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Abstract: Point cloud filtering is an important prerequisite for three-dimensional surface modeling
with high precision based on LiDAR data. To cope with the issues of low filtering accuracy or
excessive model complexity in traditional filtering algorithms, this paper proposes a filtering method
for LiDAR point cloud based on a multi-scale convolutional neural network incorporated with the
attention mechanism. Firstly, a regular image patch centering on each point is constructed based on
the elevation information of point clouds. As thus, the point cloud filtering problem is transformed
into the image classification problem. Then, considering the ability of multi-scale convolution to
extract features at different scales and the potential of the attention mechanism to capture key
information in images, a multi-scale convolutional neural network framework is constructed, and the
attention mechanism is incorporated to coordinate multi-scale convolution kernel with channel and
spatial attention modules. After this, the feature maps of the LiDAR point clouds can be acquired at
different scales. For these feature maps, the weights of each channel layer and different spatial regions
can be further tuned adaptively, which makes the network training more targeted, thereby improving
the model performance for image classification and eventually separating of ground points and
non-ground points preferably. Finally, the proposed method is compared with the cloth simulation
filtering method (CSF), deep neural network method (DNN), k-nearest neighbor method (KNN), deep
convolutional neural network method (DCNN) and scale-irrelevant and terrain-adaptive method
(SITA) for the standard ISPRS dataset of point cloud filtering and the filter dataset of Qinghai. The
experimental results show that the proposed method can obtain lower classification errors, which
proves the superiority of this method in point cloud filtering.

Keywords: LiDAR point cloud; filtering method; attention mechanism; convolutional neural network

1. Introduction

Compared to traditional remote sensing techniques, the light detection and ranging
(LiDAR) system can obtain high-precision three-dimensional information of ground objects
rapidly and efficiently. Therefore, it is widely used in digital terrain model (DTM) gener-
ation [1–5], 3D modeling of buildings [6–9], hydrological modeling [10], forest inventory
and management [11–17] and many other application fields. When acquiring data, the
LiDAR system not only provides high-precision and high-density topographic surface
information, but also records the information of non-topographic surface objects, such
as buildings, trees, etc., [18]. As a result, in some measurement tasks closely related to
the surface morphology, such as landslide detection [19], erosion and deposition quan-
tification [20], channel bed morphology identification [21] and DTM extraction [22], it is
necessary to separate the non-ground points from ground points in the point clouds, by
means of the so-called point cloud filtering methods [23,24]. Previous studies have revealed
that it is extremely challenging to perform point cloud filtering for particularly complex
scenarios, such as urban areas and highly rugged surface environments [25]. This is mainly
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because complex topographic structures such as trees and buildings in urban areas often
lead to misclassification of ground points [26]. In addition, in the forest measurement
process, the filtering tasks may become more difficult due to the sparse ground points
collected by LiDAR [27]. Over the past two decades, a series of filtering methods have been
proposed to automatically classify ground points and non-ground points. Each method
has its advantages and disadvantages, and the performance of these filtering methods
varies from scene to scene. Traditional point cloud filtering algorithms are mostly based on
unsupervised classification, which distinguishes ground points from non-ground points
based on their different height, geometry or slope characteristics. These traditional algo-
rithms have a preferable filtering effect in low-complexity scenarios such as flat terrain
areas or buildings with simple structures. However, the results may be unsatisfactory in
some high-complexity scenarios [28]. For example, Zhao et al. [29] have found that the
detection results are sensitive to the selection of the optimal window size when detecting
ground seed points using morphological open operation. The multi-resolution hierarchical
classification (MHC) algorithm, proposed by Chen et al. [30], has superior performance in
urban areas, but poor extraction effect for steep terrain.

To settle the issues of low filtering accuracy or excessive model complexity in tradi-
tional filtering algorithms, some researchers have proposed the use of machine learning
methods to better solve the point cloud filtering problem. The filtering algorithms based
on machine learning treat point cloud filtering as a binary classification problem, that is, all
points are classified as ground points or non-ground points. Based on the features acquired
from the point cloud data, the filtering tasks can thus be achieved by training some machine
learning model, such as a conditional random field (CRF) [31], support vector machine
(SVM) [32], random forest (RF) [33], etc. For example, the Bayesian network-based point
clouds classification method proposed by Kang et al. [34] combines the geometric features
of point clouds and the spectral features of images to classify the ground points, vegetation
points and building points in the survey areas. Zhang et al. [35] designed a support vector
machine to classify point clouds in urban areas. However, the filtering results of the above
methods are not so satisfactory, because these methods are mostly based on local features,
without considering the context relationship between taxonomic units. In addition, the
training of machine learning models usually requires a large number of input features,
which makes the task of feature extraction especially challenging.

In the past few decades, deep learning methods have been widely used in image
classification [36]. As the typical representative, convolutional neural networks (CNNs) can
directly obtain spatial context information from images, so as to extract complex features
more effectively [37]. In recent years, CNNs have been successfully applied to point clouds
processing, which can be mainly categorized as multi-view-based network models [38,39],
voxel-based network models [40,41] and point-based network models [42,43]. Specifically,
the multi-view-based methods convert point clouds into multi-view images and classify
the converted images by using a neural network. However, the circumstance of point cloud
occlusion is inevitable during the conversion process, thus leaving the classification results
unsatisfactory. To solve this problem, the point clouds are converted into 3D voxels, whose
features are extracted using CNNs in [40,41]. Although these methods can classify the
point clouds, the introduced voxel structure also causes a lot of data redundancy. Later,
the point-based network models are proposed by [42,43], with the ability of capturing the
characteristics of the object surface from different angles and scales. These models have
been successfully applied to the classification of indoor 3D points or building facades.

However, the methods mentioned above assign the same weights to the extracted
features, which leads to the increase of unnecessary computation and fails to highlight
the differences between the primary features and the secondary features, thus limiting the
further improvement of classification performance. Fortunately, the attention mechanism
can automatically focus on the target areas according to the salient features of the image.
In the image classification tasks, the attention mechanism can adaptively assign different
weights to each spectral channel and spatial region, so as to characterize their different
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contributions to the classification task, which eventually improve the classification perfor-
mance of the network models. Therefore, the introduction of an attention mechanism is
expected to provide a new way to solve the problem of point cloud filtering.

To further improve the accuracy of point cloud filtering, a new point cloud filtering
method is proposed by introducing the channel and spatial attention modules [44]. The
method mainly includes two processing stages, that is, the conversion of the point clouds
to images and the construction and training of the network model. In particular, to avoid
serious information loss, this paper does not convert point cloud data to multi-view images,
but constructs regular three-channel images centering around each point based on the
elevation coordinates of point clouds [45], thereby turning the point cloud filtering problem
into an image classification task. In addition, in the model construction and training stage,
the introduced channel and spatial attention modules can assign adaptive weights for each
spectral channel and different spatial regions of the LiDAR point cloud feature maps, which
allows the model to be trained more efficiently, obtains better image classification results
and, finally, achieves high-precision point cloud filtering.

2. Method

To better solve the problem of point cloud filtering in complex terrain areas, this
paper proposes a filtering method for LiDAR point cloud based on a multi-scale CNN with
an attention mechanism. The method consists of two stages: (1) establishing a mapping
relationship from point clouds to RGB images; (2) building a multi-scale CNN model with
an attention mechanism to achieve images classification. During the first stage, a two-
dimensional “square window” is defined with fixed size. By sliding such window, centering
on each point, the whole point cloud is then traversed and converted into RGB images.
These transformed image data are divided into a training set, verification set and test set to
facilitate subsequent experiments. During the second stage, an image classification model
is built based on a multi-scale convolutional neural network with attention mechanism
(MSCNN-AM). In this model, the attention mechanism is introduced into the multi-scale
convolution to capture the spatial significance differences from the features of different
scales, so as to improve the classification accuracy. Finally, the trained model is applied to
the test set, with the LiDAR point cloud filtering results output. The overall flow of the
proposed method is shown in Figure 1.
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2.1. Point to Image Conversion

Different from regular image data, LiDAR point cloud data represent discrete points
with disordered distribution in space. Considering that these discrete points cannot be
directly processed by CNNs, it is necessary to convert LiDAR point cloud data into reg-
ular image data. Firstly, to improve the convergence speed of the model and reduce the
computational cost, the X-axis and Y-axis coordinate values of the LiDAR point cloud are
standardized as follows: {

x′ = x−µ
σ

y′ = y−µ
σ

(1)

where x and y denote the initial coordinate values of each sample on the X and Y axes, µ
and σ are the mean value and the standard deviation of all sample data, x′ and y′ are the
standardized coordinate value of each sample on the X-axis and Y-axis.

Secondly, a two-dimensional “square window” is defined and divided into m × m
grids of the same size. By moving the “square window” so that a certain point pi to be
classified becomes the center of the “square window”, all neighboring points within the
window around the current point pi will be divided into these m × m different grids. Then,
each grid of the “square window” can be converted into an RGB vector based on the
elevation difference between the points within the grid and the central point pi. Specifically,
the maximum elevation Zmax, minimum elevation Zmin and average elevation Zmean for
all points within each grid are obtained, and then the elevation differences between Zmax,
Zmin, Zmean and the elevation Zi of the current point pi are respectively calculated. By
introducing some kind of activation function, the calculated elevation differences are then
converted into red, green and blue pixel values according to Equation (2).

Fred = b255× Sigmoid(Zmax − Zi)− 0.5c
Fgreen = b255× Sigmoid(Zmin − Zi)− 0.5c
Fblue = b255× Sigmoid(Zmean − Zi)− 0.5c

(2)

where Zi is the elevation value of the current point pi, the symbol b c represents the
operation of rounding down, and the Sigmoid function is expressed as follows.

Sigmoid(x) =
1

(1 + e−x)
(3)

Consequently, the whole “square window” is converted into a color image of size
m × m × 3, as illustrated in Figure 2. By further taking each point to be classified as the
center of the “square window” and adopting a similar approach as above mentioned, the
whole point cloud is eventually traversed and converted into RGB images.

2.2. Attention Modules

There are usually obvious differences for the local features of point clouds located
in different spatial regions. By effectively capturing these local features, it is expected
to further improve the accuracy of image classification. As a means of focusing on local
feature information, the attention mechanism is essentially to locate information in the
region of interest while suppressing information in the irrelevant background region. As
thus, the attention mechanism is introduced here for capturing the key information of point
clouds, which is helpful to further improve the filtering effect of point clouds.
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2.2.1. Channel Attention Module

In the CNNs, each channel of the feature maps actually plays a different role in infor-
mation transmission. If each channel is regarded as equally important when performing
feature extraction, the advantage of CNNs will not be fully played.

To this end, in the process of constructing a CNN, the channel attention module [44]
is introduced for querying each channel of the feature maps, so as to determine which
channels have a significant impact upon the classification results. After that, different
weights are assigned to the channels according to their influence degree to reflect the
difference in the contribution of different channels to the classification task. The detailed
implementation process is shown in Figure 3 below.
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Figure 3. Schematic diagram of the channel attention module.

The specific calculation procedure can be described as follows: Firstly, the spatial
dimension of the input feature map F ∈ RC×H×W is “aggregated” by using the operations
of global maximum pooling [46] and global average pooling [47], respectively, to generate
two feature maps containing different spatial context information. Each feature map is a
vector of C× 1× 1, represented by FC

max and FC
avg, respectively. Then, the two feature maps

are input into a two-layer shared fully connected neural network for further processing.
This shared fully connected neural network consists of a multi-layer perceptron (MLP) and
a hidden layer. To reduce parameter overhead, the number of neurons in the first layer is
set to C/r, where the reduction rate r is set to 2, and the number of neurons in the second
layer is C. After that, the two feature maps processed by the shared fully connected neural
network are added together, and then activated by a Sigmoid function to generate the
channel attention map MC ∈ RC×1×1, which is namely the weight corresponding to each
channel. Finally, the attention map MC is weighted to the input feature map F by channel
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to produce the output feature map F′. In short, the process flow of the channel attention
module can be expressed mathematically as follows.

MC(F) = σ(MLP(MaxPool(F)) + MLP(AvgPool(F)))

= σ
(

W1
(
W0
(

FC
max
))

+ W1

(
W0

(
FC

avg

))) (4)

where σ denotes the Sigmoid function, and the weights W0 ∈ RC/r×C and W1 ∈ RC×C/r

are shared for the input features of the fully connected neural network.
The channel attention module generates the weights corresponding to different chan-

nels, which makes the ultimate classification network model focus on the training process
of each channel based on these different attention weights, thereby improving its classifica-
tion performance.

2.2.2. Spatial Attention Module

Different spatial regions in the image also have different degrees of contribution to
the classification task, to which the regions related need to be paid close attention. By
introducing a spatial attention module [44], these regions can be assigned different weights
to further produce new features with spatial significance differences. The spatial attention
module tends to indicate “where” in the input feature map is the salient information part,
which is complementary to the channel attention module. The detailed implementation
process is shown in Figure 4 below.
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The specific calculation procedure can be described as follows: To enhance the salient
contrast of different regions in the feature map, the operations of the maximum pooling
and the average pooling are performed upon all pixels within the input feature map F′

along the channel dimension, yielding the maximum pooling feature map FS
max ∈ R1×H×W

and the average pooling feature map FS
avg ∈ R1×H×W . After that, the two feature maps are

concatenated, producing a more informative two-channel feature map FS
max_avg ∈ R2×H×W .

By adopting a 3 × 3 convolution kernel processing upon the feature map FS
max_avg, a new

single-channel feature map can thus be obtained. If it is further activated by the Sigmoid
function, the spatial attention map MS(F′) ∈ R1×H×W is generated, with each pixel being
assigned a weight. Finally, the spatial attention map MS and the input feature map F′

are multiplied pixel-by-pixel to yield F′′ , which is the output feature processed by the
spatial attention module. In short, the processing procedure of the above-mentioned spatial
attention module can be expressed mathematically as follows.

MS(F′) = σ
(

f 7×7([MaxPool(F′); AvgPool(F′)])
)

= σ
(

f 7×7
([

FS
max; FS

avg

])) (5)
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where σ is the Sigmoid function, and f 7×7 denotes the convolution operation with a kernel
size of 7 × 7.

The attention mechanism introduced in this paper consists of the channel attention
module and the spatial attention module as mentioned above. Taking the given feature
map F ∈ RC×H×W as input, the attention modules operate by sequentially building a 1D
channel attention map MC ∈ RC×1×1 and a 2D spatial attention map MS ∈ R1×H×W . The
operation process of the overall attention modules can be summarized as follows.

F′ = MC(F)⊗ F

F′′ = MS(F′)⊗ F′
(6)

where the symbol ⊗ denotes the multiplication of elements. The attention values are
propagated accordingly in such a manner: the channel attention propagates along the
spatial dimension, while the spatial attention propagates along the channel dimension.

2.3. MSCNN-AM Model

The MSCNN-AM model is mainly composed of five modules: the input layer, convo-
lution layer (Conv), attention layer, fully connected layer and output layer, as shown in
Figure 5. The input layer accepts the point-cloud-converted image f produced in Section 2.1.
As the core block of the model, the convolution layer first adopts three convolution kernels
of different scale to extract the features of the input image f via three branches, to generate
different feature maps. What follows is weighting these feature maps respectively by the
attention modules. After that, the second layer of multi-scale convolution is employed
upon these weighted feature maps to acquire the ultimate feature maps. Finally, these
feature maps via three branches are concatenated and input to the fully connected layer to
complete the category judgment.
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Figure 5. The proposed network framework of MSCNN-AM for point clouds filtering.

The specific implementation process of this model can be described as follows:
Firstly, the convolution kernels with sizes of 3 × 3, 5 × 5 and 7 × 7 are introduced to

capture the local features of different scales from the images. Since CNNs usually have a
large number of parameters, a batch normalization layer (BN) and a rectified linear unit
layer (ReLU) are added to the convolution layer to prevent overfitting. Here, BN is used to
normalize the data in each mini-batch according to the Formula (7) below.

y =
x− µ√
σ2 + ε

γ + β (7)
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During the training process, µ and σ2 are the mean and variance of the input mini-
batch data, respectively. The learning parameters γ and β represent the scaling factor and
the shifting normalization value, and ε is a constant added to the mini-batch variance to
maintain the numerical stability. The batch normalization can significantly accelerate the
training of neural networks by reducing the overfitting and improving the learning rate.
Therefore, the convolutional layer can be regarded as a joint operation of Conv-BN-ReLU.

Based on the above multi-scale convolution kernels, the initial feature map F can be
obtained from image f via each of the three branches. Then, the above feature map F is
transferred to the channel attention module and the spatial attention module as described
in Section 2.2. The channel attention module outputs the feature map F′ by assigning the
weights to each channel of feature map F on the basis of its significance. Then, the spatial
attention module generates the feature map F′′ by further assigning different weights to
each pixel of the feature map F′ to highlight the spatial significance of different regions.
Finally, by proceeding the second layer of multi-scale convolution upon feature map F′′ ,
the feature map F′′′ can thus be obtained in each branch. It is worth noting that there are
32 convolution kernels in the first layer and 16 kernels in the second layer.

After the processing of above multi-scale convolutions and attention modules, the
feature maps generated via the three branches have the same size of width, height and
depth. Furthermore, by concatenating the feature maps via the three branches together
along the channel dimension, the ultimate feature map with a size of m×m× 48 is obtained,
which contains feature information of different scales.

For completing the category judgment, the ultimate feature map needs to be flattened
to a one-dimensional vector and transferred into the fully connected layer module. The fully
connected layer module consists of three layers, which are composed of 32, 16 and 2 neurons.
In the fully connected layer module, each neuron of the current layer is connected to all
neurons of the previous layer. As thus, the last layer outputs the category label of each
image, which is tuned by the Softmax function. Then, the category label of the point cloud
can be obtained according to the mapping relationship from the point cloud to the image.
At this point, it is equivalent to having completed the filtering task of the point cloud.

3. Results
3.1. Datasets
3.1.1. ISPRS Filter Dataset

The first filter dataset used in this experiment is the standard point cloud dataset
provided by the International Society for Photogrammetry and Remote Sensing (ISPRS)
Working Group III/3. The dataset includes a total of 15 samples, of which 9 samples
are located in cities and 6 samples are located in rural areas. Among them, there are
various complex terrain and ground objects, such as steep slopes, large buildings, low
vegetation, etc., as shown in Table 1, which could be very helpful for better evaluating the
proposed method in all aspects. In particular, the point spacing distances vary from 1 m
to 1.5 m for the samples of Samp11-Samp42, and from 2 m to 3.5 m for the samples of
Samp51-Samp71. All sample points are manually labeled as ground or non-ground. In
addition, according to the geomorphological characteristics, all 15 samples are divided into
3 groups, which are the flat land, the gentle slope and the steep slope, as shown in Table 2.

Table 1. Characteristics of each sample in the dataset.

Region Sample Terrain Features
Point

Spacing
(m)

All
Points

Ground
Points

Non
Ground
Points

Urban
Samp11 Vegetation and buildings

on steep slopes 1–1.5 38,010 21,786 16,224

Samp12 Cars, mixture of
vegetation and buildings 1–1.5 52,119 26,691 25,428
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Table 1. Cont.

Region Sample Terrain Features
Point

Spacing
(m)

All
Points

Ground
Points

Non
Ground
Points

Samp21 Narrow bridge and low
vegetation 1–1.5 12,960 10,085 2875

Samp22 Bridge and gangway 1–1.5 32,706 22,504 10,202

Samp23 Complex and large
buildings, and data gaps 1–1.5 25,095 13,223 11,872

Samp24 Ramp 1–1.5 7492 5434 2059

Samp31 Disconnected terrain,
low point influence 1–1.5 28,862 15,556 13,306

Samp41 Data gaps and clump
of low points 1–1.5 11,231 5602 5629

Samp42 Railway station 1–1.5 42,470 12,443 30,027

Rural

Samp51 Steep slopes with
vegetation 2–3.5 17,845 13,950 3895

Samp52 Low vegetation,
discontinuity, sharp ridge 2–3.5 22,474 20,112 2362

Samp53 Discontinuity, vertical
slopes 2–3.5 34,378 32,989 1389

Samp54 Low resolution buildings 2–3.5 8608 3983 4625

Samp61 Large buildings,
embankment, data gaps 2–3.5 35,060 33,854 1206

Samp71 Bridge and discontinuity 2–3.5 15,645 13,875 1170

Table 2. Sample areas grouping based on geomorphological features.

Group Scenes Sample

1 Flat 12, 31, 42, 54, 71
2 Gentle Slope 21, 22, 23, 24, 41
3 Steep Slope 11, 51, 52, 53, 61

For an intuitive visualization of the point clouds, Figure 6 displays several labeled
samples, which are randomly selected from the dataset. The green dot represents the real
ground point, and the blue dot indicates part of the real non-ground object such as the
building, the vehicle, the vegetation, etc.
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real non-ground point.



Remote Sens. 2022, 14, 6170 10 of 19

3.1.2. The Filter Dataset of Qinghai

The filter dataset of Qinghai covers part of an urban area in Qinghai Province, with a
length of about 297 m and a width of about 186 m, as shown in Figure 7. The terrain of this
area is relatively flat and contains a large number of buildings and low vegetation, which is
a typical urban area. The dataset has a high point density: about 4 to 5 points per square
meter. In addition, there are 227,091 points in this dataset, all of which have been manually
labeled as ground or non-ground (156,071 ground points and 71,020 non-ground points)
for the convenience of subsequent experiments.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

Table 2. Sample areas grouping based on geomorphological features. 

Group Scenes Sample 

1 Flat 12, 31, 42, 54, 71 

2 Gentle Slope 21, 22, 23, 24, 41 

3 Steep Slope 11, 51, 52, 53, 61 

For an intuitive visualization of the point clouds, Figure 6 displays several labeled 

samples, which are randomly selected from the dataset. The green dot represents the real 

ground point, and the blue dot indicates part of the real non-ground object such as the 

building, the vehicle, the vegetation, etc. 

(d) (e) (f)

(a) (b) (c)

 

Figure 6. Several samples of the ISPRS dataset. (a) Samp11; (b) Samp12; (c) Samp22; (d) Samp51; (e) 

Samp53; (f) Samp54. The green dot represents the real ground point and the blue dot indicates the 

real non-ground point. 

3.1.2. The Filter Dataset of Qinghai 

The filter dataset of Qinghai covers part of an urban area in Qinghai Province, with 

a length of about 297 m and a width of about 186 m, as shown in Figure 7. The terrain of 

this area is relatively flat and contains a large number of buildings and low vegetation, 

which is a typical urban area. The dataset has a high point density: about 4 to 5 points per 

square meter. In addition, there are 227,091 points in this dataset, all of which have been 

manually labeled as ground or non-ground (156,071 ground points and 71,020 non-

ground points) for the convenience of subsequent experiments. 

 

Figure 7. Presentation for the Filter Dataset of Qinghai with its elevation rendered. Figure 7. Presentation for the Filter Dataset of Qinghai with its elevation rendered.

When conducting experiments on the above two datasets, 30% of the data from each
dataset is taken as the training set, while 70% of the data is served as the test set to complete
the model training and verify its performance. It should be noted that 10% of the training
set is used as the validation set to check whether there will be overfitting during the model
training stage.

3.2. Parameter Configuration

In the training process, an Adam optimizer is used to optimize the parameters of the
model due to its advantages of accelerating the convergence speed and simplifying the
parameter adjustment. The learning rate is initially set to be the same for each parameter,
and adaptively evolves independently as the learning process progresses.

To better process the task of point cloud classification, the loss function of the MSCNN-
AM model can be calculated as follows:

loss = − 1
n

 n

∑
i=1

k−1

∑
j=0

I
{

y(i) = j
}

log
ewT

j x(i)

k
∑
l

ewT
l x(i)

 (8)

where n is the batch size, which is prescribed to be 280. The category number, k, is set
at 2 in the experiment. w is the weighting parameter; x denotes the output of the upper
layer of the model; y(i) represents the category label of the ith sample. In addition, the
indication function of I

{
y(i) = j

}
takes the value of 1 when y(i)= j, or 0 otherwise. The

training process will be terminated when the accuracy meets the threshold requirements or
reaches the maximum iterations (set to 256).

3.3. Accuracy Evaluation Indexes

In this paper, three indexes of type I error, type II error and total error are respectively
employed to evaluate the classification accuracy of point cloud for the several filtering
methods. As shown in Table 3, the type I error represents the percentage of ground points
that are misclassified as non-ground points to the total number of ground points, while the
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type II error is the percentage of the number of non-ground points that are misclassified as
ground points to the total number of non-ground points. As well the total error represents
the percentage of the number of misclassified points to the total number of point clouds.
It should be pointed out that the type I error usually has a greater impact on the results
of the point cloud filtering compared with the type II error. This is because a larger type
I error indicates that the filtered ground points are missing more severely, thus the later-
constructed digital products such as DEM/DTM will have lower accuracy. Normally, a
better filtering method obtains smaller type I error. For type II error, the secondary filtering
strategy can be adopted to reduce its impact.

Table 3. The confusion matrix of the classification results and evaluation errors calculation method.

Prediction

Ground Non-ground

Truth
Ground a b

Non-ground c d

Type I error b/(a + b)
Type II error c/(c + d)
Total error (b + c)/(a + b + c + d)

3.4. Result Analysis

To verify the effectiveness of the proposed method, the filtering performance of the
proposed method is compared with that of the cloth simulation filtering method (CSF) [48],
the deep neural network (DNN) filtering method [49], the K-nearest neighbor (KNN)
filtering method [50], the deep convolutional neural network (DCNN) filtering method [45]
and the scale-irrelevant and terrain-adaptive method (SITA) [51] upon the two datasets.
Specifically, there are 4 hidden layers in the DNN model, and the neuron number is set to
16, 32, 32 and 16, respectively, for each hidden layer. These hidden layers are composed of
fully connected layer (FC), batch normalization layer (BN) and rectified linear unit layer
(ReLU). As is known to all, the K value significantly impacts the performance of the KNN
filtering algorithm. After several experiments, it is found that the optimal separation effect
can be achieved between ground points and non-ground points by setting K to 12. In the
DCNN method, six layers with different number of convolution kernels are adopted to
extract the single-scale features from the point-cloud-converted image, so as to complete
the task of image classification and eventually achieve point cloud filtering. During the
conversion stage from point cloud to image of the proposed MSCNN-AM method, the
“square window” is divided into 9 × 9 grids, with each grid representing an actual size of
0.1 m × 0.1 m.

3.4.1. Result on ISPRS Dataset

In this paper, the filtering results of the proposed method are compared with those
of the other five methods, as shown in Table 4. Obviously, the proposed MSCNN-AM
method performs best in terms of the average type I error, type II error and total error upon
the 15 samples. Compared with the CSF, KNN, DNN and SITA methods, the total error
of the proposed method is reduced by 13.12%, 2.60%, 1.35% and 0.67%, respectively; the
type I error is reduced by 18.01%, 0.19%, 0.17% and 0.67%; and the type II error is reduced
by 0.36%, 13.99%, 9.07% and 0.07%. Such a satisfactory filtering effect can be mainly
attributable to the powerful feature extraction capability of the deep learning network. In
other words, when the samples are provided sufficiently, the classification performance of
the trained model can be highly improved, thereby eventually separating ground points
and non-ground points preferably. Compared with DCNN, the total error of the proposed
method is reduced by 0.35%; the type I error is reduced by 0.37%; the type II error is
reduced by 1.2%. The possible reasons can be summarized as the MSCNN-AM method not
only employs the multi-scale convolution kernels to extract features of different scales, but



Remote Sens. 2022, 14, 6170 12 of 19

also adaptively determines the contribution of each spectral channel and spatial region by
introducing the attention mechanism, which makes the network training more targeted
with the features of different importance. To clearly compare the classification error results,
Figure 8 specifically displays the error line charts for the filtering methods of CSF, KNN,
DNN, DCNN, SITA and MSCNN-AM upon 15 samples.

Table 4. Comparison of the filtering performance of six different filtering methods upon the IS-
PRS dataset.

Method Type I Error (%) Type II Error (%) Total Error (%)

CSF 18.94 8.19 15.03
KNN 1.12 21.82 4.51
DNN 1.10 16.90 3.26

DCNN 1.30 9.03 2.26
SITA 1.60 7.90 2.58

MSCNN-AM 0.93 7.83 1.91
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To further manifest the advantages of the proposed method, the comparative experi-
ments of point cloud filtering are conducted on three different terrain samples with steep
slope (Samp11 and Samp51), gentle slope (Samp22) and flat (Samp54) area.

In the steep slope area of Samp11, there are a lot of vegetation and buildings, which
will cause the elevations of some ground points to be larger than the elevations of the
adjacent non-ground points, thus increasing difficulties of the classification task. As shown
in the experimental results of KNN, DNN and SITA, non-ground points in many areas are
misclassified as ground points, which expands the type II error. These misclassified points
are represented by red points in Figure 9b,c,e. Remarkably, this is rarely the case in the
proposed method. Because the elevation information and local feature information of the
point cloud are retained to the maximum extent when converting point cloud to image, the
ground points and non-ground points can be better distinguished. As can be seen from
Figure 9a, there are a lot of type I errors in the CSF method, which can be attributed to
the insufficient feature extraction capacity of the traditional methods. Compared with the
proposed method, although there are more type I errors in the results of DCNN on Samp11,
its filtering results are significantly better than those of the KNN and DNN methods, which
also demonstrates that the filtering method based on deep learning has certain advantages
over machine learning methods to some extent. It should be noted that a small number
of ground points are also misclassified into non-ground points within the vegetation and
building areas in the proposed method, as indicated by the yellow points in Figure 9f. The
main reason accounting for this situation is that in the slope area, the elevations of some
ground points in the upper part of the slope are higher than the elevations of vegetation
and buildings in the lower part of the slope, which increases the difficulty of distinguishing
ground points from non-ground points. This is also a major challenge for point cloud
filtering on such terrain containing complex features.
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Figure 9. The filtering results of six methods on Samp11. (Green: correctly classified ground
points; Blue: correctly classified non-ground points; Yellow: misclassified non-ground points; Red:
misclassified ground points).

Different from Samp11, there is another sample of the steep terrain, Samp51, which
has only vegetation but no buildings. In the results processed by the CSF method, a large
number of ground points at the edge of the sample are misclassified as non-ground points,
as shown by the yellow points in Figure 10a, and the overall classification effect is not
satisfactory. In the steep slope area, a large number of non-ground points are misclassified
into ground points in the experimental results of the KNN method, as indicated with the
red points in Figure 10b. This can be attributed to the assumption that ground points are
lower than the surrounding non-ground points in KNN. Whereas the other four methods
all have satisfactory filtering results upon Samp51, and the proposed method performs best.
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Samp22 is a gently sloping terrain, which contains buildings such as bridges and flight
ladders and a small amount of low vegetation. In this sample, the classification effect of
the bridge, especially its connection area with the ground, can be served as an important
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basis for evaluating the performance of the filtering methods. In the CSF, some ground
points are still misclassified as non-ground points, leading to the large type I error. What
is more, it can be seen from Figure 11b,d that in KNN and DCNN there are a few cases
where non-ground points around the bridge are misclassified as ground points. This can be
attributed to the existence of low vegetation around the bridge, whose elevation is smaller
than that of the bridge. Although there are some ground points misclassified as non-ground
points in DNN and SITA, their overall classification effect is better than that of KNN. In
particular, the overall classification performance of the proposed method is the best, as only
a small number of non-ground points are misclassified as ground points.
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Samp54 is a flat area containing a large number of low-resolution buildings. Due to
the low density of point cloud in the sample, the building contour is not clear enough,
which leads to the situation where many non-ground points are misclassified into ground
points in both KNN and DNN methods, as shown in red points in Figure 12b,c, respectively.
In addition, low-resolution buildings still cause some ground points to be misclassified as
non-ground points in CSF. By comparison, the methods of DCNN, SITA and MSCNN-AM
perform better, which can be interpreted as these methods can better extract local features
of buildings, so as to achieve satisfactory classification results even with low resolution.

In summary, the filtering experiments upon a variety of terrain data (steep slope,
gentle slope and flat slope) have fully verified the applicability and robustness of the
proposed method. Meanwhile, the proposed filtering method of MSCNN-AM exerts strong
competitiveness compared to the two traditional filtering methods, with two filtering
methods based on machine learning and one filtering method based on deep learning.

3.4.2. Result on Dataset of Qinghai

The proposed method and five other comparison methods are employed to the dataset
of Qinghai for point cloud filtering, and Table 5 shows the comparative results of these
methods. It can be seen that the proposed method performs optimally on this dataset.
Considering that the Qinghai filtering data are collected from a relatively flat urban area,
the structure is relatively simple, with only some buildings and low vegetation, so the
task of separating ground points from non-ground points is relatively simple. Therefore,
the filtering errors of several methods in Table 5 are not much different, but the proposed
method still shows obvious advantages. This further verifies the generalization capacity of
the proposed method.
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Table 5. Comparison of the filtering performance of six different filtering methods upon the dataset
of Qinghai.

Method Type I Error (%) Type II Error (%) Total Error (%)

CSF 0.57 0.41 0.46
KNN 0.15 0.83 0.37
DNN 0.21 0.46 0.29

DCNN 0.31 0.63 0.41
SITA 0.22 0.29 0.24

MSCNN-AM 0.08 0.24 0.13

4. Discussion

To verify the effectiveness of the multi-scale convolution and attention modules intro-
duced in the proposed MSCNN-AM method, the ablation experiments on the ISPRS dataset
are conducted by designing three different network architectures, which are the single
scale convolutional neural network and the multi-scale convolutional neural networks
integrated with and without the attention mechanism.

Throughout the whole experiment, all the conversion processes are kept consistent
from point cloud to image. To be specific, the size of the convolution kernel is 7 × 7 in the
single-scale neural network, and three different convolution kernel sizes of 7 × 7, 5 × 5 and
3 × 3 are employed for the multi-scale networks, as indicated in Figure 5. In addition, there
are two designed convolutional layers in all the above neural networks. The convolution
kernel number is 32 for the first layer, and 16 for the second layer.

As shown in Table 6, the results of ablation experiments indicate that the filtering
accuracy based on the multi-scale convolutional neural network is higher than that using
only a single-scale convolutional neural network. Moreover, compared with the multi-scale
convolutional neural network without attention mechanism, the multi-scale convolutional
neural network with attention mechanism has lower classification error and better filtering
effect. On the whole, the ablation experiments fully confirm that the strategies of multi-scale
convolution and attention mechanism adopted in this study have significantly positive
effects on improving the filtering performance.

The proposed method in this paper uses 3 × 3, 5 × 5 and 7 × 7 convolution kernels
for feature extraction in the model construction stage. To verify the superiority of these
convolution kernel combinations, this paper further compares the effects of the other three
convolution kernel combinations of different sizes for point cloud filtering, as shown in
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Table 7. It can be seen from the comparison results that the minimum total error and type I
error can be obtained by using the convolution kernel combination with the size of 3 × 3,
5 × 5 and 7 × 7, and the overall effect is the best. Moreover, using the convolution kernel
combination with a relatively small scale can reduce the time used for feature extraction
and speed up the calculation.

Table 6. Comparison of filtering errors for the ablation experiments upon the ISPRS dataset.

No. Framework Setting Type I
Error (%)

Type II
Error (%)

Total
Error (%)

1 Singlescale convolution 1.71 8.25 2.43
2 Multi-scale convolution 1.36 8.38 2.24

3 Multi-scale convolution with
attention mechanism 0.93 7.83 1.91

Table 7. Effects of convolution kernel combinations of different scales on filtering results.

No. Convolution Kernel Scale Type I
Error (%)

Type II
Error (%)

Total
Error (%)

1 3 × 3, 5 × 5, 7 × 7 0.93 7.83 1.91
2 3 × 3, 5 × 5, 9 × 9 0.96 7.84 1.95
3 3 × 3, 7 × 7, 9 × 9 1.17 7.67 2.26
4 5 × 5, 7 × 7, 9 × 9 1.50 7.16 2.22

In addition, to further verify whether the attention mechanism added in the model
will increase the computational complexity and take more time, this paper performs
the experiments using a computer equipped with AMD Ryzen5 5600H and NVIDIA
GeForce RTX 3050 Laptop GPU. This experiment compares the time required for the
model to process the ISPRS dataset with and without the attention mechanism, as shown in
Table 8. As can be seen from the comparison results in the table, the training time with the
attention mechanism model increased compared to the training time without the attention
mechanism model, but the growth rate was not obvious, about 17%.

Table 8. The time of filtering the ISPRS dataset by the model with or without the attention mechanism.

No. Framework Setting Training

1 Multi-scale convolution 11,077 s

2 Multi-scale convolution
with attention mechanism 13,034 s

5. Conclusions

In this paper, a filtering method for LiDAR point cloud based on multi-scale CNN
with attention mechanism is proposed to settle the problem of point cloud filtering in
complex terrain. Firstly, the point cloud filtering problem is transformed into the image
classification problem by centering on each point with a regular image patch, constructed
relying on the elevation information of point clouds. The core idea of the proposed model
is to combine the multi-scale convolution with the attention mechanism. In particular, the
multi-scale convolution operation is employed to extract the features of different scales
from the LiDAR point cloud, and the channel and spatial attention modules are introduced
to adaptively correct the weights for each channel layer and different spatial regions of
the feature maps. The practice of combining these two strategies can make the network
training more targeted, thereby improving the model performance for image classification
and eventually separating ground points and non-ground points preferably. Moreover, the
proposed MSCNN-AM method has exerted strong competitiveness compared with five
methods of CSF, KNN, DNN, DCNN and SITA on both the ISPRS filter dataset and the filter
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dataset of Qinghai. In addition, its advantages look even more pronounced when there are
a large number of complex land cover types within the steep slope area. Considering that
data conversion may cause the loss of partial information, it is necessary to explore a more
effective high-fidelity conversion method from point cloud to image in future work.
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BN batch normalization
CNN convolutional neural network
CRF conditional random Field
CSF cloth simulation filtering
DCNN deep convolutional neural network
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DNN deep neural network
DTM digital terrain model
FC fully connected
ISPRS International Society for Photogrammetry and Remote Sensing
KNN k-nearest neighbor
LiDAR light detection and ranging
MHC multi-resolution hierarchical classification
MLP multi-layer perceptron
MSCNN-AM multi-scale convolutional neural network with attention mechanism
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RF random forest
SITA scale-irrelevant and terrain-adaptive
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