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Abstract: Arctic sea ice extent (SIE) has drawn increasing attention from scientists in recent years
because of its fast decline in the Boreal summer and early fall. The measurement of SIE is derived from
remote sensing data and is both a lagged and leading indicator of climate change. To characterize at a
local level the decline in SIE, we use remote-sensing data at 25 km resolution to fit a spatio-temporal
logistic autoregressive model of the sea-ice evolution in the Arctic region. The model incorporates
last year’s ice/water binary observations at nearby grid cells in an autoregressive manner with
autoregressive coefficients that vary both in space and time. Using the model-based estimates of
ice/water probabilities in the Arctic region, we propose several graphical summaries to visualize the
spatio-temporal changes in Arctic sea ice beyond what can be visualized with the single time series
of SIE. In ever-higher latitude bands, we observe a consistently declining temporal trend of sea ice in
the early fall. We also observe a clear decline in and contraction of the sea ice’s distribution between
70◦N–75◦N, and of most concern is that this may reflect the future behavior of sea ice at ever-higher
latitudes under climate change.

Keywords: boxplot time series; climate change; dynamic spatio-temporal model; reflected solar
radiation; sea ice extent

1. Introduction

Arctic sea ice cover has received increasing attention in recent years because of its fast
decline in the Boreal summer and early fall, both a lagged and leading indicator of climate
change. Geoscientists have observed a clear declining trend in Arctic sea ice by analyzing the
aggregated sea ice data either spatially or temporally, e.g., [1–8]. Declining sea ice increases the
amount of dark ocean water and results in an albedo–ice feedback effect, where a darker ocean
absorbs more solar radiation, leading to further loss of sea ice [9–11]. Although the melting of
sea ice in summer may provide new shipping routes, the Arctic is an important component of
Earth’s energy system, and its loss of sea ice leads to climate change in other regions, e.g., [12–16].
Therefore, monitoring and modeling the spatio-temporal changes in Arctic sea ice is of critical
importance to understanding climate change.

There are many geophysical factors related to the melting of sea ice, such as surface
atmospheric temperature [17], the fragility of thinner sea ice [18], the occurrence of the polar
anticyclone [19], and reflected solar radiation [20], to name a few, which cause difficulties
in characterizing and predicting the presence of Arctic sea ice. Previous analyses have often
focused on studying the temporal trend of the obvious summary, sea ice extent (SIE), which
is defined as the total area of ice grid cells (grid cells with a sea-ice concentration ≥ 15%)
in the Arctic region. Figure 1 shows the observed Arctic SIE in every September over the
past two decades, which is derived from the NOAA/NSIDC Climate Data Record of sea
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ice concentration [21]. By summing up the areas of ice grid cells, we obtained the observed
Arctic SIE in each year. An overall declining trend is easily apparent.

The ice/water status in zonal regions is studied here: a zonal band centered at lat0 is
considered, and from binary ice–water observations on 25 km-resolution remote-sensing
grid cells, the proportion of ice grid cells is calculated in each of the ninety 4◦× 1◦ longitude–
latitude windows that straddle lat0. Then, visualization in the form of boxplots is made
from these ninety ice/water proportions. Figure 2 shows a time series of such boxplots
five-years apart in latitude bands at 70◦N, 72.5◦N, 75◦N, . . ., 85◦N. This summary adds a
spatial dimension to the time series of SIE shown in Figure 1, illustrating the zonal behavior
of sea-ice loss over time. By following the average ice proportions (dots) for each zone, we
see that at 70◦N, the lowest latitude band, there has been almost no September sea ice since
2000; at 72.5◦N and 75◦N, the ice proportions contracted towards zero around 2010; and
at 77.5◦N and 80◦N, a pre-contraction pattern like that seen earlier at the lower latitudes
is emerging.

Figure 1. The observed Arctic SIE from 2000 to 2020, with a fitted linear regression line (blue dashed
line) using year t as a single covariate.

These exploratory analyses of the observations are useful to detect changing patterns
of Arctic sea ice; however, they are based on the aggregated binary data and typically
do not come with proper quantification of uncertainty that is obtained by incorporating
the spatio-temporal correlations of the data. Statistical models account for the spatio-
temporal variability in the underlying ice–water process, as well as the uncertainty inherent
in remote-sensing data, and hence they permit valid uncertainty quantification of the
resulting summaries. Specifically, the model fitted in this paper allows an estimation of the
probability of a grid cell being an ice grid cell in the past and present.

In this paper, we focus on the estimation problem, aiming to use last year’s ice/water
statuses at the neighboring locations of a location s to estimate its ice/water status in the
current year. The main goal is to obtain the estimated ice probability at each spatial location,
which may contain more information than a binary outcome. The resulting surface of the
estimated ice probabilities is generally smooth and less noisy. Then, various summaries can
be obtained based on the estimated ice probabilities to infer the spatio-temporal changes in
Arctic sea ice.

Our initial analysis is exploratory, focusing on Arctic binary sea ice data in the month
of September, which is when the Arctic SIE typically reaches its minimum in any year and
when decline is most likely to occur. Then, a Spatio-Temporal Logistic AutoRegressive
(ST-LAR) statistical model is fitted, with spatio-temporally varying coefficients for the
remotely sensed binary ice/water data taken in the previous September and defined on
25 km-resolution remote-sensing grid cells. Our model results in smooth estimates at the
local level and allows for making inference on zonal and regional features of Arctic sea ice.

The rest of the paper is organized as follows. The related literature is reviewed in
Section 2. We describe the data used in our spatio-temporal analysis of Arctic sea ice in
Section 3.1. In Section 3.2, we introduce our proposed ST-LAR model, as well as the pseudo-
likelihood parameter-estimation procedure used to fit the model. The model-evaluation



Remote Sens. 2022, 14, 5995 3 of 25

scores are defined in Section 3.3. In Section 4.1, several models are fitted and compared,
resulting in the best-performing model being chosen. Then, in Section 4.2, model-based
estimates are presented in terms of summary statistics that describe the spatio-temporal
changes of Arctic sea ice. Section 5 contains a resumé of our findings, as well as a brief
discussion of future work that might be carried out. Technical details on the proposed
model, the regularized estimation procedure, its fast computation, and the detailed model
comparison results are contained in the Appendices A–C.

Figure 2. Boxplots of ice proportions in different latitude bands centered at lat0 = 70◦N, 72.5◦N, . . . , 85◦N.
The average of ice proportions is represented by a dot (•) and the horizontal bars in the boxplots show the
five-number summaries of a distribution (namely, minimum, first quartile, median, third quartile, and
maximum). The five-year-interval boxplots are shaded from blue (2000) through green (2010) to red (2020).

2. Literature Review

Recently, researchers have used statistical models to capture the spatio-temporal
changing patterns of Arctic sea ice. Zhang and Cressie [22,23] proposed a spatio-temporal
generalized linear model to model the binary Arctic SIE data, where an Expectation-
Maximization (EM) algorithm, e.g., [24], and a fully Bayesian inference were developed,
respectively. Horvath et al. [25] proposed a Bayesian logistic regression model to forecast
September Arctic SIE, where several atmospheric, oceanic, and sea-ice variables at 1-month
to 7-month lead times were used as covariates. Other related works on modeling ice sheet
and sea ice belong to the paradigm of applying statistical models to calibrate outcomes from
climate models so that the calibrated outputs better match the observed data. For example,
Chang et al. [26] proposed a generalized principal component-based method to calibrate
the ice sheet of West Antarctica, where principal components were modeled by Gaussian
processes. Chang et al. [27] further combined information from both modern and paleo
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observations to calibrate the ice sheet model. On forecasting Arctic SIE, Director et al. [28]
proposed a spatio-temporal statistical model to improve the forecasting of sea ice contours
from physical sea ice models; Director et al. [29] further introduced a mixture contour
forecasting, which is a weighted average of the recent climatology forecast and the forecast
of a statistical model.

Here we adopt another popular route for modeling binary space-time data, a spatio-
temporal logistic autoregressive model. The ST-LAR model can be considered as a special
case of spatio-temporal autologistic models. Autologistic models, e.g., [30] (Ch.6) have
been used extensively for modeling spatial or spatio-temporal binary data, since they
have simple forms and directly specify the spatial/spatio-temporal dependence among
binary data, e.g., [31–33]. Zhu et al. [34] proposed a spatio-temporal autologistic regresson
model, which results in a valid spatio-temporal Markov random field for capturing data
dependence. Zheng and Zhu [35] and Zhu et al. [36] proposed a Markov chain Monte Carlo
method and a Monte Carlo maximum likelihood approach, respectively, to improve the
traditional pseudo-likelihood-based estimation for autologistic models. Compared to other
spatio-temporal autologistic models, the ST-LAR model does not include current year’s
spatially neighboring observations as autoregressors at each time t. We use observations in
the previous year (t− 1) as autoregressors, resulting in an ST-LAR model of order one.

Compared to the hierarchical spatio-temporal generalized linear models (GLMs) based
on latent Gaussian processes, e.g., [23,37,38], the ST-LAR model directly models the data
dependency and is relatively easy and fast to fit using likelihood-based inference. Since the
model borrows information from the previous year’s spatially neighboring observations,
it encourages estimated ice/water regions to be spatially contiguous. Following recent
developments in high-dimensional spatial models (see, e.g, [33,39,40]), the new ST-LAR
model we propose has autoregressive coefficients that vary in space and/or time. Spa-
tially varying autoregressive coefficients are capable of capturing the nonhomogeneous
autoregressive structure of real data. Our model extends the existing spatio-temporal
autoregressive models that have autoregressive coefficients that do not depend on space or
time. In addition, it takes into account the neighboring observations’ statuses being 1 (ice)
or 0 (water), to allow more modeling flexibility. The proposed ST-LAR model along with
regularized estimation of parameters offers a novel and flexible approach for modeling
binary spatio-temporal data.

3. Materials and Methods
3.1. Data Description

The datasets upon which our analyses are based are described first, followed by the
spatio-temporal statistical models that are fitted to the data. Definitions are then given for
the model-evaluation criteria.

Arctic Sea Ice Data. The Arctic sea ice concentration data are produced by the National
Oceanic and Atmospheric Administration (NOAA) as part of their National Snow and Ice
Data Center’s (NSIDC) Climate Data Record (CDR). The data are obtained from a passive
microwave instrument on the Nimbus 7 satellite, as well as from the F8, F11, and F13
satellites of the Defense Meteorological Satellite Program [1,4], which are projected onto
25 km× 25 km grid cells. In this paper, we use Version 4 of the Arctic sea-ice-concentration
data, which are available monthly starting from November 1978 [21].

Since the smallest Arctic sea ice cover in a year is typically attained in the month of
September [4], we consider the September Arctic sea ice data for the time period from
2000 to 2020, which is a time series at times t ∈ {2000, . . . , 2020}. The original sea ice
concentration data give the fraction of sea ice in each grid cell, taking values in [0, 1].
The sea ice concentration data are from two well-established algorithms, the NASA Team
algorithm [41] and the NASA Bootstrap algorithm [42]. To obtain the binary sea ice data,
a 15% cut-off value is often used to determine whether a grid cell is water (<15%) or
ice (≥15%), e.g., [1,4,43,44]. The original NOAA data are on a 304× 448 grid in a polar
stereographic projection but, here, we focus on the grid cells with latitude greater than
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60◦N, where sea ice is more prevalent. Figure 3, left panel, shows the 60◦N cut-off along
with the sea ice concentrations; the 25 km-resolution grid cells are small enough not to be
distinguishable in the figure. Figure 3, right panel, shows the binary data, where recall that
a sea ice concentration ≥ 15% in a grid cell defines it to be an ice grid cell.

We further select the spatial grid cells that have experienced at least one ice–water or
water–ice transition during the entire study period (21 years), leading to the final dataset
with 8673 spatial locations (see Figure 4). This spatial domain consists of the union of
ice–water boundary regions over two decades.

Figure 3. Left panel: The Arctic sea ice concentrations in September of 2001. Right panel: The
corresponding binary Arctic SIE data in the same month. The spatial grid cells are displayed in a
polar stereographic projection.

Figure 4. The spatial grid cells (in red) with at least one observed ice–water or water–ice transition
from 2000 to 2020.

Reflected Solar Radiation Data. The monthly reflected solar radiation (RSR) data
were obtained from NASA’s Clouds and the Earth’s Radiant Energy System (CERES)
Energy Balanced and Filled (EBAF) top-of-atmosphere data product [45,46]. Here, we use
Edition 4.1 of this data product, which contains monthly shortwave fluxes from March
2000 to January 2021 [47]. The CERES EBAF data product is on a 1◦ × 1◦ longitude–latitude
grid. There are two types of RSR data: one is clear-sky RSR, and the other is all-sky RSR.
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The clear-sky RSR (CS-RSR) data average the CERES footprints within a region that are
cloud-free (defined to be regions where the cloud fraction is no greater than 0.1%), which
is identified by a cloud-detection algorithm, e.g., [48–50]. The all-sky RSR (AS-RSR) data
average all the CERES footprints within a region.

In our analyses, there was very little difference between the two and, henceforth,
we show results involving CS-RSR. Spatially averaged CS-RSR, along with the Arctic
SIE data for September, are shown as time series in Figure 5. The observed relationship
leads us to consider using the June RSR data as an informative covariate in our proposed
ST-LAR model.

Figure 5. The time series of spatially averaged CS-RSR data for June (blue dashed line) versus the
Arctic SIE data for September (red solid line). The averaged values of RSR are taken over all RSR
observations in the Arctic region (latitudes ≥ 60◦N).

3.2. Methodology

Notation. We first introduce some mathematical notation. Let yt(s) denote a spatio-
temporal binary datum for a 25 km× 25 km grid cell at spatial location s ∈ D and time
point t, where D is the two-dimensional Arctic spatial domain and t = 1, 2, . . . , T. Re-
call that yt(s) is equal to one for an ice grid cell and equal to zero for a water grid
cell. Let S ≡ {s1, . . . , sN} denote the set of N grid-cell locations where there are data,
and we assume s does not change over time. The data vector at time t is denoted
as yt ≡ (yt(s1), . . . , yt(sN))

′, for t = 1, 2, . . . , T. We aim to model the probability of
yt(s) being one given all the previous ice/water observations at time t− 1, denoted as
pt(s|yt−1) ≡ P(yt(s) = 1|yt−1), where P(A|B) denotes the conditional probability of A
given B. We consider a logistic autoregressive model, where the key assumption is that
logit(pt(s|yt−1))(≡ log{pt(s|yt−1)/

(
1− pt(s|yt−1)

)
}) depends on covariates at t with re-

gression coefficients βt, as well as the first-order autoregressive ice/water status of the
spatially neighboring observations of yt(s) at time t− 1.

Standard ST-LAR Model. A standard spatio-temporal logistic (first-order) autore-
gressive model is as follows:

logit(pt(s|yt−1)) = xt(s)′βt + ∑
j∈Nr(s)

ηt(yt−1(sj)− µt−1(sj)), (1)

where βt are the spatially homogeneous regression coefficients associated with the co-
variate vector xt(s), µt−1(s) = logit−1(xt−1(s)′βt−1), ηt is the coefficient of the (centered)
autoregressor yt−1(sj), Nr(s) denotes the set of neighborhood locations of the location
s, and logit−1(x) = exp(x)/(1 + exp(x)) is the logistic function for x ∈ (−∞, ∞). The
centered autoregressor directly models the effect of a neighboring water grid cell at t− 1
(i.e., yt−1(sj) = 0) on the presence of an ice grid cell at location s and time t, which helps
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to interpret ηt [32]. In this paper, we focus on the case that xt(s) = (1, xrsr,t(s))′, where
xrsr,t(s) is the RSR covariate at location s and time t.

New Proposed ST-LAR Model. The standard ST-LAR model in (1) may be overly
simplistic to characterize the complex dependence structure of pt(s|yt−1). To allow more
modeling flexibility, we distinguish the effects of spatially neighboring observations at
time t− 1 according to their ice or water status, through using η0 and η1 to denote the
corresponding two types of autoregressive coefficients, respectively (see Figure 6 for a
conceptual illustration). Moreover, since the effect of covariates and autoregressors may
change in space, we allow all the coefficients in the new ST-LAR model to vary with location
s. In summary, for any location si in the observed location set S , our proposed model is:

logit(pt(si|yt−1)) = xt(si)
′βt(si) + η0,t(si) ∑

j∈I0
i,t−1

(yt−1(sj)− µt−1(sj))

+η1,t(si) ∑
j∈I1

i,t−1

(yt−1(sj)− µt−1(sj)) , (2)

where I0
i,t−1 and I1

i,t−1 denote the index sets of nearby water grid cells and ice grid cells at
location si and time (t− 1), respectively. More detailed descriptions of the proposed model
are given in Appendix A.

Figure 6. Spatio-temporal representation of the autoregressive structure, where the black square
indicates the spatial domain, the colored circles indicate spatial locations, the solid black lines in
the black square define the neighborhood of those spatial locations, and the dashed colored lines
define the autoregressive dependence at location s. Circles corresponding to water (ice) grid cells are
colored blue (red).

Inference Procedure. Although the proposed logistic autoregressive model with
spatially varying coefficients is very flexible, the number of its parameters exceeds the
number of observations. To overcome this over-fitting problem, we assume that the spatially
varying coefficients are constant within clusters, which can be obtained in an unsupervised
manner by imposing a spatially fused LASSO-type penalty [51] on the coefficients in the
proposed model. Details on this regularized estimation method are given in Appendix B.
We remark that due to the fact that we assume coefficients are clusterwise constant and
we impose the fused LASSO penalty to penalize the difference of coefficients at two
neighboring spatial locations, the resulting number of distinct coefficients is small relative
to the sample size (see Appendix C).

3.3. Model Specification and Model Evaluation Criteria

We consider the ST-LAR model in (2) with different specifications of its coefficients
(e.g., the coefficients are constant or spatially varying, and/or the covariate vector does or
does not contain RSR). More details on these model specifications are given in Appendix C.

When evaluating the performances of different models, we use the following three
criteria: (i) Mean squared error (MSE), which is essentially the Brier score for binary



Remote Sens. 2022, 14, 5995 8 of 25

data [52]; (ii) Nash–Sutcliffe model efficiency coefficient (NSE, e.g., [53]); and (iii) correct
classification rate (CR). When implementing CR, the 0.5 probability threshold is used as a
cut-off value to transform the estimated ice probabilities to dichotomized estimates taking
values 1 (ice) or 0 (water).

Specifically, let { p̂t(si|yt−1)} denote the fitted ice probabilities; then we have

MSE(t) =
1
N

N

∑
i=1

[ p̂t(si|yt−1)− yt(si)]
2 and NSE(t) = 1− MSE(t)

MSE0(t)
,

where MSE0(t) ≡ 1
N ∑N

i=1[yt(si)− ȳt]2, and ȳt is the average of the binary data at time t.
Note that the NSE score takes values in (−∞, 1], with a higher value indicating a greater
estimation accuracy. The correct classification rate is

CR(t) =
1
N

N

∑
i=1

∣∣yt(si)− I( p̂t(si|yt−1) ≥ 0.5)
∣∣,

where I(A) denotes an indicator function equal to one if A is true and equal to zero otherwise.

4. Analysis of the Arctic Sea Ice Extent Data

In this section, we consider the Arctic SIE data in each month of September from 2000
to 2020, focusing on grid cells in the region greater than 60◦N that have experienced at least
one ice–water/water–ice transition during the entire study period. The result is a sea ice
dataset over 21 years at the 8673 spatial locations S illustrated in Figure 4.

4.1. Model Comparison Results

We fitted the ST-LAR model given by (2) to the SIE data in the 2000s and 2010s, with
different choices of its coefficients and covariates (see Table A1 in Appendix C). Since the
RSR observations xrsr,t(·) are only available from t = 2000, the data {y2000(si)} were used
as autoregressors to initialize the fitting of the ST-LAR models, and estimates { p̂t(si|yt−1)}
(and {ŷt(si|yt−1)}) were obtained from t = 2001. That is, we fitted the ST-LAR models to
the SIE data at N = 8673 spatial locations in the “donut " region, as shown in Figure 4, from
which we obtained the corresponding estimated ice probabilities and model evaluation
scores from t = 2001 to t = 2020.

From the model comparison results given in Appendix C, the best model takes the
following form:

logit(pt(si|yt−1)) = β0,t(si) + η0,t(si) ∑
j∈I0

i,t−1

(yt−1(sj)− µt−1(sj))

+η1,t(si) ∑
j∈I1

i,t−1

(yt−1(sj)− µt−1(sj)) , (3)

where I0
i,t−1 and I1

i,t−1 are the index sets consisting of the neighboring water grid cells and
ice grid cells for location si at time t− 1, respectively. That is, the best model has spatially
varying coefficients for the intercept and the autoregressive coefficients, and it does not
have any covariates.

Our numerical results in Appendix C show that the standard ST-LAR model with spatially
constant coefficients but without the RSR covariate cannot capture the spatial behaviors of
the observed ice–water/water–ice transitions, resulting in low model evaluation scores (see
Table A2). When allowing the η-coefficients to vary over the spatial domain D, the estimates
{ p̂t(si|yt−1)}match the observed ice/water status very well (see Figure A2), and the inferred
dichotomized ice/water estimates using the 0.5 cut-off value result in high correct classification
rate (CR) scores. Furthermore, allowing the intercept to also vary in space slightly improves
the CR scores, where significant improvements occur in years t = 2004 and t = 2013. Figure 7
shows the estimation results of the model fitted according to (3), compared to the SIE observa-



Remote Sens. 2022, 14, 5995 9 of 25

tions, for t = 2008 and 2013. Clearly, { p̂t(si|yt−1) : i = 1, . . . , N}match the spatial patterns of
the binary Arctic SIE data for those years very well. The excellent performance of our proposed
model (3) can be attributed to its spatially varying coefficients, whose values can adapt to the
observed ice–water/water–ice transitions in regions that lose or gain substantial sea ice from
t− 1 to t (see Figure 8).

Figure 7. Years 2008 and 2013 are shown. Left panels: The estimates { p̂t(si|yt−1)}. Middle panels:
The estimates {ŷt(si|yt−1)} using a 0.5 cut-off value to dichotomize { p̂t(si|yt−1)}. Right panels: The
binary Arctic sea ice data derived from satellite data.

Figure 8. Spatial maps of the autoregressive-coefficient estimates {η̂0,t(si)} and {η̂1,t(si)} for the best
model at t = 2008 and t = 2013.

We also considered the model given by (2) with spatially constant autoregressive coef-
ficients and covariate given by the June reflected solar radiation (RSR) in the same year, but
the model evaluation scores were not competitive (Tables A3 in Appendix C). Furthermore,
when using spatially varying autoregressive coefficients and the RSR covariate, it did not
improve on average the model evaluation scores of the model without the RSR covariate.

Henceforth, we focus on the estimates from the model given by (3) and propose several
summaries of them to reflect the spatio-temporal changes in Arctic sea ice over the two
decades from 2000 to 2020. These summaries are intended to visually capture the decline in
Arctic sea ice in the 2000s and the 2010s.
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4.2. Summaries Based on the Model Given by (3)

We first consider the Arctic SIE, which is defined as the sum of areas of all ice grid cells
in the Arctic region. By setting ŷt(s|yt−1) = I( p̂t(s|yt−1) ≥ 0.5) using the estimated ice
probability, p̂t(s|yt−1), from the best model, we obtain dichotomized ice/water estimates at
spatial locations that experienced at least one ice–water transition in the past two decades
(i.e., 8673 locations in the “donut” region). For the remaining locations s that were always
ice or always water during these two decades, we simply let{

ŷt(s|yt−1) = p̂t(s|yt−1) = 1, if yt(s) was always ice;
ŷt(s|yt−1) = p̂t(s|yt−1) = 0, if yt(s) was always water.

(4)

Then, by summing up the areas of the estimated ice grid cells, we obtain the estimated
Arctic SIE. From Figure 9, we can see that the time series of estimated SIEs agrees with the
time series of observed SIEs very well.

Figure 9. Observed Arctic SIE (red solid line) versus the estimated Arctic SIE based on the model
given by (3) (blue dashed line).

Next, similarly to the exploratory analysis shown in Figure 2, we can describe the zonal
changes in sea ice at different latitude bands by summarizing the estimates { p̂t(si|yt−1)},
obtained from (3) and (4). Then, for a latitude band centered at lat0 with half-bandwidth
equal to 0.5◦, we can summarize the estimates { p̂t(si|yt−1)} within this latitude band over
t ∈ {2000, . . . , 2020}.

Figure 10 shows time series of such boxplots for latitude bands 70◦N, 72.5◦N, 75◦N,
77.5◦N, 80◦N, 82.5◦N, and 85◦N at five-year intervals from 2000 to 2020. For each latitude
band lat0 with bandwidth 2δ, the estimates { p̂t(si|yt−1) : i = 1, . . . , N} with latitudes in
[lat0 − δ, lat0 + δ) are summarized; we chose δ = 0.5◦, resulting in a latitude bandwidth
of 1◦. Since these boxplots are made at a finer resolution than the exploratory results
in Figure 2, the changes in sea ice both in level and variability are more apparent. We
can see that for the mid-high latitude bands lat0 = 72.5◦N, 75◦N, 77.5◦N, 80◦N, there
is a clear deceasing temporal trend of { p̂t(si|yt−1)} over the past two decades. Even
for the higher latitude band lat0 = 82.5◦N, the estimated ice probabilities have large
variations at t = 2020 compared to those concentrated near one with a small interquartile
range in the previous years. Critically for lat0 = 72.5◦N, 75◦N, once the third quartile of
{ p̂t(si|yt−1) : i = 1, . . . , N} drops below 0.5, the sea ice almost disappears in later years
and never rebounds afterwards. This behavior may reflect the future trend of the ice
probabilities for the higher latitude bands such as lat0 = 77.5◦N, 80◦N (and even 82.5◦N),
under climate change.
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Figure 10. Boxplots of the estimates { p̂t(si|yt−1) : i = 1, . . . , N} from the model given by (3) for
different latitude bands with half-bandwidth δ = 0.5◦. The horizontal dashed line indicates a 0.5
probability, and the solid dots indicate the averaged values of { p̂t(si|yt−1) : i = 1, . . . , N}. The
horizontal bars in the boxplots show the five-number summaries of a distribution (namely, minimum,
first quartile, median, third quartile, and maximum). The five-year-interval boxplots are shaded from
blue (2000) through green (2010) to red (2020).

5. Discussion and Conclusions

In summary, we consider ST-LAR models with spatially varying coefficients to charac-
terize the changes in sea ice in the Arctic, where the probability of a grid cell at location
s and time t being ice (i.e., pt(s|yt−1)) depends on the observations in yt−1 at the neigh-
boring grid cells of s. Compared to standard ST-LAR models, we allow the autoregressive
coefficients (η-parameters) to vary in space and time to capture local spatial variations
in the binary Arctic sea ice data. The effects of autoregressors are distinguished accord-
ing to their ice/water statuses to allow more modeling flexibility. To reduce the number
of spatially varying parameters, we employed a regularized estimation approach using
spatially fused LASSO penalties to yield clusterwise constant parameters. The proposed
model, along with regularized estimation, offers a novel and flexible approach for modeling
binary spatio-temporal data. The spatially varying autoregressive coefficients can adapt
to the nonhomogeneous autoregressive structure of the Arctic sea ice data, thus leading
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to superior fitting results. Our results show that with spatially varying autoregressive
coefficients, the estimated ice probabilities can capture the spatial patterns of observed
ice–water/water–ice transitions very well.

We found that with spatially varying autoregressive coefficients, further adding the RSR
covariate to the ST-LAR models did not significantly improve the estimation results. The best
model form has spatially varying autoregressive coefficients and a spatially varying intercept,
as given in (3). This model results in correct classification rates generally above 94% for each
year. Based on the estimated ice probabilities { p̂t(si|yt−1) : i = 1, . . . , N} of the best model, we
computed several summary statistics to describe the spatio-temporal changes in Arctic sea ice.
For the time series of Arctic SIE, the estimated SIEs match the observed ones very well and show
a clear declining temporal trend over the past two decades. Then, the estimated ice probabilities
were summarized zonally in selected latitude bands through a time series of boxplots for each
latitude band over different years. We observed that for the mid-high latitude bands, there is a
clear declining trend of the estimated ice probabilities over the past two decades. For latitude
bands at 72.5◦N and 75◦N, the sea ice almost disappeared after 2010 and did not rebound
afterwards. A similar zonal contraction towards zero may now be underway for the higher
latitudes 77.5◦N and 80◦N, since the estimated ice probabilities already show decreasing levels
and/or increasing variabilities from 2000 to 2020.

By assuming {yt(s)} are conditionally independent given yt−1 and model parameters
at each time t, the proposed ST-LAR model leads to a valid joint distribution for {yt(s)}.
Hence, the parametric bootstrap approach [54] can be applied to obtain the standard errors
of parameter estimates and the estimated ice probabilities (see Appendix C). While it can
be time-consuming to run the model on multiple bootstrap samples, importantly, it results
in valid statistical inferences.

In this paper, we focus on obtaining the estimated ice probabilities in the Arctic region.
Since the spatial-specific coefficients in the proposed ST-LAR model are estimated using
data at time t, our model cannot be readily used to predict the ice/water status in future
years. To enable forecasting, we need to assume that the autoregressive relationship does
not change in a short time period. The choice of a suitable time window in which the
autoregressive structure approximately stays the same will need further investigation.
We leave investigating the forecasting aspect of ST-LAR models for future research. In
addition, the Arctic SIE data at targeted months in the same year can also be considered for
constructing the autoregressors in an ST-LAR model, e.g., [25,55].
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Appendix A. Modeling Details

For the most general ST-LAR model in (2), xt(si) is the (normalized) p-dimensional
covariate vector at location si and time t, βt(si) ≡ (β1,t(si), . . . , βp,t(si))

′ is the vector of
regression coefficients, I0

i,t−1 ≡ {k ∈ {1, 2, . . . , N} : yt−1(sk) = 0} denotes the index set of
water grid cells at time (t− 1), and I1

i,t−1 ≡ {k ∈ {1, 2, . . . , N} : yt−1(sk) = 1} denotes the
index set of ice grid cells at time (t− 1).

Since the spatially neighboring observations of yt(si) are more likely to affect its own
status (e.g., intuitively, a spatial grid cell surrounded by ice/water grid cells in the last
year (t− 1) is more likely to be an ice/water grid cell in the current year t), we further
assume that pt(si|yt−1) only depends on its spatial neighbors at (t− 1). When defining the
spatial neighborhood of a location si, we may use the 4m nearest neighbors of si for some
positive integer m, mimicking the m-th order spatial autoregression model on a lattice. In
this paper, we chose m = 2 to specify 8 neighbors for each location. Let Nr(si) denote the
pre-specified index set of the spatially neighboring locations of si; now for i = 1, . . . , N, the
conditioning index sets for pt(si|yt−1) are I1

i,t−1 ≡ {k : k ∈ Nr(si) ∪ {i} and yt−1(sk) = 1}
and I0

i,t−1 ≡ {k : k ∈ Nr(si) ∪ {i} and yt−1(sk) = 0}. By using these index sets, the model
in (2) implies that {yt(si) : i = 1, . . . , N} are conditionally independent given their spatially
neighboring observations in yt−1.

Since the model in (2) assumes spatially and temporally varying coefficients, it involves
(pNT + 2NT) parameters, whose number exceeds the sample size n = NT. In practice, for
spatial location s, the spatio-temporal dependencies in pt(s|yt−1) and its spatial neighbors
often behave similarly, resulting in spatial patterns for the β-coefficients and η-coefficients
in (2). Thus, it is often reasonable to assume that these coefficients are clusterwise constant,
thus reducing the total number of parameters. Following the regularized estimation
procedure proposed by Li and Sang [40], at each time point t, we shall penalize the
differences of {βk,t(s)}, η0,t(s), and η1,t(s) between s and its spatial neighbors to obtain
spatially cluster-wise constant coefficients. This is achieved by imposing a fused LASSO-
type penalty [51] on the log-likelihood function when estimating model parameters, which
will be discussed in Appendix B.

Appendix B. Regularized Estimation Method

In this section, we describe a general regularized pseudo-likelihood parameter-estimation
procedure for our proposed ST-LAR model in (2), which applies to all the model specifications
in this paper.

To ease notation, let yt,i ≡ yt(si) for short, let pt,i denote the conditional probability
of yt,i being one given yt−1, and let zt,i denote the vector stacking the regressors xt(si),(

∑j∈I0
i,t−1

(yt−1(sj) − µt−1)
)
, and

(
∑j∈I1

i,t−1
(yt−1(sj) − µt−1)

)
in (2) corresponding to yt,i,

for i = 1, . . . , N and t = 1, . . . , T. Let θt,i ≡ (βt(si)
′, η0,t(si), η1,t(si))

′ denote the param-
eter vector at location si and time t; using the notations given above, we can rewrite
logit(pt(si|yt−1)) in (2) as logit(pt,i) = z′t,iθt,i.

Let θ ≡ {θt,i} denote the set of all parameters associated with the model (2). In the
absence of instantaneous spatial dependence, which leaves {yt,i} conditionally independent
given yt−1, the (pseudo) log-likelihood, e.g., [56] over t = 1, . . . , T is given by the equally-
weighted sum of the log conditional densities of {yt,i}:

L(θ) =
1

NT

T

∑
t=1

N

∑
i=1

log
(
(pt,i)

yt,i (1− pt,i)
1−yt,i

)
=

1
NT

T

∑
t=1

N

∑
i=1

{
yt,iz′t,iθt,i − log

(
1 + exp

(
z′t,iθt,i

))}
, (A1)

where pt,i = exp(z′t,iθt,i)/(1 + exp(z′t,iθt,i)).
We assume that the location-specific β-coefficients and η-coefficients have a clustering

pattern in space, and a fused LASSO-type penalty [51] is imposed on the log-likelihood
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given by (A1). Following the work by Li and Sang [40], we first obtain a partial order of the
observed spatial locations using a tree graph to facilitate computations while preserving
spatial information. Then, homogeneity constraints are imposed on each pair of coefficients
at two adjacent locations, where the adjacencies of locations are defined by the edges of the
tree graph. We shall remark here that the graph used to construct the fused LASSO penalty
can be different from the graph used to define the neighboring autoregressors in (2).

Specifically, we first define location neighborhoods using a connected undirected
graph G, with the M spatial locations as its nodes. In practice, we can either use a Delaunay
triangulation [57] or a k-nearest neighbors approach to construct such a graph G. Then, we
assign the edges of G with Euclidean distances of the nodes as the edge weights. For edges
with the same weights, we break the tie by adding a very small random perturbation to
each edge weight. A compact representation of the neighboring structure of those spatial
locations is given by a spanning tree of G, which is a connected subgraph of G with the
same nodes but without any cycles. Then, the unique minimum spanning tree (MST) is
obtained by minimizing the sum of edge weights among all the spanning trees of G. For
example, the left panel of Figure A1 shows a connected graph G with 30 nodes, which
is constructed by connecting each node with its 10 nearest-neighboring locations. The
corresponding MST of G is shown in the middle panel of Figure A1. Then, by deleting r− 1
edges from the MST, we can naturally define r clusters as the r sub-trees of the MST (see
the right panel of Figure A1 for the r = 3 clusters after removing the edges with the two
largest weights).

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00
X

Y 1

Graph

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00
X

Y 1

Spanning Tree

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00
X

Y
1

2

3

Clusters

Figure A1. Left panel: A connected graph G of 30 nodes, where each node is connected with its
10 nearest (according to Euclidean distance) neighbors, and edge weights are equal to the Euclidean
distances between the nodes. Middle panel: The minimum spanning tree of G. Right panel: The three
induced clusters by removing two edges of the spanning tree (the two dotted lines).

Let T ≡ (V , E) denote an MST of G, where V is the vertex set of M nodes and
E ≡ {e1, . . . , eM−1} is the edge set. We minimize the following objective function:

−L(θ) + λ ∑
(i,j)∈E

Pi,j,

where (i, j) denotes an edge in E connecting locations si and sj, and

Pij =
T

∑
t=1

(
p

∑
k=1
|βk,t(si)− βk,t(sj)|+ |η0,t(si)− η0,t(sj)|+ |η1,t(si)− η1,t(sj)|

)
. (A2)

Thus, at each time t, zero values of |βk,t(si)− βk,t(sj)|, |η0,t(si)− η0,t(sj)|, and |η1,t(si)−
η1,t(sj)| correspond to the edges connecting internal points of a cluster for the β-coefficients
and the η-coefficients, respectively, while the nonzero values of these correspond to the edges
connecting two boundary points across two clusters. For example, if {βk,t(s)} are only different
at the adjacent locations connected by the dotted lines in the right panel of Figure A1, we can
obtain three clusters for the k-th regression coefficient by deleting these two edges.

Suppose an edge em ≡ (i, j) connects two locations si and sj for m ∈ {1, 2, . . . , M− 1},
where (M− 1) is the number of edges in the MST, and let hm denote the M-dimensional



Remote Sens. 2022, 14, 5995 15 of 25

vector with only two nonzero entries: 1 at the i-th index and −1 at the j-th. Then, Pij =

∑T
t=1(∑

p
k=1 |h

′
mβk,t| + |h′mη0,t| + |h′mη1,t|), where βk,t = (βk,t(s1), . . . , βk,t(sM))′, and η0,t

and η1,t are similarly defined.
Let H ≡ (h′1, . . . , h′M−1)

′ denote the (M− 1)×M contrast matrix; then, the penalized
negative log-likelihood function can be written as

−L(θ) + λ
T

∑
t=1

(
p

∑
k=1
‖Hβk,t‖1 +

1

∑
`=0
‖Hη`,t‖1

)
, (A3)

where ‖a‖1 denotes the L1 norm of the vector a.
Following [40], by letting hM = 1

M 1M and H̃ = (H′, hM)′, we can re-parameterize
the model parameters as

{
β̃k,t ≡ H̃βk,t : k = 1, . . . , p

}
, η̃0,t ≡ H̃η0,t, and η̃1,t ≡ H̃η1,t,

for t = 1, . . . , T. Let θ̃ ≡ (β̃
′, η̃′0, η̃′1)

′ denote the vector of all the re-parameterized model
parameters; since H̃ is invertible by construction, minimizing the penalized negative log-
likelihood in (A3) is equivalent to minimizing

−L(θ̃) + λ
T

∑
t=1

(
p

∑
k=1
‖β̃k,t,1:(M−1)‖1 +

1

∑
`=0
‖η̃`,t,1:(M−1)‖1

)
, (A4)

where β̃k,t,1:(M−1) and η̃`,t,1:(M−1) are the column vectors containing the first (M− 1) entries
of β̃k,t and η̃`,t, respectively. Minimizing the objective function in (A4) is a standard LASSO
problem whose computation is efficient. The best tuning parameter λ in (A4) is selected
from a number of proposed values according to a model selection criterion, such as the
Akaike information criterion (AIC, e.g.,[58]) or the Bayesian information criterion (BIC,
e.g., [59]). In our application to Arctic sea ice, we chose BIC to select λ.

Appendix C. Detailed Model Comparison Results

To model the September Arctic sea ice data, consider the ST-LAR model in (2) and its
special cases as summarized in the following Table A1. The Model-1 class only uses an
intercept term β0 for modeling the mean of yt(s), which has three sub-cases: (a) the intercept
is constant and the η-coefficients are time-varying; (b) the intercept is time-varying and the
η-coefficients vary in space and time; and (c) both the intercept term and the η-coefficients
vary in space and time. Since for Model-1a the constant β0 is used instead of β0,t, the design
matrix of β0,t, η0,t, and η1,t is of full rank. The Model-2 class incorporates June’s reflected solar
radiation (RSR) as a covariate (denoted by xrsr,t(s)) in the ST-LAR model, which includes four
sub-cases depending on whether the coefficients vary purely in time or vary in both space
and time. The two classes and their sub-cases are specified in Table A1.

Table A1. The ST-LAR models for fitting the September Arctic SIE data. The mean of the latent yt(s)
is either modeled by an intercept term or by using the RSR as a covariate.

Model-1a {β0, η0,t, η1,t}
Model-1b {β0,t, η0,t(s), η1,t(s)}
Model-1c {β0,t(s), η0,t(s), η1,t(s)}

Model-2a {β0,t, βrsr,t, η0,t, η1,t}
Model-2b {β0,t, βrsr,t, η0,t(s), η1,t(s)}
Model-2c {β0,t, βrsr,t(s), η0,t(s), η1,t(s)}
Model-2d {β0,t(s), βrsr,t(s), η0,t(s), η1,t(s)}

Model evaluation results of different ST-LAR models were obtained at N = 8673
locations with at least one observed ice–water/water–ice transition in the last two decades.
When implementing the regularized estimation given in Appendix B, we tried different
values of λ ranging from 10−3 to 10 and selected the best one using the BIC criterion. The
selected λ values are different at different years, and the median value is about 8.3.
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Initialization for Estimation. Our proposed ST-LAR model given by (2) requires
(centered) past observations at time (t− 1) as autoregressors to model the ice probability
at time t. At the initial year t0 = 2000, since the means of {y1999(si)} (i.e., {µ1999(si)}) are
not available, we set η-coefficients in model (2) to zero and only use β-coefficients to fit the
binary observations at t0. After we obtain the estimates {µ̂2000(si)}, we can fully employ
the ST-LAR models in Table A1 and obtain the estimated ice probabilities in a progressive
manner from t0 + 1 = 2001 onwards.

Results of the Model-1 Class. We first considered Model-1a, which uses a constant
intercept β0 for modeling the mean of logit(pt(s|yt−1)) and assumes only time-varying
η-coefficients. We used all the data to estimate the intercept β0 through a classical logistic
regression, assuming no space-time dependence among the observations. Then, by fixing
β0 at its estimate, a simple logistic regression was used to estimate η0,t and η1,t at each
time point.

The corresponding model fitting results of Model-1a are given in the left columns of
Table A2. We observe that the MSE values are generally large compared to those in the middle
and right columns, and the correct classification rates using the 0.5 cut-off value are generally
below 80%. This indicates that only using the constant η-coefficients at each time point is not
flexible enough to capture the spatial behaviors of ice–water/water–ice transitions. Then, we
considered a more flexible model allowing the η-parameters to vary in space and time (Model-
1b), and it can be seen that the fitting results are greatly improved (see the middle columns of
Table A2): The averaged MSE has reduced from Model-1a by a factor between 3 and 4, and the
averaged correct classification rate is about 95% compared to 77% for Model-1a, indicating that
the fitted ice probabilities can capture the observations very well. When further allowing the
intercept to vary in space and time (Model-1c), the resulting averaged model evaluation scores
are only slightly better than those of Model-1b. We observe that improvements in prediction
accuracy for Model-1c occur for years 2004, 2008, 2013, 2016, 2017, and 2020. The performances
of Model-1b and Model-1c are generally comparable, but Model-1b yields relatively lower
correct classification rates at t = 2004 (90.8%) and t = 2013 (89.3%).

Table A2. Model evaluation scores: The mean squared errors (MSEs), Nash–Sutcliffe model efficiency
coefficients (NSEs), and the correct classification rates (CRs) for the Model-1 class based on their
estimates at t = 2001, . . . , 2020. The last row gives the time-averaged model evaluation scores.

Model-1a Model-1b Model-1c

Year MSE NSE CR MSE NSE CR MSE NSE CR

2001 0.145 0.248 0.791 0.037 0.810 0.952 0.038 0.803 0.954
2002 0.210 0.124 0.691 0.036 0.849 0.955 0.041 0.829 0.948
2003 0.100 0.570 0.868 0.031 0.868 0.959 0.043 0.813 0.946
2004 0.173 0.267 0.763 0.062 0.738 0.908 0.040 0.833 0.952
2005 0.204 0.181 0.699 0.035 0.858 0.956 0.042 0.830 0.946
2006 0.150 0.377 0.795 0.037 0.846 0.955 0.041 0.828 0.948
2007 0.176 0.162 0.701 0.020 0.906 0.975 0.030 0.856 0.960
2008 0.195 0.168 0.723 0.064 0.725 0.924 0.048 0.795 0.935
2009 0.156 0.376 0.785 0.039 0.846 0.952 0.045 0.822 0.943
2010 0.127 0.479 0.828 0.037 0.850 0.955 0.046 0.810 0.938
2011 0.118 0.484 0.850 0.038 0.832 0.952 0.043 0.810 0.949
2012 0.102 0.288 0.821 0.024 0.833 0.970 0.027 0.812 0.969
2013 0.235 0.058 0.590 0.086 0.657 0.893 0.049 0.804 0.936
2014 0.181 0.273 0.747 0.038 0.847 0.952 0.032 0.872 0.961
2015 0.190 0.193 0.715 0.045 0.808 0.941 0.051 0.784 0.932
2016 0.142 0.410 0.815 0.042 0.824 0.946 0.029 0.880 0.964
2017 0.119 0.501 0.839 0.053 0.777 0.924 0.031 0.872 0.962
2018 0.164 0.314 0.778 0.045 0.814 0.936 0.055 0.769 0.926
2019 0.132 0.394 0.814 0.026 0.880 0.966 0.030 0.862 0.962
2020 0.143 0.260 0.804 0.047 0.755 0.935 0.033 0.831 0.961

Average 0.158 0.306 0.771 0.042 0.816 0.945 0.040 0.826 0.950
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Figure A2 shows the estimates of {pt(si|yt−1) : i = 1, . . . , N} made by different
models versus the observed SIE data at years t = 2012, 2013. It is clear that the simple
autoregressive model with parameters {β0, η0,t, η1,t} cannot capture the spatial patterns of
the ice/water statuses at time t; in fact, its estimated probabilities behave similarly to the
immediate past observations at t− 1. In contrast, by allowing the η-coefficients to vary in
space and time, Model-1b can capture the main spatial patterns of the observed ice/water
statuses, resulting in the estimates of {pt(si|yt−1) : i = 1, . . . , N} behaving very similarly
to the observations. We can see that in 2012, the estimates of {pt(si|yt−1) : i = 1, . . . , N}
by Model-1b are almost dichotomized, with small variations in the ice–water boundary
regions. In the following year, 2013, Model-1b does not have the flexibility to capture the
dramatic ice–water transitions, resulting in an estimated probability surface of substantial
variability. Here, the fitted probabilities of Model-1c, which further allows the intercept to
vary in space as well as time, behave more similarly to the observations.

(a) t = 2012

(b) t = 2013

Figure A2. For each of (a) t = 2012 and (b) t = 2013, shown are the observed ice/water statuses
(upper-left panel) and the estimated ice probabilities by Model-1a (upper-right panel), Model-1b
(lower-left panel), and Model-1c (lower-right panel).

In addition, we obtain the binary estimates {ŷt(si|yt−1) : i = 1, . . . , N} by applying
the cut-off value of 0.5 to dichotomize the sea-ice concentration estimates { p̂t(si|yt−1) : i =
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1, . . . , N}. Both Model-1b and Model-1c lead to estimated ice/water statuses that are very
similar to the observed statuses (see Figure A3).

Figure A3. The observed ice/water status and the estimated ice/water status (by Model-1a, Model-1b,
and Model-1c) at t = 2012.

Results of the Model-2 Class. Zhan and Davies [20] used the June RSR data to
estimate the September Arctic sea ice with good success. This motivates us to include
the June RSR as a covariate in our new model given by (2) to see whether the model
evaluation scores can be improved further. At each time t, we standardized the RSR data
by subtracting the sample means over space and dividing by the corresponding standard
deviations. The CERES EBAF data product is on a 1◦ × 1◦ longitude–latitude grid, whose
resolution is different from the 25 km resolution of the remotely sensed Arctic sea-ice data.
When modeling pt(s|yt−1), we used the June RSR value at the location nearest to s as its
RSR covariate.

The results of the Model-2 class are given in Table A3, where the clear-sky RSR (CS-
RSR) was used as a covariate when modeling logit(pt(s|yt−1)). For the model (2) with
spatially constant coefficients {β0,t, η0,t, η1,t}, after incorporating the CS-RSR as a covariate
(Model-2a), the correct classification rates have improved somewhat, with an averaged
correct classification rate of 80%, compared to 77% with Model-1a. Especially for year
t = 2013, from Table A2, Model-1a has a very low correct classification rate of 59% and
a very small NSE value of 0.058. By borrowing information from the CS-RSR in 2013,
Table A3 shows that Model-2a achieves an improved correct classification rate of 74% and
a much bigger NSE score. Changing the CS-RSR covariate to the AS-RSR covariate made
very little difference in terms of the three model evaluation scores.

Figure A4 shows the observed Arctic SIE values and the estimated ones for Model-
1a and Model-2a without and with CS-RSR, respectively. For Model-1a, which does not
involve the RSR covariate, its ice/water statuses have large discrepancies with the observed
values at a few years, and the general temporal trend of the SIEs cannot be captured; for
example, the fitted Arctic SIEs are much smaller than the observed values at t = 2007 and
2013. In contrast, when incorporating the June RSR information into the model (Model-2a),
the estimated ice/water statuses are much closer to the observed values. Hence, the June
RSR variable seems to be helpful for modeling Arctic sea ice.
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Table A3. The MSEs, NSEs, and CRs for the Model-2 class with clear-sky RSR (CS-RSR) as a covariate.
The last row gives the time-averaged model evaluation scores.

Model-2a Model-2b Model-2c Model-2d

Year MSE NSE CR MSE NSE CR MSE NSE CR MSE NSE CR

2001 0.126 0.345 0.820 0.037 0.808 0.952 0.047 0.756 0.940 0.035 0.816 0.956
2002 0.153 0.363 0.766 0.039 0.837 0.952 0.053 0.779 0.929 0.048 0.800 0.939
2003 0.108 0.535 0.858 0.046 0.800 0.939 0.039 0.834 0.947 0.038 0.837 0.955
2004 0.130 0.450 0.818 0.057 0.758 0.925 0.043 0.819 0.938 0.047 0.801 0.936
2005 0.164 0.342 0.762 0.059 0.762 0.922 0.052 0.793 0.932 0.047 0.813 0.941
2006 0.135 0.439 0.824 0.043 0.820 0.945 0.045 0.815 0.949 0.050 0.792 0.943
2007 0.142 0.322 0.834 0.032 0.846 0.956 0.036 0.829 0.956 0.033 0.842 0.958
2008 0.189 0.192 0.725 0.043 0.814 0.946 0.056 0.762 0.931 0.058 0.753 0.927
2009 0.140 0.438 0.788 0.029 0.883 0.963 0.041 0.836 0.948 0.066 0.737 0.920
2010 0.128 0.476 0.830 0.042 0.828 0.945 0.041 0.832 0.949 0.044 0.820 0.944
2011 0.108 0.525 0.855 0.048 0.787 0.943 0.032 0.859 0.960 0.050 0.783 0.935
2012 0.102 0.286 0.812 0.026 0.819 0.967 0.022 0.845 0.974 0.028 0.805 0.966
2013 0.180 0.280 0.741 0.114 0.543 0.838 0.060 0.758 0.921 0.041 0.835 0.945
2014 0.162 0.348 0.764 0.084 0.664 0.889 0.061 0.755 0.934 0.046 0.817 0.940
2015 0.171 0.273 0.746 0.045 0.811 0.945 0.051 0.781 0.937 0.060 0.745 0.922
2016 0.135 0.438 0.818 0.043 0.822 0.946 0.031 0.869 0.961 0.039 0.835 0.948
2017 0.119 0.503 0.841 0.047 0.803 0.942 0.040 0.832 0.947 0.036 0.849 0.957
2018 0.131 0.454 0.816 0.053 0.781 0.932 0.054 0.774 0.926 0.050 0.793 0.935
2019 0.101 0.536 0.856 0.031 0.858 0.960 0.027 0.874 0.965 0.033 0.850 0.961
2020 0.144 0.257 0.778 0.036 0.814 0.953 0.034 0.826 0.955 0.030 0.846 0.961

Overall 0.138 0.390 0.803 0.048 0.793 0.938 0.043 0.812 0.945 0.044 0.808 0.944

(a)

(b)

Figure A4. The observed Arctic SIE versus the estimated Arctic SIE using Model-1a and Model-2a
(with the CS-RSR covariate). (a) Observed (red solid line) and estimated (blue dashed line) Arctic
SIE using Model-1a with coefficients {β0, η0,t, η1,t}. (b) Observed (red solid line) and estimated (blue
dashed line) Arctic SIE using Model-2a with the CS-RSR covariate.

However, when further allowing the η-coefficients to vary in both space and time,
incorporating the RSR covariate (Model-2b) does not improve the model evaluation scores
on average, and the resulting averaged scores are comparable to those with Model-1b
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(and Model-1c). Similar conclusions hold for the even-more-flexible models Model-2c
and Model-2d with regression coefficients varying in space and time. It seems that the
spatially varying η-coefficients are already flexible enough to capture the spatial patterns
of {pt(si|yt−1) : i = 1, . . . , N}. Although the spatially averaged RSR values are highly
correlated with the Arctic SIEs as shown in Figure 5, the local spatial patterns of the June
RSR do not match very well with those of sea ice.

More Validation Results for Model-1c. We first check the number of distinct model
parameters for Model-1c. Figure A5 shows the boxplots of the numbers of distinct values
for the β and η-coefficients. We can see that the numbers of distinct coefficients are small
relative to the sample size (which is N = 8673), with median values less than 100. The
largest number of model parameters of the fitted ST-LAR models is about 300, which is
much smaller than the sample size. Therefore, the model we choose (Model-1c) does not
obviously suffer from over-fitting.

Figure A5. Boxplots of the numbers of distinct coefficients at years 2001–2020 for Model-1c.

Figure A6 shows the additional estimation results of Model-1c at t = 2007 and 2012.
We can see that the fitted results from Model-1c are reasonable, resulting in the estimated
ice probabilities behaving similarly to the Arctic SIE data. The corresponding estimates
of the autoregressive coefficients are shown in Figure A7, whose values adapt well to the
observed ice–water/water–ice transitions in regions with substantial loss or gain of sea ice
from t− 1 to t.

Figure A6. Years 2007 and 2012 are shown. Left panels: The estimates { p̂t(si|yt−1)}. Middle panels:
The estimates {ŷt(si|yt−1)} using a 0.5 cut-off value to dichotomize { p̂t(si|yt−1)}. Right panels: The
binary Arctic sea ice data derived from satellite data.
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The time-averaged 2 × 2 confusion matrix is given in Table A4. The number of
misclassified ice grid cells and the number of misclassified water grid cells are roughly
balanced. The time-averaged correct classification rate for ice is 94%, which is very close to
that for water (95%). We further calculated several parameters of the confusion matrix for
the selected Model-1c, including precision, recall (sensitivity), and F1-score. Precision is the
proportion of correctly classified ice grid cells among all the classified ice grid cells by the
model, recall is the proportion of correctly classified ice grid cells among all the observed
ice grid cells, and F1-score is the harmonic mean of precision and recall.

Figure A7. Spatial maps of the observed ice/water statuses at t− 1 and t and the autoregressive-
coefficient estimates {η̂0,t(si)} and {η̂1,t(si)} of Model-1c, for t = 2007 and t = 2012.

Table A4. Time-averaged 2× 2 confusion matrix for Model-1c.

N = 8673 ŷt(s|yt−1) = 1 ŷt(s|yt−1) = 0

yt(s) = 1 (actual ice) 3653.35 223.85
yt(s) = 0 (actual water) 213.20 4582.60

The corresponding time series plots of those parameters for Model-1c are shown in
Figure A8. The time series of the precision, recall, and F1-score parameters have fluctuations
over years, with values generally above 90%. We find that relatively lower values of
precision and recall occur at years when the overall sea ice patterns are largely different
between t − 1 and t (e.g., t = 2008 and 2018). This may be because when the sea ice
patterns change dramatically from t− 1 to t, it will be difficult to borrow last year’s sea ice
information to estimate the presence of sea ice in the current year.
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Figure A8. The time series of precision, recall, and F1-score parameters of the 2× 2 confusion matrix
for Model-1c.

Last, we have conducted an experiment to test the spatial prediction performance
of Model-1c. Specifically, we randomly split the data locations into a training set with
7806 locations and a testing set with 867 locations; the training set contains about 90% of the
total locations, and the testing set contains the remaining 10%. At each time point t, we first
estimated the model parameters based on the training data, and spatial predictions were
conducted subsequently by (i) obtaining the autoregressors for each testing location sp
using its 8 nearest neighboring training data at time t− 1 and (ii) plugging in the estimated
model coefficients corresponding to the training data that are nearest to sp. In this way, we
can obtain estimated ice probabilities for the testing data. The following Table A5 gives the
time-averaged model evaluation scores of Model-1c on both the training and testing data.
We can see that the estimation results for the best model (Model-1c) are still reasonable, with
the three model evaluation scores for the testing data close to those for the training data.

Table A5. Time-averaged model evaluation scores: The mean squared errors (MSEs), Nash–Sutcliffe
model efficiency coefficients (NSEs), and the correct classification rates (CRs) for Model-1c.

Model-1c MSE NSE CR

Training 0.036 0.842 0.954
Testing 0.050 0.782 0.936

Conclusion. Our conclusion is that Model-1c, namely, the model given by (3) in
the paper, is the best model. Its estimates give superior model evaluation scores, and
hence those estimates are used to compute the summaries and their visualization of the
spatio-temporal variability in Arctic sea ice.

Uncertainty Estimation. The parametric bootstrap method, e.g., [54] provides a
feasible way for obtaining the standard errors of { p̂t(si|yt−1)} for Model-1c. Let θ̂t ≡
{β̂0,t(si), η̂0,t(si), η̂1,t(si), i = 1, . . . , N} denote the parameter estimates of Model-1c at time
t. The bootstrap samples can be generated in the following manner. At the initial time
t0, the estimates θ̂t0 are plugged into equation (3) to obtain the estimated ice probabilities
{ p̂b

t0
(si|yt0−1)}, and the bootstrap samples, {ŷb

t0
(si)}, are independently generated from

the Bernoulli distributions with parameters { p̂t0(si|yt0−1)}. Then, starting from t = t0 + 1,
the bootstrap samples at time t are generated by i) constructing the autoregressors us-
ing the bootstrap samples {ŷb

t−1(si)}; ii) plugging the autoregressors and the parameter
estimates θ̂t into (3) to obtain the estimated ice probabilities { p̂b

t (si|yt−1)}; and iii) generat-
ing the bootstrap samples {ŷb

t (si)} independently from the Bernoulli distributions with
parameters { p̂b

t (si|yt−1)}. This data-generating process is repeated B times to obtain B
bootstrap samples.

The right panels of Figure A9 show the bootstrap standard errors of the estimated
ice probabilities of Model-1c based on 100 bootstrap samples. We can see that the uncer-
tainties of { p̂t(si|yt−1)} mainly reside in the ice–water boundary regions where classifying
ice/water grid cells is more difficult. We also obtained the standard errors of the estimated
Arctic SIE based on those bootstrap samples at each year t. The corresponding approximate
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95% confidence interval of the Arctic SIE is shown in Figure A10, where at each time t,
the upper and lower limits of the bootstrap confidence interval are equal to the estimated
Arctic SIE plus and minus its two bootstrap standard errors, respectively. Values at time
t− 1 are joined to respective values at time t by straight lines. The pointwise bootstrap
confidence intervals generally cover the observed Arctic SIE values, indicating that the
fitting results are reasonable.

Figure A9. Years 2007 and 2008 are shown. Left panels: The estimates { p̂t(si|yt−1)} of Model-1c.
Middle panels: The bootstrap means of the estimated ice probabilities from 100 bootstrap samples.
Right panels: The bootstrap standard errors of the estimated ice probabilities.

Figure A10. The observed Arctic SIE (red solid dot), the estimated Arctic SIE by Model-1c (blue
dashed line), and the bootstrap pointwise 95% confidence interval of the Arctic SIE (shaded
blue band).
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