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Abstract: Multi-object semantic segmentation from remote sensing images has gained significant
attention in land resource surveying, global change monitoring, and disaster detection. Compared
to other application scenarios, the objects in the remote sensing field are larger and have a wider
range of distribution. In addition, some similar targets, such as roads and concrete-roofed buildings,
are easily misjudged. However, existing convolutional neural networks operate only in the local
receptive field, and this limits their capacity to represent the potential association between different
objects and surrounding features. This paper develops a Multi-task Quadruple Attention Network
(MQANet) to address the above-mentioned issues and increase segmentation accuracy. The MQANet
contains four attention modules: position attention module (PAM), channel attention module (CAM),
label attention module (LAM), and edge attention module (EAM). The quadruple attention modules
obtain global features by expanding the receptive fields of the network and introducing spatial
context information in the label. Then, a multi-tasking mechanism which splits a multi-category
segmentation task into several binary-classification segmentation tasks is introduced to improve
the ability to identify similar objects. The proposed MQANet network was applied to the Potsdam
dataset, the Vaihingen dataset and self-annotated images from Chongzhou and Wuzhen (CZ-WZ),
representative cities in China. Our MQANet performs better over the baseline net by a large margin
of +6.33 OA and +7.05 Mean F1-score on the Vaihingen dataset, +3.57 OA and +2.83 Mean F1-score on
the Potsdam dataset, and +3.88 OA and +8.65 Mean F1-score on the self-annotated dataset (CZ-WZ
dataset). In addition, each image execution time of the MQANet model is reduced 66.6 ms compared
to UNet. Moreover, the effectiveness of MQANet was also proven by comparative experiments with
other studies.

Keywords: deep learning; remote sensing; semantic segmentation; multi-task learning;
attention mechanism

1. Introduction

Semantic segmentation tasks classify each pixel in an image into several regions
with specific semantic categories and often appear in fields such as human–computer
interaction, computer photography, image search engines, and augmented reality. In these
applications, the extraction targets are usually clear in semantics and have a small coverage
area. However, things are different in remote sensing images. The targets in remote sensing
images have a wider range of distribution and more complex features. On the one hand,
such characteristics provide richer target detail information for feature detection, such
as color, contour, and texture. On the other hand, much more complex interference is
introduced into segmentation tasks.
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The traditional remote sensing image segmentation methods mainly include support
vector machine (SVM) methods [1], superpixel-based methods [2], and semisupervised
geodesic-based methods [3]. Traditional methods can achieve better results with a small
sample size. Still, with the increase in sample data, the accuracy of traditional methods
has not significantly improved to meet the application requirements. Usually, traditional
methods are only effective for some specific scenarios, with poor universality.

Focused on the above situation, compared with traditional methods in machine learn-
ing, Deep Convolutional Neural Networks (DCNNs), such as FCN [4], have shown ex-
cellent feature extraction and object representation abilities [5]. Many approaches have
been proposed to increase the receptive field of convolutional neural networks. Unet [6]
and SegNet [7] propose skip connection, trying to connect the same-sized feature maps
in the encoder and decoder layers. The DeepLab series network models are all based on
encoder–decoder architecture. Atrous convolution to expand the receptive field is intro-
duced in DeepLab v1 [8] and DeepLab v2 [9]. Furthermore, Atrous Spatial Pyramid Pooling
(ASPP) was proposed to expand the perceptual field further and enhance the spatial feature
extraction capability using multi-layer cavity convolution. DeepLab v3 [10] introduced
image-level multiscale features in ASPP to further improve the feature extraction capability.
DeepLab v3+ [11] used a modified Xception [12] encoder and a lightweight decoder to
improve the resolution of segmentation results. FarSeg [13] uses two encoder branches
to enhance the extraction of foreground and background, respectively. In addition, some
studies have been conducted to improve the deep learning methods according to the
characteristics of remote sensing images. EFCNet [14] introduces the separable convolu-
tional module (SCM) to alleviate the problem of numerous parameters for the semantic
segmentation of high-resolution remote sensing images. DSPCANet [15] introduces the
internal residual block (R2_Block) to enhance the receptive field of the network and learn
the ground feature representation from additional DSM images. Sharifi et al. [16] pro-
posed the ResUNet-a model with post-processing. The model contains the output of joint
connection, which significantly improves the efficiency and robustness of the farmland
extraction model. However, stacking and aggregating convolutional layers perform poorly
in covering global receptive fields. Additionally, these methods do not effectively extract
global contextual information.

A helpful method for obtaining global contextual information is the self-attention
mechanism. Nonlocal [17] proposes a generalized, simple, nonlocal operation operator that
can be directly embedded into neural networks. DANet [18] introduces the self-attention
mechanism to capture feature dependencies in the spatial and channel dimensions. A2-
Nets [19], expectation–maximization attention networks [20], and CBAM [21] introduced
a self-attention mechanism to merge global features by different descriptors. LANet [22]
proposes a patch attention module and an attention embedding module to merge high-level
and low-level features in the model. HMANet [23] proposes a class augmented attention
module to obtain class-level information. SSFTT [24] utilizes the self-attention mechanism
to construct 3D and 2D convolutional layers to jointly extract shallow spectral and spatial
features. However, methods that rely on self-attention only cause the network to pay
attention to itself and overlook the spatial context relationship hidden in the labels.

To solve the above-mentioned issues, we suggest a brand new structure termed the
Label Attention Module (LAM). LAM fully uses the label’s spatial context via the attention
module. However, the way to generate attention is different than the self-attention module.
LAM optimizes the attention probability map by introducing label information.

Furthermore, we proposed a triple-attention network called TANet, which contains
LAM and two self-attention modules presented in DANet: PAM and CAM. TANet can
help enhance semantic segmentation accuracy due to the triple attention module’s ability
to strengthen global information extraction.

Adding LAM can significantly increase the segmentation accuracy of a large range
of targets. However, misjudgment problems would appear with respect to some targets
presenting similar features, such as impervious surfaces and concrete roof buildings. Due
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to the competition between different categories, the probability of the misjudgment cate-
gory affects the real category. In order to reduce the competition between categories, we
introduced a multi-task mechanism. The multi-task mechanism converts a multi-category
segmentation task into multiple binary-classification segmentation tasks. All categories
share an encoder, and each category owns a separate decoder. The multi-task architecture
can effectively improve the segmentation accuracy of similar categories. Furthermore, we
perform some edge optimization to improve the accuracy of the edge area of different
categories. The edge optimization includes two new edge branches and an edge attention
module. Combined with the triple attention and multi-task architecture mentioned above,
the model contains four attention modules, so we name this network Multi-Task Quadruple
Attention Network. We conducted experiments on two public datasets (Potsdam and Vai-
hingen datasets) and a self-made dataset (CZ-WZ dataset) to demonstrate the effectiveness
of the proposed model.

The main contributions of this paper are as follows:

(1) We propose the label attention module (LAM) to learn the spatial contextual informa-
tion of features from the label instead of information from the network itself.

(2) A Triple Attention Network is designed to obtain global features of large objects. It
significantly improves the semantic segmentation accuracy of large objects in remote
sensing images.

(3) A Multi-task TANet (MTANet) architecture is proposed to reduce the misjudgment
between similar categories.

(4) Based on the MTANet model, A MQANet model is constructed to optimize the edge
area of semantic segmentation.

2. Related Search
2.1. Semantic Segmentation

Semantic segmentation divides images into regional blocks with certain semantics and
obtains a segmented image with pixel-by-pixel semantic annotation. Traditional segmentation
methods focus on designing a feature descriptor for each pixel. However, the specially
designed handcrafted feature descriptors are challenging to adapt to other scenarios.

Deep learning methods extract features directly from the data itself. Patch-wise
classification achieves semantic segmentation based on the classification results of patches.
However, this method is too expensive to compute. FCN [4] proposes a paradigm to
obtain semantic segmentation directly from feature upsampling, significantly improving
the computational cost. After FCN was proposed, various structures were proposed to
improve the segmentation accuracy. Most networks use encoder–decoder architectures,
such as Unet [6], SegNet [7], and DeeplabV3+ [11]. Encoders are used for feature extraction,
and decoders perform pixel-level classification based on the features obtained by the
encoder to obtain semantic segmentation results. Furthermore, Zhou et al. [25] introduced
D-LinkNet with multiscale dilation rates to collect contextual information and extract
additional global features. GPSNet [26] tries to dynamically aggregate a discriminative
semantic context using a comparative feature aggregation module. Furthermore, it can
gather free-form semantic context information adaptively. CGNet [27] constructs the joint
feature from local features and the surrounding context effectively and efficiently. In
addition, CGNet utilizes the global context to improve the joint feature.

2.2. Attention Mechanism

The human visual mechanism inspired the formation of the spatial attention mecha-
nism. When the human eye sees an image, it will automatically give greater attention to
critical locations. Therefore, different components of the image feature map should have
diverse weights.

Vaswani et al. [28] introduced the self-attention mechanism, which does not use
complex models like RNN or CNN, and it only relies on the attention model to parallelize
training with global information. Self-attention obtains contextual dependency information
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at a long distance by capturing the spatial dependencies between any two locations in the
feature map. Specifically, assume the standard form of each element in the sequence is
(Q, K, V). Q denotes query, K denotes key, and V denotes value. In DCNNs, we generate
Q, K, and V from feature maps extracted by the networks’ backbones. The attention
mechanism calculates attention weight by the similarity between Q and K. Then, attention
output comes from the V value and the attention weight’s weighted summation. Self-
attention differs from standard attention mechanisms: three matrices—the question, key,
and value—are identical in the self-attention method. The attention output result is shown
in Equation (1). The output of the attention module integrates features from Q, K, and V.
A network might benefit from the attention module by catching more global context over
local features and enhancing the pixel-level prediction’s feature representations.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)

where dk denotes the normalization coefficient, and KT refers to the transposition of K.
DANet [18] is a classic self-attention network application that introduces a self-

attention mechanism to obtain the feature dependence separately in the spatial and channel
dimensions. BAM [29] performs better in element-wise summation of spatial and channel
attention. PSANet [30] is designed with a bidirectional information dissemination path,
where each location aggregates information from all other locations to help predict itself.
Unlike previous works, we propose a label attention module to capture global contexts from
the label directly, ensuring that the spatial context information can be smoothly transferred
to the attention map.

2.3. Multi-Task Learning

Initially introduced by Caruana [31], multi-task learning aims to solve multiple tasks
with one architecture. In order to theoretically explain that multi-task learning has better
learning effects than single-task learning, relevant papers give theoretical proof in different
aspects. For example, the inductive bias learning method proposed by Baxter et al. [32]
proved that multi-task learning could achieve better generalization errors than single-
task learning in a specific environment. Ben-David [33] proposed a more general con-
cept of connection between tasks, which can be used in many real-life scenarios. This
concept proved the strict upper bound of the generalization error of multi-task learning.
Maurer [34] applied dictionary learning and sparse coding to multi-task learning and gave
the generalization error of multi-task learning by measuring the complexity of the hypothe-
sis. Ando and Zhang et al. [35] assume that all tasks share a standard structure and give
reliable estimates of the shared parameters of multiple tasks when there are enough tasks.

Multi-task learning in deep neural networks can be divided into two categories based
on whether parameters are shared softly or firmly between tasks [36].

Soft parameter sharing allows for the regularization of different tasks’ bottom parame-
ters instead of keeping the bottom parameters the same. For example, Dung et al. [37] apply
the L2 norm to restrict the distance between the parameters of different tasks to ensure the
relevance between tasks. Yang et al. [38] proposed regularizing bottom parameters with a
trace norm. Compared with the complex parameter-constrained multi-task deep learning
model, the soft-constrained multi-task learning model has fewer constraints. It can produce
better outcomes when the task association is not quite tight. Multi-task deep learning
models need to learn a network architecture suitable for multiple tasks simultaneously.
Thus, the models are more robust and resistant to overfitting.

The hard sharing method is another multi-task learning method. This method assumes
that there is some connection between the different tasks. As in Figure 1, different tasks
obtain standard low-level features in the shared bottom layers and confirm the uniqueness
of various tasks; each task uses a unique layer to capture high-level features. Our work
transforms a multi-classification task into multiple binary classification tasks with high
similarity between tasks, so we choose to use hard sharing as an approach.
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Figure 1. Two different parameter-sharing methods in multi-task learning.

3. Methodology

The proposed network model consists of encoder, decoder, and edge optimization
module. The encoder structure is the same as the VGG architecture adopted by UNet.
For the decoder, the proposed network converts a multi-category semantic segmentation
task into multiple binary-segmentation tasks. The number of decoders is the same as the
number of semantic segmentation categories of the ground object. Each decoder contains
quadruple attention modules, PAM, CAM, LAM, and EAM. The optimization algorithm for
edge extraction consists of three parts, the edge map branch, the distance map branch, and
the edge attention module. The architecture of the proposed method is shown in Figure 2.
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Sections 3.1 and 3.2 describe the PAM, CAM, and LAM. In Section 3.3, we introduce
the multi-task architecture of this network. In Section 3.4, edge optimization is introduced,
including two edge map branches and the EAM.

In Figure 2, all categories share one encoder, and each category owns a separate
triple attention decoder. Each decoder contains four attention modules. LAM needs label
information, and EAM needs edge labels during training.

3.1. PAM and CAM

Similar to human learning, machine learning is considered attention. The attention
mechanism’s core goal is to find critical information from various information items for
the current task. Position Attention Module (PAM) and Channel Attention Module (CAM)
are practical self-attention modules. PAM captures spatial global dependencies, and CAM
pays attention to the importance of each channel dimension.



Remote Sens. 2022, 14, 6256 6 of 25

Figure 3 illustrates the structure of the PAM. In the PAM, the input generates two
parts of feature maps: one is represented as Q and K to calculate an attention probability
map in the shape (H × W) × (H × W), and the other is used as V. Q, K, and V denote
query features, key features, and value features. Furthermore, C, H, and W represent the
attention probability map’s channel, height, and weight. Then, the optimization attention
map is reshaped to obtain the final prediction map.
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The overall structure of the PAM is shown in Equation (2).

Att = So f tmax
(

Q(HW×C) · K(C×HW)

)
Fout =

(
V(C×HW) · Att

)
reshape(C× H ×W) + Input(C×H×W)

(2)

where Att denotes the attention probability map calculated, and Fout is the final output,
obtained by summing the input and the optimization attention map. reshape(C× H ×W)
refers to the size of the feature map reshape to C× H ×W.

The width and height of the feature are multiplied by a large value and reduce the
number of channels to one-eighth of the original one by using convolution to facilitate
operations. Then the dimension of the number of channels is eliminated by matrix multi-
plication. This operation does not affect the shape of the feature.

PAM uses a spatial attention map to select aggregating contexts. In addition, PAM has
a global contextual view. Similar semantic features enhance intra-class compactness and
semantic consistency [18].

The CAM is similar in structure to the PAM, but it has a few differences. The structure
of the CAM is given in Figure 4. The first difference is that the number of channels is
smaller, so there is no need to change the feature map’s shape using convolution to reduce
the number of operations. The other point is that the shape of the generated attention
weight map is changed, and CAM focuses on the connection between the different channels
of the features. In the network structure, CAM swaps the position of the location attention
module dot product, and the shape of the generated attention weight map is (C× C), thus
establishing the influence relationship between features in different channels.

The overall structure of CAM is shown in Equation (3).

Att = so f tmax
(

Q(C×HW) · K(HW×C)

)
Fout =

(
Att ·V(C×HW)

)
reshape(C× H ×W) + Input(C×H×W)

(3)

where Att denotes the attention probability map calculated, and Fout is the final output,
obtained by summing the input and the optimization attention map. reshape(C× H ×W)
refers to the size of the feature map reshape to C× H ×W.
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3.2. Label Attention Module (LAM)

We built a brand-new attention mechanism at different views, inspired by the effec-
tiveness of attention-based methods. Unlike the self-attention mechanism, we use the label
to generate attention probability maps. Thus, LAM can gather more global features. The
structure is shown in Figure 5.
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where 𝑍   denotes the input vector to the softmax function, and C is the number of cat-
egories classified. 

Figure 5. Architecture of Label Attention Module.

The input (C × H ×W) is turned into two parts shaped (N × H ×W) by convolution
and reshaping, where N is the number of classifications. LAM’s output is the weighted
summation of the attention and value parts. In addition, after the SoftMax function, a loss
function is computed the attention probability map and a reshaped one-hot label.

Att = so f tmax(Conv
(

Input(C×H×W)

)
(N×H×W)

)

Fout = Conv(Conv(Input(C×H×W))(N×H×W)
+ Att)

(N×H×W)

(4)
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where Att denotes the attention probability map, and Fout denotes the output features of
the attention module.

The convolution neural network’s backpropagation technique parameter optimization
is Equation (5). The loss function is shown in Equation (6).

W = W − η

batch_size ∑
∂Lseg

∂W
(5)

Lossseg = CE(predict, label)
Lossatt = CE

(
predict, labeldown_sampling

)
W = W − η

batch_size ∑
(

∂Lseg
∂W + ∂Latt

∂W

) (6)

where η is the learning rate, and ∂Lseg
∂W is the derivative of the loss function with respect to

the parameters of the layer. CE refers to the cross-entropy loss function.
The loss function Lossmask consists of two parts: the segmentation part and the label

attention part, which are, respectively, defined as Lossseg, Lossatt. The label attention loss helps
LAM generate prediction map prototypes that facilitate the transfer of feature information.

3.3. Multi-Task TANet

The attention mechanism helps improve the semantic segmentation accuracy of large
objects. However, with the attention model it is difficult to distinguish some similar features.
Some trees without leaves are very similar to low vegetation (Figure 6), and even humans
will misunderstand them without carefully checking. Thus, the attention module failed to
distinguish the tree area.
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Figure 6. The features of the trees in the red rectangular area are similar to those of low vegetation,
and TANet misjudged the area as low vegetation.

In the traditional encoder–decoder structure, one decoder generates probability maps
of multiple output results by the Softmax function in Equation (7). For each pixel, the
category with the highest probability is determined as the classification result for this point.

So f tmax(Zi) =
ezi

∑C
c=1 ezc

ci = argmax(So f tmax(Zi))
(7)

where Zi denotes the input vector to the softmax function, and C is the number of
categories classified.

However, there is inter-class competition between different categories of each pixel.
The sum of the probabilities of all categories is 1, and different categories share a decoder
to restrict each other. If the probability of a particular point after decoding by the decoder
is relatively uniform, it is easy to cause misjudgments. Three solutions are proposed to
solve this problem.
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The first and most straightforward idea is to change the loss function, using multiple
binary-classification sigmoid cross-entropy loss instead of SoftMax cross-entropy loss. We
call this model TANet with multiple losses. The loss function is shown in Equation (8).

pi = Sigmoid(Zi)
Lossseg = ∑n

i BCE(pi, label)
Lossatt = ∑n

i BCE
(

att, labeldown_sampling

)
Loss = Lossseg + Lossatt

(8)

where pi denotes the output of the inference model, and att denotes the attention map of
LAM. BCE denotes the binary cross entropy loss.

The second method is Multi-model TANet. This method is to train a semantic segmen-
tation network for each category and combine all the binary segmentation results. It is not
easy to merge the results of multiple models. Here, we use the most intuitive method to
combine the predicted probability maps of multiple binary segmentation models, and each
pixel takes the category with the highest probability.

Another considerable solution is introducing multi-task learning, which converts a
multi-category segmentation task into multiple binary-classification segmentation tasks.
We call this method Multi-task TANet. The loss function is the same as TANet with multiple
losses. All categories share an encoder, and each category owns a separate decoder. As
shown in Figure 2, we use the TANet decoder mentioned above. For each pixel, we use the
probability of output for each category as the confidence level and select the category with
the highest confidence level as the classification result of the pixel.

For the above three methods, we have conducted experiments to find the best model.

3.4. Edge Optimization

In order to further improve the accuracy of the extracted edges, we made some
targeted improvements to the model. Firstly, inspired by [39], we add a new branch of edge
extraction. The purpose of this branch is to obtain edge maps of different categories. By
computing loss between the edge branch extraction edge result and the edge truth map,
the edge bifurcation of the extraction results can be improved.

However, the standard semantic segmentation loss function, like cross-entropy, is
unsuitable for computing edge map loss. The extraction result of the edge map may have a
slight misalignment with the actual value map, and the standard loss function will produce
a significant deviation. Hence, a suitable loss function for the edge map must be selected.
We changed the loss function from cross entropy to DT Loss [40].

DT Loss uses distance transform (DT), which transforms an edge map into a distance
map. In our task, the DT Loss can be represented in Equation (9).

LDT = ∑(pjk!=ljk)
IDT(j, k) (9)

where IDT denotes distance map, and j, k denotes the pixel coordinates. pjk and ljk represent
the predicted edge map and the actual edge map.

Inspired by the distance transform method, we can transform the discrete edge map
into a continuous distance map. Since the distance map already contains edge information,
we can directly add a new branch to predict the distance map, and the loss function can be
the common MSE.

Furthermore, an edge attention module (EAM) is added to each decoder. As shown in
Figure 7, the overall architecture of EAM is consistent with of LAM, the difference is that
the attention probability map used in EAM is the edge map of labels.
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The loss function Lossedge is just the edge map attention part. Structure and loss of
EAM is shown as follows.

attedge = So f tmax
(
Conv(InputC×H×W)1×H×W

)
(10)

Fout = Conv(Conv
(

Input(C×H×W))(1×H×W) + Att
)
(1×H×W)

(11)

Lossedge = CE
(

attedge, edgemapdown_sampling

)
(12)

where Att denotes the attention probability map, and Fout denotes the output features of the
attention module. EAM’s output is the weighted summation of the attention and value parts.

Using the boundaries of different feature categories in the labels, an edge map is
drawn as the guiding information of the edge attention probability map, and the rest of the
model is consistent with all the label attention modules. Since the model contains multiple
decoders, each corresponding to a feature class, the edge attention module in each decoder
has the same basic structure.

By combining these three improvements, the edges of the extraction results can be
further improved.

3.5. Descriptions of Datasets

In order to demonstrate the effectiveness of the model, several remote sensing image
semantic segmentation datasets are used in this paper. On the one hand, we use two
publicly available ISPRS remote sensing image semantic segmentation datasets. On the
other hand, a self-made CZ-WZ multi-category semantic segmentation dataset is used. The
differences in resolution and image sensors between the two datasets are significant, so
experiments on the three datasets separately can verify the model structure’s effectiveness
in different data styles.

Firstly, the Potsdam 2D semantic labeling dataset [41] contains 38 patches, each
consisting of a true orthophoto (TOP) extracted from a larger TOP mosaic. The label
contains six categories: impervious surfaces, buildings, low vegetation, trees, cars, and
clutter/background. Four spectral bands exist in each TOP image (red, green, blue, and
near-infrared), and we only use the RGB channels in this work.

The second dataset is the Vaihingen dataset [42], which contains 33 TOP patches of
different sizes. The ground sampling distance of the TOP is 9 cm. The reference data are
divided into the same six categories as the Potsdam dataset. Each TOP image has three
spectral bands (red, green, and near-infrared).
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The third dataset is the CZ-WZ dataset. The original images come from the Changzhou
area in Sichuan Province and the Wuzhen area in Zhejiang Province, China. The spatial resolu-
tion of the experimental remote sensing images is 0.51 m. Each TOP image has three spectral
bands (red, green, and blue). The label is self-made and classifies the remote sensing image
features into five categories: buildings, roads, vegetation, water bodies, and backgrounds.

Each training image is cut into 1024 × 1024 patches. After cutting, the Potsdam
dataset contains 1176 training samples and 504 test samples; the Vaihingen dataset contains
221 training samples and 63 test samples; the CZ-WZ dataset contains 1080 training samples
and 260 test samples. The training of convolution network models usually requires a large
number of samples. Based on the existing dataset, this work increases the network training
samples through data enhancement. The original and label images are flipped horizontally
or vertically, cut at random positions, and randomly transformed HSV. Data enhancement
changes the number of training samples to five times the original.

3.6. Evaluation Metrics

Following the evaluation method used in the literature [22], we evaluate the perfor-
mance of methods by three metrics: overall accuracy (OA), per-class F1 score, and average
F1 score. OA is the ratio of the number of correct pixels to the total number of pixels. F1
score for classification is calculated as the harmonic mean of precision and recall [22].

We calculate the F1 score for each foreground category to assess the proposed net-
work’s performance. We also calculate the OA for the whole dataset. The calculation
formula is as follows.

recall =
TP

TP + FN
, precision =

TP
TP + FP

(13)

F1 =
2× precision× recall

precision + recall
, mean_F1 =

N−1

∑
i

F1i/N (14)

OA =
TP + TN

TP + TN + FP + FN
(15)

with the following terms: True Positive example (TP), False Positive Example (FP), True
Negative example (TN), False Negative example (FN).

4. Results and Discussion

In this section, we validate the effectiveness of the proposed attention modules and
the multi-task framework. Firstly, we use UNet as our baseline and then utilize an ablation
study to show the tests of the proposed triple attention modules. Then, we experimented
with the three methods above to find the best model.

4.1. Ablation Study of Triple Attention Modules

The proposed TANet contains PAM, CAM, and LAM, three attention modules. PAM
and CAM are self-attention modules proposed by DANet, and LAM is proposed by our
paper which is a label attention module. In order to verify the effectiveness of the three
attention modules, we replaced UNet’s decoder with PAM + CAM, LAM, and TANet
(PAM + CAM + LAM).

4.1.1. Experiments Results on Potsdam Datasets

The attention modules focus on targets with a large area and a wide distribution
range, such as buildings, low vegetation, and impervious surfaces. As shown in Table 1,
after replacing the decoder with PAM and CAM, the F1 scores of impervious surfaces
increases by 0.85%, and building F1 score increases by 2.13%. As for LAM, the F1 score for
building increases by 1.24% and that for tree by 0.51%. This is because TANet combines
the advantages of the previous two models and thus achieves the best classification results.
TANet increases F1 of impervious surfaces, buildings, low vegetation, and trees compared
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with UNet by 1.80%, 2.48%, 0.85%, and 0.72%, respectively. An interesting result is that
UNet obtains the highest score for the segmentation result of the car. Since the attention
module in this article pays more attention to large-scale and complex targets, there is no
noticeable improvement for small targets such as cars.

Table 1. F1 score, Mean F1, and OA index results of multi-object on Potsdam dataset.

Method
Per-Class F1 Score (%)

Mean F1 (%) OA (%)
Imp. Surf. Building Low Veg. Tree Car

UNet 87.91 91.31 81.76 82.72 88.91 86.52 85.48
PAM + CAM 88.76 93.44 82.09 82.21 88.21 86.94 86.41

LAM 88.34 92.45 81.74 83.23 88.01 86.75 86.06
TANet 89.71 93.79 82.61 83.44 88.78 87.67 87.23

4.1.2. Experiment Results on Vaihingen Datasets

We perform experiments on the ISPRS Vaihingen benchmark to assess TANet’s per-
formance further. We used the same training and testing setup in the experiments on
the Vaihingen dataset. As shown in Table 2, TANet increases the F1 score of impervious
surfaces, buildings, low vegetation, trees, and cars compared with UNet by 3.43%, 3.77%,
8.63%, 1.45%, and 9.15%. In this experiment, the performance of using the LAM decoder
alone is closer to TANet, which means LAM played a more critical role in this model.

Table 2. F1 score, Mean F1, and OA index results of multi-object on Vaihingen dataset.

Method
Per-Class F1 Score (%)

Mean F1 (%) OA (%)
Imp. Surf. Building Low Veg. Tree Car

UNet 84.45 87.32 69.77 83.16 63.12 77.56 81.27
PAM + CAM 86.13 88.88 74.43 82.54 71.40 80.68 82.83

LAM 87.85 91.01 78.25 84.73 70.85 82.51 85.06
TANet 87.88 91.09 78.40 84.61 72.27 82.85 85.26

4.1.3. Experiments Results on CZ-WZ Datasets

We conducted experiments on CZ-WZ datasets to further evaluate the effectiveness of
TANet. As shown in Table 3, in terms of individual category accuracy, it is evident that the
improvement is excellent for roads and water bodies. Using UNet as a benchmark, the F1
scores for roads are improved by 9.16%, 12.16%, and 13.41% for PAM + CAM, LAM, and
TANet, respectively. This is because UNet cannot effectively learn the global features for
this type of distribution with a large range and infrequent sample occurrence, which results
in lower accuracy. Moreover, after the attention mechanism is introduced, the extraction
accuracy of roads is significantly improved, which shows that the global features are very
effective for road extraction. Like roads, water bodies also belong to the category with a
larger distribution range and lower frequency of occurrence. They are improved by 6.20%,
6.26%, and 6.59% relative to UNet, PAM + CAM, LAM, and TANet, respectively. Vegetation
was also entered as a feature type with a large distribution range. However, vegetation
occurred in the sample at a high frequency, so the extraction accuracy of each scheme
exceeded 90%. For the vegetation category, PAM + CAM has more improvement than
LAM, while LAM has more improvement on roads and water bodies. The two schemes
have some overlapping parts for the overall accuracy improvement. However, there are
still differences in different categories, combining the advantages of TANet and fusing the
two to obtain optimal accuracy.
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Table 3. F1 score, Mean F1, and OA index results of multi-object on CZ-WZ dataset.

Method
Per-Class F1 Score (%)

Mean F1 (%) OA (%)
Road Building Veg. Water

UNet 60.75 74.13 90.26 77.32 75.62 81.41
PAM + CAM 69.91 77.22 91.05 83.52 80.43 83.46

LAM 72.91 77.82 90.87 83.58 81.30 83.35
TANet 74.16 77.31 91.20 83.91 81.65 83.96

We compare the results before using the proposed module and after in
Figures 8 and 9. It can be clearly observed that the ability to recognize a wide range
of object types is enhanced after combining the attention module. For example, in the
second row in Figure 8, part of the impervious surface area is covered by shadows. TANet
recognizes the impervious surfaces correctly after the global features introduced by the
attention module’s introduction.
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4.2. Visualization of LAM

We visualize attention maps in LAM to better understand our attention modules. The
number of channels of attention maps generated by LAM is the same as the number of
segmentation categories, and we overlay the results of each category of the attention map
on the original image. Figure 10 shows the attention map results of impervious surfaces,
buildings, and cars. The feature response extracted by the attention modules is similar to
the segmentation result. Moreover, attention maps of LAM have made some corrections to
PAM and CAM extraction results. In the red rectangle, the segmentation results of PAM
and CAM are wrong, and with the help of the LAM’s attention map, TANet obtains the
correct recognition result.

4.3. Ablation Study of Multi-Task Learning

After the introduction of the attention module, the segmentation accuracy of a wide
range of targets was improved. Observing the extraction results of the TANet model, it is
found that there are still some misjudgments of similar features. We conducted several
experiments to solve this problem according to the ideas proposed in Section 3.3.

(1) TANet with multiple losses

We use binary cross-entropy loss for each category instead of softmax cross-entropy loss.

(2) Multi-model TANet

For each category, we trained an individual network. For each input image, we fused
the output probability maps of each category to obtain the final output result.

(3) Multi-task TANet

We convert a multi-category segmentation task into multiple binary-classification
segmentation tasks. All tasks share one encoder, and each task owns an individual decoder.
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4.3.1. Experiment Results on Potsdam Datasets

As shown in Table 4, Multi-task TANet improves the performance remarkably. Com-
pared with the baseline UNet, they employ a multi-task decoder yielding 88.35% in OA,
which brings a 2.87% improvement. The results show that the accuracy can only be im-
proved slightly if the loss function is replaced without increasing the number of decoders.
Since all categories share one decoder, and the characteristics of different categories are
quite different, it is difficult for one decoder to summarize the global characteristics of
all categories. Another finding is that the fusion results of multiple binary segmentation
models are poor. Since the models are trained separately, merging the results of multiple
models is not an easy task.

Table 4. F1 score, Mean F1, and OA index results of different models on Potsdam dataset.

Method
Per-Class F1 Score (%)

Mean F1 (%) OA (%)
Imp. Surf. Building Low Veg. Tree Car

UNet 87.91 91.31 81.76 82.72 88.91 86.52 85.48
TANet 89.71 93.79 82.61 83.44 88.78 87.67 87.23

TANet with multiple loss 89.52 94.00 82.91 83.82 88.49 87.72 87.35
Multi-model TANet 86.09 89.16 81.33 81.59 86.81 82.33 83.75

Multi-task TANet 90.54 94.60 83.90 84.87 89.98 88.54 88.35

4.3.2. Experiment Results on Vaihingen Dataset

Table 5 reports the quantitative results of the Vaihingen datasets. Compared with
the baseline UNet, the methods that combine multi-task ideas achieved higher accuracy.
Similar to the performance of the Potsdam dataset, changing the loss function does not
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significantly improve the model. However, the multi-model fusion performed better on
the Vaihingen dataset, especially the tree and car categories, which achieved the highest
F1 scores. The performance of multi-model TANet is not stable in different datasets. In
terms of large-area features, Multi-task TANet achieved better results. Similar categories
are easier to distinguish under the action of multiple decoders.

Table 5. F1 score, Mean F1, and OA index results of different models (Vaihingen dataset).

Method
Per-Class F1 Score (%)

Mean F1 (%) OA (%)
Imp. Surf. Building Low Veg. Tree Car

UNet 84.45 87.32 69.77 83.16 63.12 77.56 81.27
TANet 87.88 91.09 78.40 84.61 72.27 82.85 85.26

TANet with multiple loss 88.95 92.11 79.49 84.89 71.02 83.29 85.35
Multi-model TANet 88.37 90.77 79.43 85.65 74.83 83.81 85.67

Multi-task TANet 89.55 92.41 80.44 85.60 74.00 84.40 86.89

4.3.3. Experiment Results on CZ-WZ Dataset

As shown in Table 6, multi-task TANet significantly improves the performance of
image semantic segmentation. Compared to UNet, TANet with multiple losses, Multi-
model TANet, and Multi-task TANet improved 5.27%, 5.00%, and 8.04% in F1 score, and
2.14%, 1.88%, and 3.39% in OA score, respectively. Compared to TANet, the extraction
accuracy of Multi-loss TANet and Multi-model TANet decreased, and Multi-task TANet
achieved the highest accuracy. Different multitasking strategies have different effects on the
model. TANet with multiple loss only uses the multitasking loss function without changing
the model structure. The model still has parameter competition, and it is still difficult to
avoid the problem of misclassification of similar categories. The multi-model strategy used
by Multi-model TANet has higher extraction accuracy in a single model. However, it is
more difficult to fuse the multi-category results. The method of directly taking the most
significant term of probability value does not completely merge the multi-category results,
which is caused by the differences in the predicted probability values of different models,
so the multitask approach of the multi-model strategy has some instability.

Table 6. F1 score, Mean F1, and OA index results of different models (CZ-WZ dataset).

Method
Per-Class F1 Score (%)

Mean F1 (%) OA (%)
Road Building Veg. Water

UNet 60.75 74.13 90.26 77.32 75.62 81.41
TANet 74.16 77.31 91.20 83.91 81.65 83.96

TANet with
multiple loss 73.06 76.64 91.06 82.78 80.89 83.55

Multi-model TANet 72.86 76.44 90.90 82.28 80.62 83.29
Multi-task TANet 77.02 79.44 91.54 86.67 83.66 84.80

Figures 11 and 12 compare the segmented results on different approaches to multitask-
ing ideas. The multi-task mechanism focuses on solving the problem of misidentification of
similar features. Multi-task TANet with multiple decoders achieved the best results. Since
each category has a dedicated decoder, each decoder is more focused, thereby improving
the ability of category discrimination.
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4.4. Edge Optimization Results and Discussion

The optimization includes the edge map branch (EB), the distance map branch (DB),
and EAM. Firstly, to prove the validity of the DT Loss, we introduce the edge map branch
and compare the results using DT Loss and cross-entropy (CE). In Table 7, EB_DT denotes
the edge map branch with DT Loss, and EB_CE denotes the edge map branch with CE Loss.
According to Table 7, the results of different modules of edge optimization on three datasets
can be obtained, and the edge optimization of EB_DT and DB is the best result in MQANet.
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Table 7. Mean F1 and OA index results on edge optimization.

Method EB_DT EB_CE DB
Potsdam Dataset Vaihingen Dataset CZ-WZ Dataset

Mean F1 (%) OA (%) Mean F1 (%) OA (%) Mean F1 (%) OA (%)

MTANet 5 5 5 88.54 88.35 84.40 86.89 83.66 84.80
MTANet 3 5 5 89.16 88.77 84.36 86.93 83.94 85.10
MTANet 5 3 5 89.02 88.50 84.14 86.32 82.48 84.28
MQANet 3 5 5 89.29 88.96 84.48 87.32 84.10 85.15
MQANet 3 5 3 89.35 89.05 84.61 87.60 84.27 85.29

Then we evaluate the effects of the proposed distance branch and EAM. In Table 7,
DB denotes the distance branch. MQANet means the previous MTANet combined with
edge attention to form a Multi-task Quadruple Attention Network. Table 7 shows that all
three modules have improved the segmentation results. In Table 7, MTANet is Multi-mask
TANet, and MQANet is Multi-mask QANet.

The two datasets from Potsdam and Vaihingen were applied to tests for Unet, TANet,
and Multi-task QANet. The results are shown in Figures 13 and 14. Compared with the
three test datasets, the segmentation results of Multi-task QANet present a better effect
than Multi-task TANet. The modules, the first line of Figure 13, can clearly show the
performance, especially for the edge contour of the target.



Remote Sens. 2022, 14, 6256 19 of 25

Remote Sens. 2022, 14, 6256 20 of 26 
 

 

The two datasets from Potsdam and Vaihingen were applied to tests for Unet, TA-
Net, and Multi-task QANet. The results are shown in Figures 13 and 14. Compared with 
the three test datasets, the segmentation results of Multi-task QANet present a better ef-
fect than Multi-task TANet. The modules, the first line of Figure 13, can clearly show the 
performance, especially for the edge contour of the target. 

 

Image Label MTANet MTANet(EB_DT) 
MTA-

Net(EB_CE) 
MQANet(EB_D

T) 
MQANet(EB_DT + 

DB) 

Figure 13. Results on ablation study of edge optimization. The first three rows are from the Pots-
dam dataset and the others are from the Vaihingen dataset. 

Table 7 shows that after optimization of each module of edge extraction, the overall 
accuracy of the model is improved to a certain extent, and compared with MTANet 
(EB_CE), MQANet (EB_DT + DB) shows an improvement of 0.61% and 0.49% in F1 score 
and OA, respectively. The slight improvement since the edge part accounts for a smaller 
proportion of the total image area. The optimized edge extraction accuracy contributes 
less to the overall accuracy improvement. From the results of MTANet (EB_DT) and 
MQANet (EB_DT), it can be seen that different edge extraction loss functions signifi-
cantly impact the overall accuracy, and using the cross-entropy loss function to extract 
edges even reduces the original model accuracy. Moreover, the distance transform loss 
function can be better applied to the edge extraction task. The results of MQANet (EB_DT 
+ DB) show that the newly introduced distance transform branch and edge attention 
module can both help to improve the accuracy. 

Figure 13. Results on ablation study of edge optimization. The first three rows are from the Potsdam
dataset and the others are from the Vaihingen dataset.

Remote Sens. 2022, 14, 6256 21 of 26 
 

 

 

Image Label MTANet MTANet(EB_DT) 
MTA-

Net(EB_CE) 
MQANet(EB_D

T) 
MQANet(EB_DT + 

DB) 

Figure 14. Examples of semantic segmentation results on ablation study of edge optimization 
(CZ-WZ dataset). 

4.5. Discussion of Overall Experimental Results 
Table 8 is presented to analyze the results of our methods based on the two public 

datasets. The Mean F1 and OA of the surface objects have been promoted for the two 
datasets. For the Potsdam dataset, the 2.83% Mean F1 and 3.57% OA of MQANet are 
higher than those of Unet. For the Vaihingen dataset, the 7.05% Mean F1 and 6.33% OA of 
MQANet are higher than Unet. 

In addition, we tested the execution time of our proposed networks and Unet based 
on the method provided by Dong et al. [43], and the test results is the right column in 
Table 8. The test method sets the batch size to 1 and lets the network predict 200 images, 
the final execution time is the average of the total running time. That is the execution time 
of the network for a single image. From Table 8, it can be seen that the execution time of 
each image is reduced 66.6 ms compared to UNet, and the execution time of UNet is 
more than doubled compared to MQANet. Because our proposed multi-tasking mecha-
nism splits a multi-category segmentation task into several binary-classification seg-
mentation tasks, it can effectively reduce execution time and achieve better performance 
than the UNet baseline. 

Table 8. Quantitative results of our methods. 

Method 
Potsdam Dataset Vaihingen Dataset Execution Time/Per 

Image (ms) Mean F1 (%) OA (%) Mean F1 (%) OA (%) 
UNet (baseline) 86.52 85.48 77.56 81.27 125.4 

TANet (ours) 87.67 87.23 82.85 85.26 49.8 
MTANet (ours) 88.54 88.35 84.40 86.89 55.0 
MQANet (ours) 89.35 89.05 84.61 87.60 58.8 

The experiment’s results demonstrate that MQANet obtains optimal accuracy on 
two public datasets of ISPRS. Our module introduces two attention mechanisms: 
self-attention and label-attention. Thus, we achieve an enhanced overall accuracy com-

Figure 14. Examples of semantic segmentation results on ablation study of edge optimization
(CZ-WZ dataset).



Remote Sens. 2022, 14, 6256 20 of 25

Table 7 shows that after optimization of each module of edge extraction, the overall
accuracy of the model is improved to a certain extent, and compared with MTANet (EB_CE),
MQANet (EB_DT + DB) shows an improvement of 0.61% and 0.49% in F1 score and
OA, respectively. The slight improvement since the edge part accounts for a smaller
proportion of the total image area. The optimized edge extraction accuracy contributes less
to the overall accuracy improvement. From the results of MTANet (EB_DT) and MQANet
(EB_DT), it can be seen that different edge extraction loss functions significantly impact the
overall accuracy, and using the cross-entropy loss function to extract edges even reduces
the original model accuracy. Moreover, the distance transform loss function can be better
applied to the edge extraction task. The results of MQANet (EB_DT + DB) show that the
newly introduced distance transform branch and edge attention module can both help to
improve the accuracy.

4.5. Discussion of Overall Experimental Results

Table 8 is presented to analyze the results of our methods based on the two public
datasets. The Mean F1 and OA of the surface objects have been promoted for the two
datasets. For the Potsdam dataset, the 2.83% Mean F1 and 3.57% OA of MQANet are
higher than those of Unet. For the Vaihingen dataset, the 7.05% Mean F1 and 6.33% OA of
MQANet are higher than Unet.

Table 8. Quantitative results of our methods.

Method
Potsdam Dataset Vaihingen Dataset Execution Time/Per

Image (ms)Mean F1 (%) OA (%) Mean F1 (%) OA (%)

UNet (baseline) 86.52 85.48 77.56 81.27 125.4
TANet (ours) 87.67 87.23 82.85 85.26 49.8

MTANet (ours) 88.54 88.35 84.40 86.89 55.0
MQANet (ours) 89.35 89.05 84.61 87.60 58.8

In addition, we tested the execution time of our proposed networks and Unet based on
the method provided by Dong et al. [43], and the test results is the right column in Table 8.
The test method sets the batch size to 1 and lets the network predict 200 images, the final
execution time is the average of the total running time. That is the execution time of the
network for a single image. From Table 8, it can be seen that the execution time of each
image is reduced 66.6 ms compared to UNet, and the execution time of UNet is more than
doubled compared to MQANet. Because our proposed multi-tasking mechanism splits a
multi-category segmentation task into several binary-classification segmentation tasks, it can
effectively reduce execution time and achieve better performance than the UNet baseline.

The experiment’s results demonstrate that MQANet obtains optimal accuracy on two
public datasets of ISPRS. Our module introduces two attention mechanisms: self-attention
and label-attention. Thus, we achieve an enhanced overall accuracy compared to the
standard self-attention model. In addition, this paper uses a multi-decoder model to reduce
the parameter competition among different classes and performs additional optimization
for the edge regions, thus achieving optimal accuracy.

To further describe the model accuracy distribution of different datasets, we count the
sample number of each model in different accuracy intervals. We use overall accuracy (OA)
as the accuracy evaluation index to draw histograms, as shown in Figure 15.
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As shown in Figure 15, in the Chongzhou–Wuzhen dataset (CZ-WZ dataset), when
OA is below 0.8, the number of samples in UNet is significantly higher than that of other
models. TANet, MTANet, and MQANet show a decreasing trend. In contrast, when the
accuracy is above 0.8, MQANet has the largest number of samples. The above results show that
MQANet achieved optimal accuracy in most samples of the CZ-WZ dataset. In the Potsdam
and Vaihingen datasets, the regularities are similar to those in the CZ-WZ dataset. When the
accuracy is above 0.9, the number of samples of UNet is significantly lower than that of other
models, and MQANet has the largest number of samples. This indicates that MQANet also
achieves the optimal accuracy in most samples of Potsdam and Vaihingen datasets.

To obtain a more detailed sample distribution, we plotted the extraction accuracy
of each sample as a broken line diagram in the ISPRS-Vaihingen test dataset. As shown
in Figure 16, the extraction results of MQANet are the highest in four models. TANet,
MTANet, and MQANet show an upward trend in the Vaihingen test sample, which further
indicates that the proposed model has a high OA index in the Vaihingen test dataset.
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In addition, we compared the current work on two publicly available datasets to
verify the effectiveness of our optimal model, MQANet, still using two evaluation metrics,
the average F1 and OA. Among the existing works compared with this paper, the work
CBAMNet [21] containing the self-attentive mechanism, SENet [44], and the latest network
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Deeplabv3+ [11] with the spatial feature pyramid structure are included, in addition to
the latest CRMS [45] network with optimal feature extraction using the multiscale residual
module. The experimental results are shown in Table 9. As can be seen from Table 9,
the results of our proposed model MQANet show better results on both datasets. On
the Vaihingen dataset, our MQANet network has higher Mean F1 and OA than other
networks, and on the Potsdam dataset, our MQANet network has higher Mean F1 than
other networks, and only OA is 0.08% lower than DSPCANet [15]. Mean F1 score for
classification is calculated as the harmonic mean of precision and recall [22], and OA is
the ratio of the number of correct pixels to the total number of pixels. This shows that our
MQANet has certain advantages in the equalization of various objects identification.

Table 9. Quantitative results of the current work.

Method
Potsdam Dataset Vaihingen Dataset

Mean F1 (%) OA (%) Mean F1 (%) OA (%)

CBAMNet [21] 86.04 85.14 83.77 86.47
Deeplabv3+ [11] 88.01 87.06 83.77 85.71

SENet [44] 87.97 87.63 82.85 85.26
CRMS [45] 89.02 88.92 83.25 86.40

EFCNet [14] 80.17 81.77 81.87 85.46
DSPCANet [15] 87.19 90.13 84.46 87.32
MQANet (ours) 89.35 89.05 84.61 87.60

5. Conclusions

A Multi-task Quadruple Attention Network (MQANet) is proposed to improve the
accuracy of multi-object semantic segmentation of remote sensing images. We introduce the
attention mechanism to obtain more global features and improve the accuracy of the large
object area. Furthermore, two self-attention modules are introduced, which are named
PAM + CAM, and the OA and Mean F1 are improved. Then, we build a label attention
module (LAM) and combine all three attention modules into a triple attention network
(TANet). Meanwhile, we proposed three alternative methods to improve the ability to
identify similar objects: Multi-task TANet (MTANet). Experiment results show that the
multi-task learning method obtains the highest accuracy. Finally, some edge optimizations
are made to improve the accuracy of the edge area further, and we combine Multi-task
TANet and edge optimizations as the Multi-task QANet (MQANet).

Three datasets were used to verify the accuracy of the proposed model. Compared
with the baseline UNet in the Vaihingen dataset, MQANet improved the OA and Mean F1
by 6.33% and 7.05%, respectively. MTANet improved the OA and Mean F1 by 5.48% and
6.84%, respectively. Compared with the baseline UNet in the Potsdam dataset, MQANet
improved the OA and Mean F1 by 3.57% and 2.83%, respectively. MTANet improved the
OA and Mean F1 by 2.87% and 2.02%, respectively. Compared with the baseline UNet
in the CZ-WZ dataset, MQANet improved the OA and Mean F1 by 3.88% and 8.65%,
respectively. MTANet improved the OA and Mean F1 by 3.39% and 8.04%, respectively.
Through extensive experiments, the proposed MQANet outperforms other methods by a
large margin on Vaihingen, Potsdam and self-annotated datasets (CZ-WZ dataset). The
results demonstrate that the proposed model (MQANet) has a large accuracy improvement
in both F1 and OA indices, and the quadruple attention modules are helpful for large object
semantic segmentation of RS images.

The proposed multi-tasking mechanism splits a multi-category segmentation task into
several binary-classification segmentation tasks, each of which requires a separate decoder.
The types of multi-object semantic segmentation involve 5 or 6 categories in our study,
which can achieve better results. However, if the objects are subdivided into dozens or
even more categories, the model needs to construct a decoder for each category. A large
number of decoders may cause the size expansion of the model, and the applicability of
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the model may be decreased. In the future, more types of multi-object will be tested to
optimize a more robust multi-task semantic segmentation.
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