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Abstract: For the logistics environment, multi-UAV algorithms have been studied for the purpose of
order picking in warehouses. However, modern order picking adopts static order picking methods
that struggle to cope with increasing volumes of goods because the algorithms receive orders for a
certain period of time and pick only those orders. In this paper, by using the modified interventionist
method and dynamic path planning, we aim to assign orders received in real-time to multi-UAVs in
the warehouse, and to determine the order picking sequence and path of each UAV. The halting and
correcting strategy is proposed to assign orders to UAVs in consideration of the similarity between the
UAV’s picking list and the orders. A UAV starts picking orders by using the ant colony optimization
algorithm for the orders initially assigned. For additional orders, the UAV modifies the picking
sequence and UAV’s path in real time by using the k-opt-based algorithm. We evaluated the proposed
method by changing the parameters in a simulation of a general warehouse layout. The results show
that the proposed method not only reduces completion time compared to the previous algorithm but
also reduces UAV’s travel distance and the collapsed time.

Keywords: dynamic order picking; unmanned aerial vehicle; multi-UAV system; intelligent
warehouse

1. Introduction

With the start of the Fourth Industrial Revolution, research and development of robots,
AI, and IoT have been studied. Especially, through AI and Unmanned Aerial Vehicle (UAV),
robots can perform complex tasks on behalf of humans [1,2]. As the core technologies of
autonomous UAV such as mapping, path planning, and localization are studied, UAVs are
being used in various fields such as security, logistics, surveillance, and quarantine [3–8]. In
those fields, the need for logistics UAVs is increasing due to a lack of manpower, an aging
population, and an increase in the volume of goods. The task that requires the automation
of UAVs in a warehouse environment is order picking. Order picking is the task of receiving
orders from customers with the Warehouse Management System (WMS) and retrieving
items belonging to the order from the storage locations of the items [9]. Since the cost of
order picking accounts for more than 60% of the entire warehouse operating costs [10], the
importance of efficient processing for order picking is high. Creating a group of orders with
similar items in a warehouse and efficiently determining the picking sequence in which the
items are picked to minimize travel distance [11] is a general strategy for reducing overall
travel time. For efficient operation of multi-UAVs for order picking, order batching, which
groups orders into a group, and order sequencing, which determines the picking order of
items in a batch, are important [12]. To achieve this purpose, the Multi Robot System is
needed, in which numerous cooperative UAVs are handled in organized schemes [13].

To deal with the various types and large amounts of logistics increased by the intro-
duction of e-commerce, the dynamic order picking method of processing orders received at
a fixed time is being studied rather than the static order picking method [14–16]. Dynamic
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order picking processes arrived orders every moment, reducing the overall completion time
and minimizing the travel time of the order picker. As a result, “dynamic order picking”
responds swiftly to customer demands and improves customer service. In the previous
method, there was a “milk-run” method [14,17], which modifies only the batch of orders
without changing the original path of the picker, but the use of this fixed-length path formed
a longer path for dealing with a single order. Instead, an interventionist method of modify-
ing the path of a picker and assigning a new order was studied [16]. This method enables
efficient order batching and order sequencing, but it could not be applied to multi-UAVs
since it was an algorithm for a single picker.

Therefore, the primary goal of our study is an efficient dynamic order picking method
to process increasing orders using the multi-UAVs with limited flight time. We propose
the “Halting and Correcting Order batch” (HC) strategy and k-opt-based order sequencing
method to efficiently pick orders received in real-time at the warehouse with multi-UAVs.
The proposed method allocates continuously arriving orders to multi-UAVs with limited
capacity. The proposed HC strategy is the extended algorithm [16] of the interventionist
dynamic allocation scheme to assign orders to multi-UAVs, and modify each picking list
for efficient logistics. In order to perform order sequencing of a frequently modified UAV’s
peaking list in real time, we interpret this order sequencing as the Dynamic Traveling
Salesman Problem (DTSP), a NP-hard problem. The proposed Ant Colony Optimization
(ACO) and k-opt-based order sequencing change the batch configuration by considering
the UAV’s current position and the location of orders that are not picked up before the
order is added. The multi-UAVs efficiently move along the shortest path, not a fixed path
like the milk-run method. The main contributions of the proposed method are as follows:

• The proposed method uses dynamic allocation based on interventionist order picking,
and uses an efficient order picking method compared to previous logistics algorithms
to achieve a smaller completion time. Through this, the warehouse operation’s perfor-
mance is improved.

• The proposed HC strategy uses similarity information between orders allocated to the
UAV and has a smaller average travel distance than previous algorithms. Through this,
it contributes to increasing the operating time of each UAV compared to the charging
time of the UAV.

• By applying the k-opt-based DTSP solving algorithm to the logistics environment, the
proposed method can quickly calculate the task sequence for the order. Through this,
the sequence is changed in real time even when the order is frequently changed in the
picking list of the UAV, and the optimal path is guaranteed.

The remainder of the paper is organized as follows. Section 2 introduces the previous
methods for order picking and the definition of the DTSP. Section 3 defines the assumption
of a dynamic order picking situation in a logistics warehouse and the parameters of a ware-
house and a robot. Section 4 describes the proposed HC strategy based on interventionist
dynamic allocation for multi-UAVs and the dynamic TSP based on k-opt on how to apply
the logistics environment (problem definition). Section 5 compares the proposed method
with the previous strategy under various constraints. In Section 6, we discuss results and
future research.

2. Related Works
2.1. Dynamic Order Picking

With the introduction of e-commerce for business-to-consumer (B2C) [18], consumers
can individually choose their destination for orders, change items, cancel orders, etc. [14].
With this situation, logistics management and order picking have become more important
and complicated as orders increase. It is assumed that order picking covered in our paper is
performed on a general picker-to-parts system [19]. In this system, pickers move along the
aisles in the warehouse to pick up the requested items. However, previous methods had
limitations in terms of efficient work processing due to waiting time. Therefore, dynamic
order picking is being studied to deal with the explosive increase in order [14].



Remote Sens. 2022, 14, 6106 3 of 21

Static order picking is a method in which an order is received at a specific time and
picked by the order picker during the pick cycle. Orders arriving during this pick cycle are
not processed for a certain period of time, but will be processed after the previous order
has been picked [20]. Delays for orders received during this pick cycle will cause delivery
timings to be delayed. On the other hand, if a new order arrives during the pick cycle,
dynamic order picking adds the order to the picking list and modifies the path of the order
picker [14]. By processing orders received at every moment, dynamic order picking can
reduce the overall completion time and travel time during the pick cycle. As a result, the
dynamic order picking satisfies the need for a fast response to consumers and improves the
quality of customer service [16].

2.2. Method of Dynamic Order Picking

Dynamic order picking is typically constructed based on two method types: dynamic
order batching and dynamic pick lists. Compared to the previous methods for static
environments, it is difficult to compare the performance of dynamic methods because
the methods using dynamic order picking have different configurations and purposes in
warehouses. Comparison of method type and assumptions for the following dynamic-order
picking algorithm is summarized in Table 1.

Table 1. Comparison of method type and assumption of the proposed method for previous methods.

Nieuwenhuyse
et al. (2009)

[21]

Henn et al.
(2012) [22]

Rubrico et al.
(2011) [15]

Gong et al.
(2008) [14]

Giannikas et
al. (2017) [16] Proposed

Method type Dynamic
order batch

Dynamic
order batch

Dynamic
pick lists

Dynamic
pick lists

Dynamic
pick lists

Dynamic
pick lists

Picker type Multiple Single Multiple Multiple Single Multiple

Item size of order Variable Variable One Variable Variable Variable

Allow to change picking list No No Yes Yes Yes Yes

Allow to change picker’s route No No Yes No Yes Yes

2.2.1. Dynamic Order Batching

Most of the previous works allow to change batch in the order batch step for grouping
similar orders. These methods took into account the probabilistic characteristics of the
customer’s order to determine the size of the batch or the batch’s time window. This
method is largely classified into two types: fixed time window batching (FTWB) and
variable time window batching (VTWB). The former is a strategy of making and picking a
batch from orders received within a fixed time. The latter waits to make a single batch until
a predetermined number of orders arrive [21] or delays the picking start time of the new
batch until the predetermined conditions are met [22].

2.2.2. Dynamic Pick Lists

A pick list is a list of items that pickers must pick, and dynamic pick lists are a method
of modifying this pick list for UAVs that are already working [15]. This online rescheduling
strategy allows UAVs to modify the picking schedule to consolidate new orders with the
remaining items. Rubrico [15] assumes that a new order consists of one item, and when
a new order comes in while processing an remained order, it reorganizes the batch by
combining the arrived order with orders in the pick list. The steepest descent insertion
method and the multistage rescheduling strategy were used. On the other hand, Gong [14]
applies a polling system that considers the location of each item as a queue. If item location
of new order is picker’s current or downstream location, Gong allows the picker to add
the order to the pick list and uses a fixed path by the milk-run method. As a result, the
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completion time is reduced compared to the previous method, but the use of the fixed path
generates an inefficient path.

2.3. Interventionist Order Picking Strategy

Interventionist order picking [16] is a dynamic order picking method that corresponds
to the dynamic pick list strategy. This method suggests that when a new order arrives, it
updates the pick list of pickers that have already departed or makes a new batch with the
orders that have not yet been picked. In this method, three decisions have been proposed
on order allocation.

1. Interventionist—accept all (IAA): This method waits in the warehouse’s depot until
new order arrives. If N orders arrive, they are assigned to a picker to start picking.
The picker in operation is assigned a new order until the capacity conditions allow.
This method increases the processing time of orders that were already on the pick list.
Therefore, both the task completion time and the travel distance increase.

2. Interventionist—order completion time (IOCT): This method, like the IAA, waits in
the warehouse’s depot until new order arrives. If N orders arrive, they are assigned to
a picker to start picking. It is a method that adds a new order if the capacity condition
is satisfied and the completion time increased by additional orders does not exceed a
certain threshold. In this method, in order to obtain the completion time, it is necessary
to find the optimal travel path in advance, and this computational cost increases the
computation of the algorithm.

3. Interventionist—re-batching (IRB): This method also waits for N orders. When a new
order comes in, a new batch is created with either (1) orders that have been assigned
to the picker but have not been picked yet or (2) orders that have not been assigned
yet. Although it is possible in various ways, it requires a lot of computation time even
for a single picker.

Although this strategy succeeded in lowering the overall order picking completion
time, the travel distance of the algorithm in the warehouse increased. Furthermore, there is
a disadvantage that it cannot solve the order assignment for general multiple pickers.

2.4. DTSP

When a new order is assigned to a picker with dynamic order picking, a new path
must be created that passes through the location of the order added to the existing path. The
problem of creating a new path can be defined as the DTSP [23]. In the case of general TSP,
if a node is a location to be passed through, it is a problem to visit each node exactly once,
considering the list of nodes and the distance between nodes, and generate the shortest
recursive path. However, in the case of the DTSP, whenever a new node is added, removed,
or the location of a node is changed, there is a problem of modifying the old path to a new
optimal path.

For the DTSP problem, after a new node is added to a batch, which is a set of nodes, a
path can be created using the TSP solution algorithm once again. However, recalculating
a new optimal path for a batch changed by previous algorithms takes a lot of time. In
order to reduce the high time cost due to this recalculation, using the information on the
optimal path before the change is required. However, the performance varies with the initial
parameters for the new node, and it can converge to the local minima that is dominant in the
optimal path before the change. Recently, the following biologically-inspired DTSP solution
algorithms have been studied to solve this problem; ACO, Particle Swarm Optimization
(PSO), and Genetic Algorithm (GA) [24,25].

The ACO is an algorithm that uses the volatility of an ant’s pheromone to generate
an optimal path through stochastic path selection. However, when applied to a dynamic
environment, the pheromone information is confused due to newly added and removed
nodes. To address this problem, representative research uses a strategy that reflects the
influence of changed nodes on pheromones that existed in previous paths [26]. However,
if the information on the existing path is dominant, the newly created path can also be
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greatly affected, potentially causing problems. To solve this problem, a method that has a
significant effect on pheromone information by adding a new ant rather than an existing
one was proposed [27,28].

The PSO is an algorithm in which multiple optimizers exchange information with
each other and perform optimization at the same time. Each optimizer means a solution
to a problem, and after evaluating the information of each optimizer, the best path is
found by passing the best information to another optimizer. In order to apply the PSO in a
dynamic environment, there is a limitation to the fixed parameters of the algorithm. For
this, it can converge to the path including the changed node by stochastically changing
the parameters [24]. As another method, solving the DTSP by combining the pheromone
information of the ACO with the PSO has been proposed [29].

2.5. Multi-UAV Task Allocation

In dynamic order picking, the execution method of multiple UAVs is related to the
multi-UAV dynamic task allocation [30]. In this task allocation, the “dynamic” of the task
given to the UAV refers to the delayed arrival of the task, the addition of the new UAV, and
the change in the constraints of the UAV’s mission performance by an external agent [31,32].
When new tasks arrive, there are previously scheduled tasks that have not yet been per-
formed. The UAV is assigned a task suitable for the current environmental conditions and
replans the travel path as it proceeds with the previously assigned work. Considerations
between the performance of multi-UAV dynamic task allocation are resultant average task
allocation time, task completion time, and travel distance of each UAV [30].

The travel distance of each UAV is associated with the limited resources (e.g., battery)
of the UAV. Since UAVs have long charging times and limited operating times, efforts
have been made to minimize the energy consumption of UAVs in this environment from a
realistic point of view [33,34]. Recently, the works have been studied that not only process
efficiently the target task, but also minimize the travel distance of the UAV [34]. Therefore,
in this paper, we check the travel distance of each UAV to prove that the proposed algorithm
is suitable for multi-UAV systems.

3. Problem Definition

The parameters for the proposed logistics environment are composed of the parameters
of the optimization model mainly used in the static order picking and the multi-UAV. This
parameter is used to analyze the performance of the proposed method under various
conditions. In these parameters, cmin used in the interventionist method is the amount of
orders allocated to generate the initial path when the picker starts from the depot and
performs the picking task. As the cmin increases, the number of orders that the UAV can be
allocated decreases.

Parameters of warehouse:

i: Index of an item
P: Number of items present in the logistics warehouse
pi: Location of item i
k: Index of orders
Ok: An index set of items belonging to the kth order
ninit: Number of initial customer orders
nlast: Total orders, last customer orders
sk: The number of items that the kth order has
S: Maximum number of items a customer’s order can have
γ: Order growth rate
nγ: Number of orders arriving per cycle
nd: Number of depots
cmin: Minimum number of orders for order batch creation
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Parameters of Multi-UAV:

nr: The number of UAVs
u: The index of a UAV
lu: Current location of UAV u
vUAV : The speed of the UAV
cu: Load capacity of orders currently held by the UAV
cmax: Maximum order load on the UAV
PLu: Current picking list of UAV u
NPLu: List of items that have not yet passed through within the current pickup list of
UAV u

Additional assumptions related to the warehouse and multi-UAVs are as follows:

1. Each item is independent of other items and orders.
2. The speed of the UAV is constant.
3. The UAV has the ability to pick each item by itself.
4. The aisle is wide enough to prevent collisions between UAVs.
5. UAVs are equally assigned to each depot.
6. Each UAV starts from the depot, picks up the item on the picking list, and then moves

to the starting depot.
7. It is assumed that the picking time of the UAV is constant. Therefore, no matter which

algorithm is applied, the entire pickup time is the same, so the pickup time is ignored
in the entire execution time of the algorithm.

8. UAVs are assigned orders and order sequences from the WMS. Each UAV calculates
an optimal path along this sequence and then autonomously flies between shelves.

In this paper, we adopt the traditional layout [35] of the picker-to-part warehouse.
We assume the horizontal configuration of multiple blocks as the layout. The warehouse
environment is expressed in the form of a grid map, such as Figure 1. The UAV moves in
four directions on this grid-shaped map, circling each shelf.

Figure 1. Warehouse layout. Green blocks mean shelves on which items are contained in a warehouse.
The blue blocks mean depots in which the robot starts driving and returns. The white blocks are free
areas where the robot can move. The black blocks mean stuck areas where the robot cannot move.

4. Proposed Method
4.1. Multi-UAV Task Allocation and Sequencing Strategy for Dynamic Order Picking

The proposed method is a dynamic order picking method for a logistics system using
multi-UAVs. It determines the allocation of an order based on the interventionist order
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picking strategy [16] whenever a new order arrives, such as in Figure 2. Since the proposed
method uses multi-UAVs, unlike the previous method, it determines which UAV to assign to
a new order. After a new order is assigned, the visit sequence of the orders on the UAV’s pick
list must be recalculated to minimize the travel distance. However, since it is a multi-UAV
environment, this recalculation of the UAV’s visit order causes congestion in the logistics
system and delays due to high computational costs. From this point of view, we apply
the DTSP algorithms that modify existing paths in the form of combinatorial optimization
rather than path recalculation for additional orders. Through this, the proposed method
generates a new path with new orders at a low computational cost.

New
orders
arrive

Allocate new orders 
to a picking robot  

Intervene and
update existing 

picking list?

Yes

No

Wait new orders

Robot path
modification

Does idle 
robots exist?

No

Yes

Robot picking
restart

Robot picking
start

Robot path
calculation

Find a picking list
similar with
new orders

Find a batch similar 
with new orders

Does the similar 
batch exist?

No

Make a 
new batch

Yes

Figure 2. Proposed method flowchart based on similarities between new order and the pickup list.
The proposed strategy either assigns a new order to the UAV or combines a new order with not
allocated orders to make a new batch.

4.2. Halting and Correcting Strategy

The proposed task allocation method is the HC strategy, an extension of the existing
interventionist order picking strategy to multi-UAVs. The proposed method uses the IOCT
strategy [16] included in the interventionist order picking strategy to determine whether to
add a new order to the UAV’s picking list. The proposed strategy uses the order batch in
Figure 3 and an additional step to deal with orders that are continuously waiting.
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Yes

No

Does idle 
robots exist?

Find a picking list
similar with 

expired orders

Intervene and
update existing 

picking list?

Yes

No
Allocate an expired

order to a picking robot,
restart picking  No

Find a batch 
with expired orders

Yes

Make a new batch, 
allocate the batch to new robot,

and start picking

Does an expired 
order exist?

Start

Figure 3. Waiting orders processing flowchart. Orders that have been waiting for a long time until
the expired time must be processed to meet the fast completion time of the warehouse.

4.2.1. Finding a Picking List Similar with New Orders

When a new order arrives, the proposed method checks whether the new order has an
item similar to one on the picking lists of the UAVs currently picking. Before picking starts,
first calculate the path distance between the item and the location of the shelf where the
item is in the warehouse. In order for the path distance to reflect the optimal distance for the
actual UAV to travel, the shortest path distance calculated through the A* algorithm [36] is
used in the grid map.

To find a robot u′ with the most similar pick list to the new order k′, the current
position lu of each UAV u in operation and a list of items not currently passed through in
the UAV’s picking list NPLu are required. Construct Zu = {u}⋃ NPLu, which is the union
of u and NPLu. Then, calculate the average distance between each item i′ in Ok′ , which is
the item set of order k′ and the elements j of Zu with the minimum distance by (1).

Sk′ ,Zu =
1
|Ok′ |

Σi′∈Ok′
min
j∈Zu

d(i′, j) (1)

The smaller the Sk′ ,Zu , the higher the positional similarity between the existing UAV’s
picking list and the new order. Taking this into account, the UAV u′ with the smallest
distance value among the Sk′ ,Zu for all UAVs in (2) is chosen as the UAV to be intervened.
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However, if this distance is above the threshold τi, the proposed method does not add an
order to the picking list of the UAV u′. This is done in order not to increase the completion
time of the picking cycle of the existing UAV too much. Furthermore, when a new order is
added, only UAVs that do not exceed the UAV’s maximum payload cmax become intervened
candidate UAVs. If there are no candidate UAVs, the proposed method does not modify
the existing pick list.

u′ = argminuSk′ ,Zu (2)

4.2.2. Constructing the Batch Similar to New Orders

If a new order is not assigned to a picking UAV and there are no idle UAVs, the
proposed method waits for a new order. Afterwards, when a new order arrives, if there
is an idle UAV and the similarity between the new order and the batch is high, a new
batch is made and started. If several UAVs are in the idle state, the UAV with the smallest
cumulative travel distance is selected.

For efficient batch generation, batches between waiting orders are constructed with
high similarity using the seed algorithm [37]. The seed order s of the seed algorithm is
changed from the first waiting order to the new order. This algorithm finds the top cmin
orders with high similarity to the seed order. In this case, the similarity is calculated using
the average of the minimum distances between items of seed order Os and items of the
waiting order Ok in (3).

Cs,k =
1
|Os|

Σi′∈Os min
j∈Ok

d(i′, j) (3)

If there are top cmin orders with high similarity above the threshold τn, a new batch is
created and the batch is assigned to the UAV. If there are no cmin similar orders above the
threshold, new orders are delayed.

4.2.3. Processing Waiting Orders with Expired Time

In the waiting orders, the waiting time is recorded from the initial arrival time. Waiting
for orders is necessary for efficient order picking, but long waiting delays completion time
for the entire warehouse. Therefore, we process the corresponding order if the waiting time
exceeds a fixed expired time Te such as Figure 3. This order is called an expired order.

If additional orders cannot be assigned due to the capacity limit of the picking UAVs,
the expired order is used as a seed order for other waiting orders. Through the seed
algorithm used in Section 4.2.2, the batch with the maximum size of cmin is configured and
assigned to the idle UAV. At this time, the restrictions on the similarity threshold τn and the
minimum order quantity cmin are released, and if there is no idle UAV, the order is delayed
until the idle UAV exists.

If picking UAVs have empty capacity to pick orders, the similarity between expired
orders with picking list of UAVs is once again the same as the comparison scheme between
UAVs and seed orders used in Section 4.2.1, but with a threshold higher than τi. If the
average distance Sk′ ,Zu satisfies the constraint for that threshold, it assigns a order to the
UAV. Otherwise, it creates a batch without restrictions on the waiting order described
above. This strategy is applied as a response to reduce the total completion time.

4.3. Order Sequencing

The UAV in the warehouse uses different path generation algorithms depending on
when the proposed method allocates the order. When each UAV is assigned a batch for the
first time, it determines the travel path based on the variant ACO algorithm MAX-MIN Ant
System (MMAS) [38]. On the other hand, when the UAV is in operation, if a new order is
added to the pick list, the path to the remaining items and items in the new order must be
recalculated. In this dynamic case, if a new path is calculated based on the ACO algorithm,
there is a possibility that the UAV may stop for a long time between path creations or may
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not return an appropriate path due to the high computation cost of the TSP problem. To
prevent this, we interpret this order addition and path creation process as the DTSP and
modify the current path by applying a k-opt-based algorithm. Through this, the proposed
method creates a new picking path with a low computational cost.

4.3.1. Normal Order Sequencing

When UAVs waiting at the depot are assigned a new batch, they determine the picking
order of the items based on the location of the items that make up the batch. The positions
of the items are set as nodes in the TSP. Since determining the picking order for these
fixed items is the same as the definition of the TSP algorithm, we use MMAS, a prominent
TSP solving algorithm. The MMAS applied in this paper starts m ants from the node
corresponding to the depot, not the random location. The pheromone τij is maintained in
the trail between i -th node ni and j -th node nj in all N nodes. Ants stochastically select
the next node based on this pheromone information. The probability that the ant k at node
ni selects node nj as the next node is affected by the distance information between the
pheromone and the node as shown in (4):

pk
ij =


τα

ij η
β
ij

∑l∈Nk
i

τα
il η

β
il

if j ∈ Nk
i ,

0 otherwise,

(4)

dij is the distance between ni, nj and is reflected in this probability in the form of ηij = 1/dij.
The parameters α and β reflect the importance of pheromones and distance information in
selecting nodes as weights between τij and ηij. The node set Nk

i is an unvisited node among
adjacent nodes of ant k. Nodes that do not belong to the set have been visited once, so the
probability of the visit is set to zero and no more visits. Based on the above probabilities,
each ant generates a path Rm. In the next process, the pheromone update process, elite ants
are selected ( f (Rm)) to reduce the convergence time of the optimal path. The elite ant is
selected as the ant that generated the shortest path at that time.

At the end of the path generation process, the pheromone information needs to be
updated. First, the pheromone is reduced using the evaporation rate ρ, and it is updated
with the sum of the pheromone left by the m ant creating a path and the pheromone of the
elite ant. The pheromone of node ni, nj is updated via (5):

τij ←− [(1− ρ)τij + ∆τbest
ij ]τmax

τmin
(5)

τmin, τmax is the lower limit and upper limit of the pheromone value, respectively. Maintain-
ing the pheromone above a certain level keeps the possibility of creating various paths. In
the case of ∆τbest

ij , it is expressed as (6):

∆τbest
ij =

{
1/Lbest if (i, j) belongs to the best tour,
0 otherwise,

(6)

Lbest means the distance of the best path in the current cycle, and the pheromone is updated
through the above equation and a new path is checked in the next cycle. If the elite ant is
not updated for a certain period, the current path is judged to be the optimal path and the
calculation is terminated early to reduce the calculation cost.

4.3.2. Dynamic Order Sequencing

Dynamic order sequencing is necessary when assigning a new order to a UAV that is
already working on it. In the case of the previous TSP solution algorithm, the algorithm
was solved using the location of the new order and orders remaining on the picking list to
generate the optimal path. Because original path information is not used, it takes a lot of
time to generate results. To solve this problem, the closer the initial path is to the optimal
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solution, the higher performance k-opt is used to generate new paths, which reduces
computational costs.

The main idea is that the k-opt algorithm can find the shortest distance and improve
the path by rearranging and releasing the twisted path as one of the local optimization
algorithm techniques. It is an algorithm that improves the path through iterative exchange
by comparing the process of swapping any k edges among the edges of a given path
with all possible valid combinations. If the algorithm is used after creating the initial path,
it can be used in the warehouse environment to solve dynamic order sequencing with
low computation time. The proposed method proceeds as shown in Figure 4. A circle
represents a node, and a dotted line represents an edge. Figure 4a is the result of static order
sequencing. If the Figure 4a is changed to Figure 4b, a new order (blue circle) arrives to
UAV and one edge closest to new order (red dotted line) is judged as a twisted edge. Then,
remove twisted edge (red dotted line) and create two edges, including a blue circle. Finally,
a path including a new node is generated as shown in Figure 4c. Thereafter, different edges
are randomly selected and the path is compared using the above method. After that, the
same method is applied to the positions of all added nodes and an optimal path including
all nodes is generated.

(a) (b) (c)

Figure 4. This is the progress of the proposed k-opt algorithm. The circle indicates the location of the
ordered item, and the dotted line indicates the edge from one item to another. The blue circle is the
location of the newly added order, and the red dotted line is the edge twisted by the newly added
order. (a) Optimal path generated by using the given order position. (b) The new order is assigned.
(c) The result of proposed k-opt.

The UAV determines the visit sequence of each item in the warehouse using two
different algorithms according to the current state of PLu. When an UAV u is assigned
an order for the first time, it computes the path R via the static TSP solution of PLu and
Section 4.3.1. If the UAV in operation does not exceed cmax, based on Section 4.2, a new
order of V is allocated. Dynamic order sequencing is performed using NPLu including the
newly allocated order. When creating a path, the UAV’s current position lu is used as the
starting point, and the depot is used as the ending point. Remove the edge passed through
in the R and create a new path as shown in Figure 4 using one of the newly added orders.
Proceed in the same manner for all edges, and find the path with the shortest length among
them. Repeat the above until all new orders are included in the path. The shortest path
created with all the added orders is defined as Rbest, and an efficient logistics system is
established through the path. The overall framework can be checked through Algorithm 1.
I, r, and m are the maximum number of iterations, the number of nodes, and the number
of ants, respectively.

The proposed method has an advantage in terms of time complexity instead of having
a optional solution in the length of the path. Calculating the time complexity, the method
of Section 4.3.1 is O(I ×m2 × r), and the proposed method is O(r2). In general, because the
number of agents such as ant in the ACO is greater than the number of nodes, algorithms
for normal order sequencing have higher time complexity than proposed methods. The
results can be confirmed through next section.
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Algorithm 1 Proposed method.
Input: path R, allocated tasks V
Output: Best path Rbest

1: if R is empty then
2: Check the node N = {n0, n1, n2, ..., nr}
3: for i = 1 to I do
4: if i = 1 then
5: Generate m random ants
6: else
7: Move the ants by evaporate map—(4)
8: end if
9:

10: for k = 1 to m do
11: ant k, make a path Rk
12: Find the best path Rbest = f (Rk)
13: Check the elite ant kelite
14: end for
15:
16: Update the pheromone and elite pheromone— (5)
17: if the Rbest has not changed in five iterations then
18: return Rbest
19: end if
20: end for
21: else if R exists, get V then
22: for v in V do
23: Find the nearest edge in Rbest
24: Using proposed k-opt to make new Rbest
25: end for
26: return Rbest
27: end if

5. Experiment

The performance of the suggested algorithm is confirmed in this experiment by com-
paring it to the previous online logistics algorithm. The suggested technique’s performance
is verified by comparing its order batch and order sequencing with the general order batch
method and other routing methods, respectively. The UAV’s travel distance, algorithm cal-
culation time, and warehouse completion time for each algorithm are used to compare the
characteristics and performance of the algorithm. The travel distance of the UAVs indicates
how evenly each algorithm distributes orders to each UAV. The algorithm calculation time
represents the time consumption of decision making in an environment using mobile UAVs.
Warehouse completion time is a criterion that indicates whether the proposed method
speeds up order processing in a logistics environment. To confirm that the proposed order
sequencing algorithm is suitable for an environment using multi-UAVs, the time taken to
create a path and the length of the generated path are compared by changing the number
of UAVs.

5.1. Experiment Design

The experimental environment was implemented by simulating the logistics environ-
ment of Figure 5. In the simulation, new orders arrive in a repeated period. The items of
the incoming order are retrieved by UAVs based on the picker-to-part system. The UAV
generates an optimal path based on the A* algorithm between shelves of items and starts
from the assigned depot. In this experiment, the items are extracted from the uniform
distribution of the total number of items on the assumption that they are independent. We
assign the shelf a 2 × 3 space on the grid. This reflects the characteristics of the warehouse
in which the items are stored. Furthermore, in the simulation environment, the algorithm
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ignores the time it takes to pick an item after it reaches the shelf. This reflects the assumption
that picking times are the same for a given order. Therefore, as soon as each UAV reaches a
shelf, it estimates its next path and moves to the next shelf.

: robots

: shelves

: free space

: depots

Figure 5. Logistics environment simulation in grid form. In the multiple block structure, the picking
UAV is represented in a black box. The lines are robot paths with same color of the starting depot.

Algorithms compared with the proposed method are First-Come-First-Served (FCFS),
which is an order batch method that is mainly used practically in the online method, and
order sequencing based on the ACO. When a new order arrives, the FCFS strategy checks
that more than cmin are waiting. Earlier works use a different assumption about the logistics
environment. This assumption makes it difficult to compare our strategy with the earlier
works. To evaluate the performance of our strategy, we choose FCFS strategy as baseline
algorithm, which was used as a comparison algorithm in many studies [39,40]. When
more orders arrive, the FCFS strategy allocates them to the UAV that is currently idle. The
assigned UAV performs order sequencing and picking. If there is no idle UAV, the system
assigns the orders by considering only the capacity limit of the currently picking UAV. The
assigned UAV appends the order to the UAV’s picking list and performs order sequencing
for orders that are not picked from the picking list. In this way, order batching is performed
by prioritizing the arrival time of the order using the IAA method [16] for the single picker.
Both proposed k-opt-based order sequence methods and comparison methods use the ACO
algorithm to determine the order sequence for an idle UAV.

We confirm performance differences with other algorithms by changing the number
of arrived orders (nγ = 2, 4, 6, 8, 10) per γ as a parameter for comparing the HC strategy
performance under various conditions. γ is set to 1 second. Changing the parameters
in the restriction method’s parameters also discusses the effect of expired time Te which
determines the existing expired order. Between these comparative experiments, the number
of shelves P is set to 88. It was assumed that a total of 200 orders had arrived online
between experiments. The number of UAVs nr is 10. In the simulation, It is assumed that
the UAV’s speed vUAV is constant at 10 grid/s. The maximum capacity cmax is 8. The
minimum number of orders cmin by the batch creation constraint is 4.

To compare the order sequencing performance of the proposed k-opt based algorithm
with the ACO-based algorithm, we change the number of UAVs nr from 1 to 10 and
analyze the performance of the two algorithms. nγ is set to 8, and the other parameters
are identical as in the above experiment. The batch strategy uses the HC strategy with
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identical parameters. As evaluation criteria, the completion time per algorithm execution
and the average moving distance of the UAV are used. The completion time per algorithm
execution represents the average algorithm completion time for the strategy. By comparing
the completion time per algorithm execution, the computational efficiency of the proposed
algorithm is checked. Through the resultant travel distance, it is evaluated whether the
proposed algorithm is suitable for the logistics environment.

We implemented the simulation in Python with multiprocessing. The simulation
consists of four processes. First process generates orders periodically. According to the
batch and sequence method, second process allocates orders to UAVs. To make UAVs
pick the orders in picking list, third process calculates flight routes of UAVs and moves
UAVs along the routes. Using PyQT package, fourth process visualizes the environments
of warehouse and UAVs. In experiments, the PC is equipped with Intel Core i9-11900 CPU,
16 GB RAM. The operating system is Windows.

5.2. Experiment Result

The comparison groups of the experiment on order picking were: (1) FCFS-based
order batch and ACO-based order sequencing (FCFS + ACO), (2) FCFS-based order batch
and k-opt-based order sequencing (FCFS + k-opt), (3) HC strategy-based order batch and
k-opt-based order sequencing (HC + k-opt). Order picking of the FCFS + ACO method
shows the performance of order picking based on the basically interventionist strategy. The
FCFS + k-opt algorithm guarantees real-time performance compared to the FCFS + ACO
method and is used to observe the suboptimally optimized UAV’s path and the effect it
has on the completion time of the actual warehouse. In order to obtain a quick simulation
result, the resultant data of the simulation show a scale different from the actual one. In the
simulation, when the UAV moves, it moves in four directions by moving the grid one by
one. It is assumed that the moving distance of the moving UAV increases by 1 m every time
it moves one grid. The computation time of the algorithm means the computation time for
the method to require actually in simulation. In the experiment, since the calculation time
of the ACO algorithm is longer than that of k-opt, the number of times the ACO algorithm
is executed is a main factor that determines the collapsed time of each algorithm.

5.2.1. The Performance of Algorithms for Order Arrival Rates and Expired Time in Simulation

In a simulation in which online orders arrive at repeatedly constant period, the com-
pletion time for each algorithm shows different results according to the order arrival rate
Nγ in Figure 6. The FCFS + ACO increases the completion time as the order arrival rate
increases, like the IAA method proposed by [16]. This algorithm assigns mostly idle UAVs
with orders at low Nγ. Therefore, new orders are rarely assigned to picking UAVs in the
pick cycle. As a result, when the order arrival rate Nγ = 2, the completion time of the
FCFS + ACO algorithm increases. On the other hand, as Nγ grows, orders are also assigned
to the picking UAV. From this perspective, because the relationship between the orders
and new orders of the UAV is not taken into account [16], there is a negative effect on the
algorithm with the increasing completion time. FCFS + k-opt is similar to the previous
method, but when allocating a new incoming order to a UAV that is already picking, the
k-opt algorithm is used in the order sequencing process. If many orders come in quickly,
there are almost no idle UAVs, and there is a lot of intervention in the existing order picking.
This intervention causes the UAV to stop frequently in order to plan a new path for order
picking. As a result, when k-opt is used, most of Nγ (Nγ = 2, 4, 6, 10) shows a smaller
completion time than the ACO. Since the algorithm calculation time of k-opt is faster
than that of the ACO, the reduction in the calculation time of order sequencing affects
the performance. In the case of the HC + k-opt, when a new order comes in, it is decided
whether to allocate the other in consideration of the similarity with the picking list of UAVs
in operation. This method has the effect of reducing the overall completion time because
the path is formed quickly by using the k-opt for the order assigned to the UAV. In the
experiment for Nγ = 10, the frequent order arrival speeds up the generation of batches with
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high similarity. As a result, the waiting time for orders to be grouped with orders with high
similarity is reduced.
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Figure 6. Comparison graph of completion time by algorithm for order arrival rate.

For online ordering, the distribution of travel distances of multi-UAVs by algorithm
is expressed in the form of a box plot in Figure 7. The FCFS + ACO and the FCFS + k-opt
used different order sequencing algorithms, but the UAVs to which the two algorithms are
applied have similar average moving distances. Furthermore, in Figure 6, the application
of k-opt with a fast operation speed affects the reduction of the completion time of the
warehouse operation. The HC + k-opt method shows a box plot with a lower travel distance
compared to other algorithms. In the proposed method, the overall travel distance is low
and evenly distributed because the UAVs are processed in consideration of the similarity
of online orders. This reduction in the moving distance of the multi-UAVs saves on the
moving cost of the UAV. The saved moving cost contributes to increasing the operating
time of UAVs with limited batteries in the warehouse [33].
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Figure 7. Comparison box plot of UAV travel distance by algorithm for order arrival rate. the
rhombuses mean outliers.
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The order arrival rate Nγ causes a change in the collapsed time of the UAV in Figure 8.
FCFS + ACO and FCFS + k-opt show that the algorithm time increases with the increase of
the order arrival rate Nγ. This is because the interference with the picking list increases as
the amount of logistics increases, and the frequency of order sequencing for the modified
picking list increases. The two algorithms differ in the order of sequencing interventions.
The FCFS + ACO runs the ACO algorithm again whenever the picking list changes. The
allocation of each order results in the addition of new items in picking lists, which means
the addition of nodes in terms of the TSP problem. The overall computation time of the
algorithm to solve this problem increases. On the other hand, the FCFS + k-opt uses the
k-opt algorithm for the change of the picking list and shortens the computation time of
the algorithm. The HC + k-opt algorithm showed similar performance to the FCFS + k-opt
before Nγ = 6, but showed lower overall algorithm operation time after that. Our analysis
for the result is as follows:

1. Because the HC strategy creates a new batch through waiting rather than frequently
applying k-opt every time a new order arrives, the convergence time and the number
of executions for the algorithm to find the optimal solution are reduced.

2. Orders added to the picking list in the HC strategy are likely to have the same
item composition as the existing picking list. Since this means a decrease in the
number of nodes added in the TSP algorithm, the number of algorithm executions
will be reduced.
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Figure 8. A comparison graph of the collapsed time for the order arrival rate. This algorithm time is
the sum of the order sequencing time and the batch generation time of the order.

When the expired time Te of the HC strategy is high, it is shown that Figure 9 affects
the entire completion time of the warehouse. In these experiments, we fixed the arrival
rate Nγ to 10 and gradually increased the expired time. From the experimental results,
the relatively small expired time Te = 10, 20, 50 does not have a significant effect on the
overall completion time of the warehouse. On the other hand, a relatively large expired
time Te = 70, 100 makes the completion time very large. The source for this phenomenon
is the remaining orders with low similarity to each other in the late stages of simulation.
These orders are not assigned to UAVs unless they are expired or new orders are placed in
a similar batch. As a result, the increased expired time increases the waiting time for the
remaining orders.
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Figure 9. Completion time graph of the proposed method for expired time.

Table 2 shows detailed results of the overall performance change according to the
arrival rate of the algorithm. In Table 2, Dif. represents the change rate from FCFS + ACO
based on IAA to proposed HC + k-opt. When Nγ is 10, the proposed method shows the
lowest completion time, median of travel distance, and collapsed time compared to the
FCFS + ACO method. As a result, in the case of high order arrival, our algorithm is effective.

Table 2. Comparison of algorithm performance of the proposed method (HC + k-opt) for FCFS +
ACO, FCFS + k-opt. Dif. means the change rate of the result of HC + k-opt with respect to the result
of FCFS + ACO.

Nγ 2 4 6 8 10

Completion Time [s]

FCFS + ACO 122.60 112.21 108.63 101.58 128.57

FCFS + k-opt 128.25 111.57 107.04 107.86 118.47

HC + k-opt 127.78 97.78 94.87 95.08 89.63

Dif. 4.23% −12.86% −12.67% −6.4% −30.29%

Median of Travel Distance (nr = 10) [m]

FCFS + ACO 892.50 868.50 759.00 765.00 874.50

FCFS + k-opt 937.00 830.00 834.00 814.00 824.00

HC + k-opt 666.00 705.50 644.00 667.50 579.50

Dif. −25.38% −18.77% −15.15% −12.75% −33.73%

Collapsed Time [s]

FCFS + ACO 50.81 57.67 58.23 57.28 86.04

FCFS + k-opt 20.66 23.11 22.83 30.67 37.96

HC + k-opt 16.24 23.27 19.37 21.50 21.11

Dif. −68.04% −60.65% −66.74% −62.47% −75.46%

5.2.2. The Performance of Algorithms for Number of UAVs

In order to check whether the order sequencing proposed in the warehouse is effective,
we changed the number of UAVs, and the results were checked through the time required
to calculate the algorithm and the distance traveled by the UAV. The two results can be
confirmed in Figures 10 and 11, respectively. Figure 10 shows the time when an algorithm
is performed once and expresses it as elapsed time. The HC strategy was used for order
batching, and the ACO and proposal methods were used respectively. When the number of
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UAVs increases, the proposed method shows a fast processing speed of about 0.4 s, while
the comparison method is slower, with a maximum of 1.6 and a minimum of about 1 s. The
proposed method eliminates the twisted edge caused by the added order using the k-opt
method, so the time required to optimize the path is smaller than that of the comparison
method. On the other hand, comparison methods require a new weight for the positions of
all shelves, which results in a longer required time to complete the optimization.
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Figure 10. Elapsed time graph of the proposed method for number of UAVs.
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Figure 11. Travel distance graph of the proposed method for number of UAVs.

In Figure 11, the average of the distance traveled by all UAVs was used, and the
comparison method and the proposed method show similar distance. When nr is 1∼5, it
can be seen that the comparison algorithm generates a slightly shorter path. In the case
of using a small number of UAVs, the performance of the comparison method is slightly
better. The major cause is that this case is more closer to the TSP problem rather than the
DTSP problem after a certain period of time due to the limited cmax. On the other hand,
when nr increases from 6 to 10, the performance of the proposed method is better due
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to the frequent intervention. Using the proposed algorithm, there was an increase in the
path of approximately 1.5%, which does not differ significantly from the optimal path
obtained through the comparison algorithm. Through this result, the proposed algorithm
has a faster processing speed than the comparison algorithm, and the generated path is
efficient without showing a significant difference. Table 3 shows detailed results of the
overall performance change according to the number of UAVs.

Table 3. Comparison of algorithm performance of the proposed order sequencing method.

Nr 1 2 3 4 5 6 7 8 9 10

Completion Time [s]
ACO 1.60 1.57 1.50 1.46 1.57 1.28 1.40 1.22 1.27 1.10

Proposed 0.30 0.31 0.32 0.32 0.35 0.38 0.28 0.36 0.38 0.40

Travel Distance [m]
ACO 6512 3205 2298 1811 1480 1402 1222 998 887 868

Proposed 6712 3254 2256 1905 1528 1311 1187 982 852 807

6. Conclusions

In this paper, we propose the order picking method with the HC strategy and k-opt-
based algorithm to efficiently process orders received in real time in a logistics environment.
The HC strategy is an improved method of allocating orders in consideration of multi-UAVs
based on the previous interventionist strategy. The UAV in the warehouse uses different
path generation algorithms depending on the UAV’s picking list. When a new order is
assigned to an UAV already in the aisle, a new path is created using the original path based
on k-opt. The experiments were implemented in simulations of warehouses with a general
layout. The proposed method is compared with the FCFS strategy for order batching, and
the ACO algorithm for order sequencing. The performance of the proposed method was
confirmed by changing the order arrival rates and the number of UAVs in the warehouse.
By using the the HC strategy, even when a new order arrives, it reduces the convergence
time and the number of executions to find the optimal solution, showing a small completion
time even with an increase in order arrival rates. Furthermore, the proposed method finds
the optimal path by resolving the twisted path. The proposed algorithm executes about
2.5 times faster than the previous method. Nevertheless, there was no big difference in
completion time compared to the the previous TSP solving algorithm. It shows that it is
more suitable for the logistics environment when using multi-UAVs that require fast work.

Our approach was created to efficiently build a logistics system using multiple UAVs.
However, it is necessary to assume that starting and returning from a fixed depot and
collisions between UAVs are not taken into account. Moreover, since it is a structure
that handles all logistics allocation centrally, there is the disadvantage that there must be a
strong connection between all UAVs and the central network. In future research, order batch
through communication between UAVs will be studied to share the control of the center.
In addition, the assumption of sequencing is used only when new items are added, but in
order to reflect reality, we will study various situations such as removing and changing
orders, and verify in not only simulation, but also actual warehouse environments.
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