonlinear extraction of features. Rasti et al. [18] introduced
the Orthogonal Total Variation Component Analysis (OTVCA) method to estimate the
best low-dimensional representation by optimizing a non-convex loss function. With the
advent of the recent technologies, supervised methods [19,20] and deep-learning-based
methods [21,22] are also being widely used for dimensionality reduction.

Correlation Filter-based Trackers. Generally, most of the existing correlation filter-
based trackers are first trained with the image patch of the target in the first frame. Different
features are then extracted from the search area in the subsequent frames, and the target
position is finally determined by the convolution operation of these filters and features.
Discriminative Correlation Filter (DCF)-based frameworks have gained much attention
because of their performance and computational efficiency. It may be noted that in the
DCF-based trackers, filters are trained in the frequency domain. A correlation filter learns
to localize the target in the consecutive frames while the target location is estimated based
on the maximum response. Bolme et al. [23] introduced the Minimum Output Sum of
Squared Error Filter (MOSSE) tracker using grayscale features. In addition, many other
features are also used to improve the tracking robustness, including HOG [24], color name
features [25], and convolution features [26]. Henriques et al. [24] introduced the kernel
trick into a tracking framework, named the KCF, which improved the tracking performance
by shifting the training samples. Zhang et al. [27] proposed the Spatial-Temporal Context
(STC) using probability theory and is similar to the correlation filter approach.

The ensemble-based approaches [28] are also used to enhance the robustness of the
tracking algorithms. Bailer [29] proposed a dynamic programming-based trajectory opti-
mization approach to build a robust tracker. MEEM [30] exploited the relationship between
the current tracker and historical snapshots. Khalid et al. [31] proposed a partition fusion
framework to build a reliable tracker. Ning et al. [32] introduced an evaluation strategy to
select the best from a pool of experts.

Recently, some researchers have begun to study target tracking algorithms based on
hyperspectral videos. Qian et al. [26] selected input image patches as convolutional kernels
to extract features, but the correlations among bands were neglected. Xiong et al. [33]
extract features using material information, but it is difficult to ensure that each frame has
the same unmixing result. Chen et al. [34] extracted spatial-spectral features in Fourier
transform domain using a real-time spatial-spectral convolutional kernel, which sped up
the hyperspectral video tracking algorithm. Chen et al. [35] tried to directly extract reliable
feature using the value differences between pixels from hyperspectral image and achieved
a better result.

Target Box Estimation. Most of the traditional target box estimation methods are
scale-based [36–38]. They generally build search areas using different scales and select
the maximum response size as the final target size. However, all these trackers maintain
a fixed aspect ratio, which deteriorate the tracking performance. Recently, the advent of
and subsequent improvements to deep learning approaches have resulted in some deep-
learning-based target box estimation methods [39–44]. SiameseRPN-based trackers [39,40]
use a Region Proposal Network (RPN) as the core module to estimate the target size.
Mask-based trackers [41,42] predict the mask instead of the box to obtain higher preci-
sion. Although these methods showed better performance than the traditional target box
estimation methods, it is difficult to apply them to the correlation-filter-based trackers.
Recently, some state-of-the-art trackers [45–47] adopted the refinement module to obtain
more accurate estimates. These methods locate the target first and refine the target size
using the previous results.

3. Proposed Method

In this section, the details of the proposed algorithm are presented. The overall
framework is shown in Figure 1.

In the overall process, the feature extraction module contains two kinds of features,
namely, deep features and shallow features. Due to the lack of hyperspectral datasets,
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it is difficult to train a robust deep neural network to extract deep features. Therefore,
dimensionality reduction and a pre-trained VGG-19 network [48] are used. Deep features
have a strong ability to distinguish large targets; however, they are not effective for small
targets due to the large receptive field. Therefore, AS 3D HOG features are used for
shallow features to improve the discrimination of small targets. After obtaining the deep-
AS features, KCF trackers are utilized to obtain weak response maps for the features of
each channel. Adaptive weights, calculated using the peak side lobe ratio (PSLR) and
integral side lobe ratio (ISLR), are utilized to fuse weak response maps to locate the target.
In addition, a region proposal module is used to estimate the target scale. The spectral
matching reduction method is described in Section 3.1. In Section 3.2, the extraction
methods of both the features are introduced. The basic KCF is briefly introduced in
Section 3.3. In Sections 3.4 and 3.5, the approach for predicting the target area, including
the target localization and scale estimation, are discussed.

KCF
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Adaptive Weights
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Figure 1. The overall framework of our algorithm.

3.1. Spectral Matching Reduction

Generally, the input of a pre-trained VGG-19 network is either a gray-scale (1 band)
or an RGB image (3 bands). However, the input test sequences used in this study have
sixteen bands. Therefore, spectral matching reduction (SMR) is adopted to reduce the
dimensionality of the inputs to match the requirements of VGG-19.

To ensure the spectral fidelity of the dimensionality reduction result, two spectral
curves, namely, global and local spectral curves, are extracted to represent the target
spectral curve.

We denote Tt ∈ RB×HT×WT and St+1 ∈ RB×HS×WS as the target area from the frame
t and the search area in frame (t + 1), respectively. More specifically, the target area is
regarded as the groundtruth in the first frame and the result of the previous frame in the
other frames, where the groundtruth is provided from the author of the dataset and the
result of the previous frame is estimated by the tracker. The search area is a larger rectangle
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region with the same center as the target area, and it is assumed that the target will appear
in the search area only, which varies with the variation in the target area. The global spectral
curve is calculated by averaging Tt as:

Cg =
{

Cgi | Cgi = M(Tt
i )
}

i∈{1,...,B} (1)

where Cg denotes the global spectral curve, B is the number of hyperspectral camera’s
bands (16 in our experiments due to the hyperspectral data), Tt

i denotes the i-th band in Tt,
and M(·) represents the averaging function given as:

M
(
Tt

i
)
=

1
HT ×WT

×
HT×WT

∑
j=1

Tt
ij (2)

where Tt
ij denotes the j-th pixel of Tt

i , and HT and WT are the height and width of
Tt, respectively.

It is worth noting that due to the irregularity of the target shape, the background
information will be captured in Tt. Along with the background information, the local
target spectral curve is also necessary for tracking, and the same is extracted using a
statistical method.

Each Tt
i is divided in nr bins according to the pixel values and is described as:

Bn(i, j) = floor(nr × Tt
ij) mod nr (3)

where Bn(i, j) denotes the index of bins of each pixels, and floor(·) is the round down
operation. The number of bins nr influences the accuracy and speed of local area division.
The larger the nr is, the more accurate the obtained result is, but the longer time is consumed
in its calculation. Through experiments, nr is set to 10.

Based on such quantization, we can define the intensity feature FI(i, j) and number
feature FN(i, j) as:

FI(i, j)b =

{
Tt

ij if b = Bn(i, j)

0 otherwise
(4)

FN(i, j)b =

{
1 if b = Bn(i, j)
0 otherwise

(5)

where b indexes the spectral intensity range. Both the features are summed up across the
same band as:

FI(i)b = ∑ FI(i, j)b (6)

FN(i)b = ∑ FN(i, j)b (7)

As the target occupies the vast majority of Tt, the maximum index of FN(i) is computed as:

b(i)m = max
b

FN(i)b (8)

where b(i)m denotes the index of the i bands, having the most concentrated scope, which
can be regarded as the spectral intensity range of the target. Therefore, the local spectral
curve is estimated as:

Cl =

{
Cli | Cli =

FI(i)b(i)m

FN(i)b(i)m

}
i∈{1,...,B}

(9)

where Cl denotes the local spectral curve.
Cg and Cl are fused using:

C f = µr × Cg + (1− µr)× Cl (10)
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where C f denotes the final spectral curve, µr is the weight coefficient of Cg, and 1− µr is
the weight coefficient of Cl . The range of µr is from 0 to 1. The larger µr is, the greater the
contribution of Cg on C f is, the smaller 1− µr is, and the less contribution of Cl has on C f
is. Through a large amount of experiments, µr is set to 0.3 in our experiments, which means
Cl has a greater contribution to obtaining C f . The dimensionality reduction in the spectral
curve is obtained by calculating the naive correlation between St+1 and C f as:

Xdr = C f ⊗ St+1 (11)

where Xdr is the dimensionality reduction result and ⊗ denotes the naive correlation.
Figure 2 shows the process of our dimension reduction method. Figure 2a is the

original image St+1, which has B bands. Figure 2b–d illustrate the global spectral curve,
local spectral curve, and final spectral curve, respectively. In Figure 2b–d, the x-axis
represents band indices and shows different peak wavelengths, and the y-axis represents
spectral reflectance. Spectral reflectance is obtained from the pixel value of input images.
Among these three curves, the global spectral curve is calculated using the target area, as it
contains a large amount of target information and some background information due to the
irregularity of the tracking target. Then, the local spectral curve is obtained by a histogram
operation on the target area of each band image, and this curve contains incomplete target
information. These two curves vary with the variation in target area. At last, a final spectral
curve is obtained by fusing the above two curves to find a complete representation of the
target. It can be seen that the final spectral curve has a lot of differences from the global
spectral curve in the twelfth band. It is most similar to the local spectral curve because there
is no background information in these two curves. However, the final spectral curve is
also different from the local spectral curve in the tenth band because the information in the
latter one is incomplete. Figure 2e is the spectral matching reduction result. It is obvious
that the target is highlighted well and that the background is effectively suppressed, which
helps extract distinguishing features.
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Figure 2. The result of proposed dimensionality reduction method: (a) original HSI; (b) global
spectral curve; (c) local spectral curve; (d) final spectral curve; (e) result image.

3.2. Feature Extraction

According to the existing literature [28], the correlation filter-based trackers, which
use a single feature, have the problem of drift or even failure during the tracking process.
In fact, the robustness and tracking accuracy of the correlation filter-based trackers in the
current complex environments are not satisfactory. Therefore, we combine the deep features
and AS 3D HOG features to achieve stable target tracking.

3.2.1. Deep Features

A pre-trained VGG-19 network, which has 16 convolution layers and 3 fully connected
layers, is used to extract the deep features. Compared with AlexNet [49], the biggest char-
acteristic of the VGG networks is the stacking of neural networks using 3 × 3 convolution
kernels. This characteristic increases the depth of the entire neural network and effectively
improves the performance of the network.

In convolutional neural networks, low-level features mean the features extracted from
the first few layers of the convolutional neural network, and high-level features mean the
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features extracted from the latter layers. It is found that the high-level features are rich in
semantic information and can improve the robustness of tracking but are insufficient. In the
context of similarity, semantic information may lead to instantaneous drift or the prediction
of incorrect locations. The detailed information from low-level features plays a great role
in precisely tracking the location. However, these features can be easily influenced by the
background, leading to tracking failure. Therefore, in order to take into account both the
semantic information and detailed information, the conv 3-4, conv 4-4, and conv 5-4 of the
VGG-19 network are used to extract deep features of the image. These three features use a
ball sequence, shown in Figure 1, as the input of the VGG-19 network and are illustrated in
Figure 3, Figure 4, and Figure 5, respectively.

Figure 3. The first 32 channels of deep features from conv 3-4.

Figure 4. The first 128 channels of deep features from conv 4-4.
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Figure 5. The first 512 channels of deep features from conv 5-4.

The size of the feature map output by the VGG-19 network is H ×W × C, where C is
the number of channels. Specifically, the size of the feature map output by the conv 3-4 layer
is 56× 56× 256, the size of the feature map output by the conv 4-4 layer is 28× 28× 512,
and the size of the feature map output by the conv 5-4 layer is 14× 14× 512. To simply
express these features, only the first several layers are shown. From the above three figures,
it is found that the features from conv 3-4 retains more background information, the feature
from conv 4-4 reduces the background and appears more abstract, and the feature from
conv 5-4 is rich in semantic information, but without details.

3.2.2. AS 3D Features

As mentioned earlier, HSI is a three-dimensional data cube that includes two spatial
dimensions and one spectral dimension. The 3D HOG features are operated on the local
cube element of HSI, and they maintain good invariance to the geometric and optical
deformation of HSI. However, single cube partition cannot meet the tracking needs of
objects of different sizes. Hence, we use multi-cube partitions of different sizes to construct
our adaptive spectral-space gradient histogram features. These features are illustrated in
Figure 6.

It may be noted that5Tx and5Ty represent the horizontal and vertical gradients in
space, and5Tl represents the spectral gradients. Then, for each pixel point in a cube cell,
the point can be represented by a three-dimensional vector (ϕ, µ, θ). Here, ϕ represents the
magnitude of the multidimensional gradient, µ represents the direction of the gradient in
space, and θ represents the direction of the gradient in the spectrum. These three variables
are calculated as:

ϕ(x, y, l) =
√
5T 2

x +5T 2
y +5T 2

l (12)

µ(x, y, l) = arctan
(5Ty

5Tx

)
(13)

θ(x, y, l) = arctan

 5Tl√
5T 2

x +5T 2
y

 (14)
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Figure 6. Schematic diagram of AS 3D HOG features. The original hyperspectral image is divided
according to three different scales, HOG features are calculated separately in each cube, and each
HOG feature is concatenated to obtain the final AS 3D HOG. The dark squares represent the results
of spectral direction and the light squares represent the results of spatial directions.

Then, the µ and θ of each points in the cube cell can be substituted in the following
two equations to respectively obtain the statistics of the gradient in the spatial dimension
Bµ and the spectral dimension Bθ :

Bµ(x, y, l) = round
(

nµµ(x, y, l)
2π

)
mod nµ (15)

Bθ(x, y, l) = round
(

nθθ(x, y, l)
π

)
mod nθ (16)

where nµ and nθ are the number of bins in the spatial and spectral direction, respectively.
The number of bins in the spatial and spectral directions are represented as nµ and

nθ , respectively. Based on the statistics of the gradient directions, as described by the
above two equations, the spatial and spectral characteristics of each pixel point in the cube,
represented as Fµ(x, y, l) and Fθ(x, y, l), respectively, can be computed as:

Fµ(x, y, l)p =

{
ϕ(x, y, l) if p = Bµ(x, y, l)
0 otherwise

(17)

Fθ(x, y, l)q =

{
ϕ(x, y, l) if q = Bθ(x, y, l)
0 otherwise

(18)

where p and q index the gradient direction of the spatial and spectral dimension, respec-
tively. Furthermore, we accumulate the spectral and spatial features of all pixels in the
cube cells in each bin to obtain the feature histogram of the cube in the spatial and spectral
dimensions as:

Cµ(r, k, g)p = ∑ Fµ(x, y, l)p (19)
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Cθ(r, k, g)q = ∑ Fθ(x, y, l)q (20)

where r, k, and g are the indices of the cube, and Cµ and Cθ are the cube-level histograms in
the spatial and spectral dimensions, respectively.

The cube cell size is shown in Equation (21). Additionally, different cube cell sizes
influence the spatial representation. Therefore, in order to maintain the robustness and
accuracy of our tracker when the tracking objects are of different sizes, we use three different
cube cell sizes to adaptively process such features:

Cs = v× v× vs (21)

where Cs represents the size of the cube cell, v is the width and height in space, and vs de-
notes the number of spectral bands. Therefore, the ranges of r, k, g in Equations (19) and (20)
are 0 ≤ r ≤ (WS − 1/v), 0 ≤ k ≤ (HS − 1/v), and 0 ≤ g ≤ (B− 1/vs), respectively. In our
experiments, v is 4, 6, and 8, and vs is set to 4.

We combine the adjacent 2 × 2 cube elements together to form a block with a size
of 2v × 2v × vs and then correspondingly connect the cube-level features to obtain the
block-level feature h. Finally, by connecting the block-level features together in the direction
of the spectrum, we can obtain the proposed AS 3D HOG.

Figure 7 shows the first 32 channels of AS 3D HOG. As seen from Figure 7, AS 3D
HOG has more distinct details compared with all three deep features above.

Figure 7. The first 32 channels of AS 3D HOG feature.

3.3. Kernel Correlation Filter

The KCF algorithm adopts ridge regression model that can obtain closed-form optimal
solution by regularized least square method. The purpose of training the classifier with
ridge regression method is to find a function f (x) = wTx to minimize the sum of squared
errors between sample set xi and regression target yi. The ridge regression model equation
is given as:

min
w ∑

i
( f (xi)− yi)

2 + λ‖w‖2 (22)

where x denotes the features of the training samples, y denotes the corresponding label,
λ is the regularization parameter to prevent the classifier from over fitting, and w is the
classifier coefficient. Following the setting in [24], λ is set to 0.0001 in our experiments.
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Transforming Equation (22) into matrix form and then substituting the function
f (x) = wTx into Equation (22) and making its derivative zero to obtain a closed-form
solution, we obtain the specific form as:

w =
(

XHX + λI
)−1

XHY (23)

where XH is the Hermitian transposition of X, which is XH = (X∗)T , and X∗ denotes
conjugate complex numbers of X. X is the sample matrix, Y is the regression target matrix,
and I is the unit matrix.

Since the sample matrix X is obtained by cyclic shifting of the base sample, the sample
matrix X is a cyclic matrix. The diagonalization of a circular matrix using the discrete
Fourier transform matrix can be expressed as:

X = F diag(x̂)FH (24)

where F is a discrete Fourier transform matrix independent of the vector x, and x̂ is the
discrete Fourier transformation of the vector x. Hence, x̂ = F (x); FH is the conjugate
transposition of F.

After substituting Equation (24) into Equation (23), Eigenvalue inversion is performed
instead of matrix inversion due to the nature of the inversion of the circular matrix. Hence,
w becomes

w = F diag
(

x̂∗

x̂∗ � x̂ + λ

)
FHy (25)

After introducing the kernel technique, the kernel regression equation becomes
f (z) = αTk(z). Similarly, the solution can be defined as:

α = (K + λI)−1y (26)

where K is the kernel correlation matrix for all training samples, and α is a vector consisting
of the solution of the dual space. It is known from the literature [24] that choosing an
appropriate kernel function will ensure K to be a circular matrix.

Then, K is diagonalized using the properties of the circular matrix. Equation (26)
is transformed using DFT to obtain the optimal solution of the ridge regression in the
frequency domain:

α̂ =
ŷ

k̂xx + λ
(27)

The kernel function used in our tracker is a Gaussian kernel function in the form of:

kxx′ = exp
(
− 1

σ2

(
‖x‖2 +

∥∥x′
∥∥2
)
− 2F−1(x∗ � x̂′

))
(28)

During the detection process, Equation (29) can be used to predict the central location
of the target:

f̂ (z) = k̂xz � α̂ (29)

where f̂ (z) is the detection response of the filter in the frequency domain. k̂xz is derived
from the discrete Fourier transformation of the first row of the asymmetric kernel matrix
between all the training and candidate samples.

After Equation (29), weak response maps are obtained, which are shown in Figure 8.
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(a) (b) (c) (d)

Figure 8. All four weak response maps: (a) Conv 5-4 Response; (b) Conv 4-4 Response; (c) Conv 3-4
Response; (d) AS 3D HOG Response.

The four weak response maps in Figure 8 are obtained using conv 5-4, conv 4-4,
conv 3-4, and AS 3D HOG features in Section 3.2, corresponding to f̂1(z), f̂2(z), f̂3(z), and
f̂4(z), respectively.

After position prediction, the filter parameters α and x are updated as follows:

αnew = (1− β)αpre + βα (30)

xnew = (1− β)xpre + βx (31)

where αpre and xpre denote the parameters of the previous frame filter model, and β
represents the learning rate used to update the correlation filter. The larger β is, the greater
contribution of x on xnew is and the faster the correlation filter is updated. Following the
settings in [24], β is set to 0.02 in our experiments. Moreover, x and α are the parameters of
the current frame, and αnew and xnew are the updated parameters.

3.4. Target Localization

As mentioned in Section 3.3, a response map is realized by using a filter to correlate
the image. The peak correlation value represents a high degree of similarity between the
current frame target and the template frame target. Therefore, an adaptive weighting
coefficient ηi is used to synthesize a strong response map, which is computed as:

ηi =
Rpci

Rpai
, i ∈ {1, 2, 3, 4} (32)

where Rpci and Rpai represent the i-th level peak response value of the current frame and
the i-th level peak response value of all time, respectively.

Due to the influence of background variation in image sequences, Rpai can be updated via

Rpai =

{
Rpci Rpci ≥ Rpai

µ′Rpai + (1− µ′)Rpci Rpci < Rpai
(33)

where µ′ denotes a coefficient used to update Rpai. The larger µ′ is, the less contribution of
Rpci has on Rpai and the slower Rpai is updated. Through experiments, µ′ is set to 0.95 in
our experiments.

From the experiments, it is observed that the higher the feature level, the stronger
its the ability to adapt to complex situations. However, the conv 5-4 feature has a large
receptive field, which leads to the inability in tracking small targets. Accordingly, an
activation function is applied to the first level response map instead of the adaptive
weighting coefficient:

η̂1 =

{
η1 η1 ≥ vth

0 else
(34)
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where vth represents a threshold value, which is used to limit the impact of first-level
features due to the reasons mentioned above. Moreover, vth is an experimental value, and
we found that the tracker performs well when this value is set to 0.8.

After the adaptive weights are determined, the four weak response maps are fused
based on corresponding weights to obtain a strong response map, which can be expressed as:

f̂ (z) = η̂1 f̂1(z) + η2 f̂2(z) + η3 f̂3(z) + η4 f̂4(z) (35)

The strong response map is shown in Figure 9. Compared to the four weak response
maps, the strong response map contains less clutter, resulting in more accurate positioning.
The center of target is located at the position with the maximum value of the response map.
Moreover, the size of target is estimated in Section 3.5.

Figure 9. A strong response map fused by four weak response maps with adaptive weights.

3.5. Scale Estimation

Scale estimation is an issue that has not been addressed well in most of the existing
state-of-the-art target tracking algorithms. In the tracking process, if there is a sharp change
in the target size, the bounding box will not precisely surround the target. This issue
will negatively influence the model, leading to the tracking failure. Therefore, it is very
important to introduce scale estimation into the target tracking algorithms.

After locating the target position of the current frame target in Section 3.4, we generate
a series of target boxes with different sizes based on the size of the target box in the
last frame:

Tb =
(

γi · HT

)
×
(

γj ·WT

)
(36)

where γ denotes the step of scale changing, i and j are series of integers, and HT and
WT are the height and width of the target box of the previous frame, respectively. In our
experiments, γ is set to 1.05 following the original setting in [32], and i and j are both in the
range of −2 to 2. It may be noted that i and j change independently, generating 25 boxes of
different sizes, where 25 equals the square of 5 (−2,−1, 0, 1, 2). Therefore, the larger the
range is, the more accurate the obtained estimation is, but the more time that is consumed.
After comprehensive consideration of accuracy and speed, we set the range to 5 (from
−2 to 2).

The images in all target boxes are resized to the same size and are used to extract AS
3D HOG features. The extracted features are then fed into the basic KCF filter to obtain
the peak response values. Finally, the box with the highest value is regarded as the one
corresponding to the target.

4. Results and Analysis

The details of the experiment settings are presented in Section 4.1, and the qualitative
and quantitative comparisons with the existing algorithms are presented in Sections 4.2 and 4.3,
respectively. Moreover, to verify the advantages of the hyperspectral trackers mentioned in
Section 1, comparisons with color video trackers are shown in Section 4.4.
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4.1. Experiment Setup

The proposed DA-HVT method is implemented in a MATLAB R2016b framework.
We achieved a processing speed of 3.5 frames per second on a PC with an Intel i5-8500 CPU
(3 GB), 16 GB RAM, and a TITAN V GPU with 12 GB of Graphics Memory. Additionally,
the MatConvNet toolbox is used for extracting the deep features in a VGG-19 network.
In order to improve the performance of our tracker, appropriate parameters are determined
based on experiments.

To verify the performance of our tracker, six experiments are conducted. All the
experiment sequences are selected from the hyperspectral dataset disclosed in [33]. To verify
the ability of our tracker to adapt to scale variation, five of the six sequences have the
challenges of scale variation (SV). Moreover, to verify the universality of our tracker, the
selected sequences have other challenges, including Occlusion (OCC), Fast Motion (FM),
Background Clutter (BC), Out of View (OV), and Low Resolution (LR).

The disclosed dataset contains 35 groups of videos. Each group includes hyperspectral
and visible light videos, and their pixels have a relationship of one-to-one correspondence.
The hyperspectral video is obtained via a hyperspectral camera of 16 bands with wavelength
from 470 nm to 620 nm, the hyperspectral camera’s model is snapshot VIS produced by
IMEC, and the bandwidth for each band is about 10 nm. This camera can capture videos up
to 180 frames per second (fps), and all the videos in this dataset are captured at 25 fps. This
camera is equipped with an acquisition software, and this software can crop the output
image or video to any size smaller than the camera resolution. Moreover, the whole dataset
is available on the website (www.hsitracking.com). The resolution of the downloaded HSI
is various. We do not change the resolution of six experimental sequences.

The details of our experiment sequences are shown in Table 1 and the RGB version of
sequences are shown in Figure 10.

(a) (b) (c)

(d) (e) (f)

Figure 10. Six experiment sequences in RGB. (a) Ball; (b) Bus; (c) Car; (d) Kangaroo; (e) Truck;
(f) Worker.

Table 1. The details of six experiment sequences.

Sequences Ball Bus Car Kangaroo Truck Worker

Frames 625 326 331 117 221 1209
Resolution 471× 207 351× 176 512× 256 385× 206 512× 256 228× 121
Initial Size 19× 21 85× 92 188× 84 22× 41 17× 17 9× 19
Challenges SV, OCC SV, FM SV, OCC SV, BC SV, OV LR, BC

For Figure 10a, the sequence consists of 625 frames of 471× 207 pixels. The tracking
target is a small ball, which is rolled randomly on the ground by hand. The size of the

www.hsitracking.com
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small ball varies from 17 × 20 pixels to 21 × 23 pixels. This sequence has the SV and
OCC challenges.

Similar information of other five sequences can be found in Table 1. Moreover, the
tracking target in Figure 10b is a bus which travels quickly from near to far and whose
size varies from 85× 92 pixels to 61× 65 pixels. In Figure 10c, the tracking target is a red
car with a size that varies from 188× 84 pixels to 21× 19 pixels. The red car drives from
the left side to the right side in the video. In Figure 10d, our tracking target is a kangaroo
in a migrating kangaroo colony, whose size varies from 18× 37 pixels to 25× 48 pixels.
Then, in Figure 10e, the tracking target is a truck with a size that varies from 17× 17 pixels
to 46× 43 pixels. The truck drives from far to near on the road in the video. At last, in
Figure 10f, the tracking target is the worker dressed in red on the far right of the first
frame, and there are two other workers in the scene, which will pose great challenges to
accurate tracking.

4.2. Qualitative Comparison

In this section, to verify the performance of the proposed algorithm, we compare our
algorithm with five existing trackers, MHT [33], MFI-HVT [50], DeepHKCF [51], CNHT [26],
and 3D HOG.

In the MHT method, the consideration of material characteristics has a good effect
on the model’s ability to distinguish between targets of the same color. In the MFI-HVT
method, the multiple integrated features provide more information than a single feature,
thereby improving the separability.

In the DeepHKCF method, the deep features can be obtained by converting the
HIS image into a pseudo-color image and feeding it to the VGG-19 network for feature
extraction. In the CNHT method, a normalized three-dimensional chunk from the target
region of the initial frame is used as a fixed convolutional kernel for the feature extraction
of the subsequent frames. In the 3D HOG method, the authors propose a spectral-spatial
histogram of a multidimensional gradient (SSHMG) to effectively represent the information
in the spatial and spectral dimensions.

The experimental results of the proposed algorithm and five benchmark algorithms
on all six experiment sequences are shown in Figures 11–16.

Ours MFI-HVT MHT DeepHKCF 3D HOG CNHT Groundtruth

Figure 11. Qualitative results on the ball sequence.

Ours MFI-HVT MHT DeepHKCF 3D HOG CNHT Groundtruth

Figure 12. Qualitative results on the bus sequence.
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Ours MFI-HVT MHT DeepHKCF 3D HOG CNHT Groundtruth

Figure 13. Qualitative results on the car sequence.

Ours MFI-HVT MHT DeepHKCF 3D HOG CNHT Groundtruth

Figure 14. Qualitative results on the kangaroo sequence.

Ours MFI-HVT MHT DeepHKCF 3D HOG CNHT Groundtruth

Figure 15. Qualitative results on the truck sequence.

Ours MFI-HVT MHT DeepHKCF 3D HOG CNHT Groundtruth

Figure 16. Qualitative results on the worker sequence.

In Figures 11–16, there are many rectangular boxes with different colors in the image,
and as shown in the legend below these images, different colors represent different algo-
rithms. For example, red represents ours, purple represents MFI-HVT, green represents
MHT, blue represents DeepHKCF, yellow represents 3D HOG, and black represents CNHT.
Additionally, the white one is the groundtruth, which is the real result of manual annotation.
Therefore, if the rectangular box of a certain color is closest to the white box, both size and
location, it means that the corresponding algorithm of this color has the best effect. Among
all these six sequences, the maximum variation in the scale is about 36 in the car sequence,
from 188× 84 to 21× 19. It can be seen that the proposed algorithm can adapt to such a
large-scale variation.

In Figure 11, the whole sequence has the issue of fingers obscuring the ball and defor-
mation being caused by the ball bouncing on the ground. Although the finger occasionally
obscures the rolling ball, most trackers can still track it successfully. As CNHT trains its
convolution filters using only positive samples, it does not have great robustness, which
leads to an early failure at about frame 53. Moreover, at frame 598, the ball is completely
occluded by fingers, which makes the MHT and DeepHKCF methods require large updates
on the models using false information. Therefore, these two trackers lose their targets at
frame 617.
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In Figure 12, the branches on both sides of the bus can block the sunlight, which in
turn causes the light intensity on the truck to change continuously. In addition, the size of
the bus gradually decreases as it travels away. As DeepHKCF and 3D HOG do not have
scale estimation modules, their prediction boxes cannot vary adaptively. Therefore, even if
these two trackers can locate the target during whole sequences, the performance is not
satisfactory after frame 113.

In Figure 13, as the target car is driving to the end of the road, another car follows
closely to the road. During this time, the two cars gradually become smaller. At the end
of the sequence, there are cyclists who obstruct the red cars, which have become smaller.
Since the 3D HOG and DeepHKCF trackers introduce too much background clutter during
the update, these two trackers lose their targets at frame 17.

In Figure 14, the kangaroo’s rapid bouncing causes a change in the appearance of
the scale and leads to increased tracking difficulty. In addition, other kangaroos cause a
considerable degree of background disturbance as they are very similar to the tracking
target. As mentioned in Section 3.2, the semantic information of deep features leads to
failure when facing similarity. However, the DeepHKCF tracker uses only a single deep
feature, which makes it difficult to distinguish between similar targets, and the tracker
loses the target at about frame 24. Different from DeepHKCF, the other five trackers use the
detail information of the picture, resulting in good performance for this sequence.

In Figure 15, the truck starts from the end of the road and continues to grow larger as
it drives closer. In addition, when the truck is about to leave the road, a person on a bicycle
drives in the opposite direction of the truck, causing a brief obstruction of the truck. Due
to the change in the aspect ratio of the truck, all five benchmark trackers discussed in this
study were unable to surround the target accurately. As a result, these trackers can only
track a part of the target. With the increase in target size, this issue becomes more and more
obvious. At frame 209, it can be seen clearly that only our tracker has good overlap with
the groundtruth.

In Figure 16, the workers in green clothes in the sequence work along with the tracking
target, causing background clutter and temporary obscuring. As mentioned in Section 3.4,
deep feature tracking has a large respective field and is not effective in tracking small
targets. Therefore, the DeepHKCF tracker loses the target early at about frame 53. The
MFI-HVT, another tracker using deep feature tracking, loses the target at frame 1096 due
to the usage of HOG features. Different from these two trackers, our tracker adopts an
activation operation for deep features and becomes inoperative when unreliable. As a
result, our tracker can track the target accurately during the whole sequence.

4.3. Quantitative Comparison

In this section, the success rate curve and precision curve are used to quantitatively
analyze the six algorithms. In the field of target tracking, the precision shows the locating
accuracy and the success rate shows the box estimation accuracy. More specifically, in the
left of Figure 17, the x-axis overlap threshold is a series of consecutive thresholds from 0 to 1,
and the y-axis success rate is defined as the percentage of frames whose overlap between
the estimated box and the groundtruth is larger than the overlap threshold. Similarly, in the
right of Figure 17, the x-axis location error threshold is a series of consecutive thresholds
from 0 to 50 and the y-axis precision is defined as the percentage of frames whose distance
between the center of the estimated box and the groundtruth are less than the location
error threshold. The area under curve (AUC) of precision and success rate are used to
measure the performance of trackers. In order to avoid the influence of the x-axis value
range on computing AUC, the average y-axis value of each curve is used to represent AUC.
Moreover, the larger the average value is, the closer the estimated box is to the groundtruth
under different thresholds, and the better the algorithm’s performance is. Therefore, the
scores in Figures 17–20 are obtained by calculating the average value.

Figure 17 shows the the success rate curve and the precision curve of the six trackers
on all test sequences. Similarly, Figures 18–20 are the experimental results of the six trackers
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tested only on partial sequence having challenges including scale variation, occlusion, and
background clutter, respectively. The itemized comparisons are shown in Tables 2 and 3.

Table 2. The details of precision results. The suffixes mean that the measurements are only counted
in the sequences with the corresponding challenges. The best and the second best results are marked
by symbols * and #, respectively.

Methods Precision Precision_SV Precision_OCC Precision_BC

Ours 0.931 ∗ 0.949 ∗ 0.926 ∗ 0.88 #

MHT 0.889 0.901 0.852 0.894 ∗

MFI-HVT 0.9 # 0.91 # 0.914 # 0.865

DeepHKCF 0.745 0.694 0.499 0.847

3DHOG 0.544 0.557 0.543 0.517

CNHT 0.289 0.305 0.241 0.258

Table 3. The details of success rate results. The suffixes mean that the measurements are only counted
in the sequences with the corresponding challenges. The best and the second best results are marked
by symbols * and #, respectively.

Methods Success Success_SV Success_OCC Success_BC

Ours 0.661 ∗ 0.678 ∗ 0.582 ∗ 0.625 #

MHT 0.565 # 0.535 # 0.526 # 0.627 ∗

MFI-HVT 0.526 0.517 0.486 0.542

DeepHKCF 0.324 0.311 0.333 0.349

3DHOG 0.246 0.271 0.391 0.194

CNHT 0.0986 0.1 0.068 0.0957
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Figure 17. Quantitative results for all sequences.
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Figure 18. Quantitative results for sequences with challenge SV.



Remote Sens. 2022, 14, 5958 19 of 24

0 0.2 0.4 0.6 0.8 1

Overlap Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

es
s 

R
at

e

Ours  0.582

MHT  0.526

MFI-HVT  0.486

3DHOG  0.391

DeepHKCF  0.333

CNHT  0.068

0 10 20 30 40 50

Location Error Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Ours  0.926

MFI-HVT  0.914

MHT  0.852

3DHOG  0.543

DeepHKCF  0.499

CNHT  0.241

Figure 19. Quantitative results for sequences with challenge OCC.
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Figure 20. Quantitative results for sequences with challenge BC.

The scores in Tables 2 and 3 come from Figures 17–20. Specifically, the Precision in
Table 3 comes from the right of Figure 17, and the Success in Table 2 comes from the left
of Figure 17. Similarly, Precision_SV, Precision_OCC, and Precision_BC are obtained from
the right of Figures 18–20, respectively. Success_SV, Success_OCC, and Success_BC are
obtained from the left of Figures 18–20, respectively.

It can be seen from the above figures and tables that the proposed tracker has achieved
good performance. Compared with different challenges, the success rate and precision of
our tracker on the sequence with the SV challenge are the best. More specifically, it achieves
a precision of 1.8% higher than all the sequences, 2.3% higher than the sequences with
OCC, and 6.9% higher than the sequences with BC. Similarly, in terms of success rate, the
proposed approach achieves 1.7% higher performance than all sequences, 9.6% higher than
sequences with OCC, and 5.3% higher than sequences with BC. The above data prove that
our tracker has better adaptability to the targets with scale changes due to the use of AS
3D HOG.

Moreover, compared with other existing HSV-based trackers, the proposed tracker
achieves 0.931 precision and 0.661 success rate in all test sequences, which are the best
among all the existing HSV-based trackers. Specifically, in the sequences with the SV
challenge, the proposed tracker has a better result of 0.949 precision and a 0.678 success
rate. However, in the sequences with the BC challenge, MHT achieves the best results
of 0.894 precision and a 0.627 success rate. This can be attributed to the use of material
information. Because of the usage of SMR, our tracker achieves the second best result, only
0.6% lower in precision and 0.2% lower in success rate as compared to MHT.

4.4. Comparisons with Color Video Trackers

In this section, experiments are made to show the advantages of hyperspectral video
trackers compared with color video trackers. The experiment sequences in this section
are the corresponding RGB versions with six sequences mentioned in Section 4.1, whose
details are the same as shown in Table 1. All these color sequences are also obtained from



Remote Sens. 2022, 14, 5958 20 of 24

the public dataset in [33]. Five color video trackers are used to compare the performance,
namely, CNT [25], KCF [24], TRACA [52], MCCT [32], and ECO [36]. Among these five
trackers, CNT uses the most classic color name feature, KCF is the foundation of our tracker,
and TRACA, MCCT, and ECO are state-of-the-art CF-based trackers. These five color
video trackers can cope with SV due to the usage of scale estimation modules. Qualitative
comparisons are shown in Figures 21–26, and quantitative comparisons are shown in
Figure 27 and Table 4.

Ours ECOCNT MCCTTRACA KCF Groundtruth

Figure 21. Qualitative results on the ball sequence in color.

Ours ECOCNT MCCTTRACA KCF Groundtruth

Figure 22. Qualitative results on the bus sequence in color.

Ours ECOCNT MCCTTRACA KCF Groundtruth

Figure 23. Qualitative results on the car sequence in color.

Ours ECOCNT MCCTTRACA KCF Groundtruth

Figure 24. Qualitative results on the kangaroo sequence in color.

Ours ECOCNT MCCTTRACA KCF Groundtruth

Figure 25. Qualitative results on the truck sequence in color.
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Ours ECOCNT MCCTTRACA KCF Groundtruth

Figure 26. Qualitative results on the worker sequence in color.

As shown in Figures 22–25, when the targets are not subject to large interference
outside the SV, all the color video trackers can track the target. Because the targets are
complete in space and all color video trackers have a scale estimation module, they can
extract robust features. However, as shown in Figure 21, after the ball is completely
occluded by figures, CNT loses the target at frame 617 because the color name feature is not
reliable when the target is occluded. When facing an LR challenge, shown in Figure 26, all
the color video trackers are unable to obtain satisfactory results at frame 351. The estimated
boxes of these color video trackers have a significant deviation from the groundtruth
because, in the case of LR, spatial features will become too fuzzy to have a bad impact on
the tracking results.

It can be clearly seen that the proposed tracker has better results compared with color
video trackers from Figure 27 and Table 4. The proposed tracker achieves 0.931 precision
and 0.661 success rate in all experiment sequences, which are higher than all color video
trackers. Both precision and success rate have achieved results of 0.032 and 0.005 higher
than ECO, the best one in color video trackers. All the qualitative and quantitative results
show that the proposed tracker can learn a more reliable correlation filter due to the rich
information in HSIs.
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Figure 27. Quantitative results for all sequences in color.

Table 4. The details of quantitative results. The best and the second best results are marked by
symbols * and #, respectively.

Methods Ours ECO MCCT TRACA KCF CNT

Precision 0.931 ∗ 0.899 # 0.894 0.887 0.845 0.788

Success 0.661 ∗ 0.656 # 0.597 0.577 0.529 0.525

5. Conclusions

A hyperspectral video target tracking method based on deep features with spectral
matching reduction and AS 3D HOG features is proposed. The proposed spectral dimension
reduction method reduces the amount of image frame data and significantly improves the
distinction between the target and the background, which facilitates the subsequent use
of VGG networks for feature extraction. The introduction of the AS 3D HOG ensures that
the tracker remains robust against targets with complex scale transformations. Finally, the
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proposed use and computation of adaptive weights give satisfactory results while dealing
with complex background disturbances. Experimental results show that the proposed
algorithm has achieved good performance. Specifically, the proposed algorithm achieves a
0.931 precision and a 0.661 success rate in all test sequences. Moreover, when facing the
sequences with SV challenges, these two scores are increased to 0.949 and 0.678, respectively.
In our future work, we will improve our method in two aspects: one is to train an HSI-based
network with the the enrichment of data sources, and the other one is to improve the scale
estimation module with a refinement method for the target box estimation.
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