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Abstract: Coasts and coastlines in many parts of the world are highly dynamic in nature, where
large changes in the shoreline position can occur due to natural and anthropogenic influences. The
prediction of future shoreline positions is of great importance in the better planning and management
of coastal areas. With an aim to assess the different methods of prediction, this study investigates the
performance of future shoreline position predictions by quantifying how prediction performance
varies depending on the time depths of input historical shoreline data and the time horizons of
predicted shorelines. Multi-temporal Landsat imagery, from 1988 to 2021, was used to quantify the
rates of shoreline movement for different time period. Predictions using the simple extrapolation of
the end point rate (EPR), linear regression rate (LRR), weighted linear regression rate (WLR), and the
Kalman filter method were used to predict future shoreline positions. Root mean square error (RMSE)
was used to assess prediction accuracies. For time depth, our results revealed that the higher the
number of shorelines used in calculating and predicting shoreline change rates the better predictive
performance was yielded. For the time horizon, prediction accuracies were substantially higher for
the immediate future years (138 m/year) compared to the more distant future (152 m/year). Our
results also demonstrated that the forecast performance varied temporally and spatially by time
period and region. Though the study area is located in coastal Bangladesh, this study has the potential
for forecasting applications to other deltas and vulnerable shorelines globally.

Keywords: coastal erosion; vulnerability; digital shoreline analysis system; shoreline forecasting;
delta; Bangladesh

1. Introduction

Globally, coastal areas are vulnerable to different natural hazards, including floods,
erosion, hurricanes, cyclones, tsunami, and saltwater intrusion, because of their proximity
to the sea. These hazards are responsible for extensive economic, social, ecological, and
human losses [1]. According to the United Nations [2], approximately 40% of the world’s
population lives within 60 miles of the coast, which is expected to grow significantly in the
future. Continued climate change and sea-level rise is expected to substantially impact the
people living in coastal areas [3,4]. Sea level rise poses serious threats for the people living
in the coastal zone, which leads to coastal erosion, inundations in the low-lying areas, tidal
water encroachment and subsequent salt-water intrusion, as well as the displacement of
the people living along the coast.

Coastal erosion is one of the biggest problems in the coastal areas globally, and the
world’s mega deltas are heavily affected [5]. During the twentieth century, the mean
sea level rose by 11–16 cm [6,7], possibly exacerbating coastal erosion globally. Due to
rising seas, the resulting inundation will heavily impact low-lying areas; impacting at least
100 million persons globally who live within one meter of the mean sea level [8]. Coastal
Bangladesh is highly vulnerable to coastal erosion, where land accretion and erosion are
among the highest in the world [9–12]. It is a recurring problem, causing thousands of
people to become homeless every year [13]. Economically challenged populations living in
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coastal areas are among the most severely impacted victims of such changes. Additionally,
the magnitudes and severities of the affected people and their associated livelihoods may
affect the total economic growth of the country [14]. Due to coastal erosion, people living on
the coast not only lose their agricultural land but also their infrastructure, communication
systems, and most importantly their livelihoods. For a lower middle-class country, such
as Bangladesh, with limited internal resources, it is hard to cope with catastrophic natural
hazards, such as coastal erosion and its related consequences [15].

The detection of shoreline movement and prediction of future shoreline position is
important for the informed management of the coastal zone and to limit the structural
and financial losses in the coast [16]. Due to the dynamic nature of physical coastal pro-
cesses, the prediction of future shorelines can be particularly challenging. Shoreline retreat
(erosion) and advance (accretion) can depend on many factors and processes, including
fluvial discharge, bathymetry, land cover along the littoral, wind and wave energy, rainfall,
sea level rise, human alterations (e.g., protective structures), and acute disturbance events
such as cyclones [17,18]. There are two general approaches to shoreline prediction. First,
researchers have used physically based process models that involve various geophysical
input parameters (e.g., discharge, wave energy) [19,20]. Coastal geoscientists and engineers
often apply this approach. A second approach employs empirically based, data-driven sta-
tistical methods that do not involve process models or simulations. This type of prediction
uses the historical observations of erosion/accretion rates to predict future scenarios [21,22].
Geospatial scientists commonly use this approach.

Remote sensing and GIS-based techniques are useful and widely used by coastal
researchers in detecting and predicting coastal erosion and accretion [10,23,24]. The Digital
Shoreline Analysis System (DSAS) is one of the most used toolkits in detecting shoreline
movement. The DSAS toolkit is an ArcGIS plugin developed by the United States Geological
Survey [25]. In this research, we adopted an empirically based, data-driven approach of
shoreline prediction using DSAS to derive rates of shoreline positional change. Historical
change rates have been often been used to predict future shorelines by employing statistical
extrapolation [26,27]. In this approach, the key inputs are historical change rates derived
from satellite imagery.

Among the methods used, the end point rate (EPR) is one of the most widely used
method due to its relative ease to use employing two mapped shorelines for two dates
and no requirement of additional data or use of a physically-based model [28]. The linear
regression rate (LRR) and weight linear regression rate (WLR) described below employ
multiple shoreline dates with the associated regression techniques. To obtain the predicted
future shorelines, simple extrapolation extends a terminal date shoreline to some date in the
future via the simple extrapolation of the observed historical rates of shoreline positional
change. The Kalman filter method is an alternative approach for future shoreline prediction.
The main difference between the Kalman filter method and simple extrapolation is that
the Kalman filter method is a recursive algorithm that employs multiple steps applied to
estimates of the current state variable (e.g., EPR) at each successive time step, along with
its uncertainty [29]. The outcome of successive estimates of future shoreline movement,
which includes spatial uncertainty and random noise, is updated using a weighted average
with more weight being given to estimates with a higher certainty. A recent study by
Ciritci and Turk [21] used the Kalman filter method to compare the prediction accuracy
alternatively using the end point rate (EPR), linear regression rate (LRR), and weighted
linear regression (WLR) as inputs using a future prediction time horizon of 10 and 20 years.
Results suggested that using the WLR shoreline change rate as input to the Kalman filter
prediction method provided more accurate results than with the use of the other rates (e.g.,
EPR, LRR).
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The main goal of this research is to assess the variability of future shoreline prediction
performance depending on the time depth of input predictor data (e.g., number of annual
historical shoreline observations) and the forecast horizon of predicted future shorelines
(e.g., the number of years into the future that are predicted). Compared to much of
the coastal erosion literature, this work uses a richer time series dataset derived from
a 34-year time series of satellite-derived shorelines at annual temporal resolution. This
time depth enables us to employ a temporal strategy to yield a robust characterization
of the space-time patterns of shoreline change and future shoreline prediction. It enables
us to empirically assess the performance of the future shoreline position predictions by
quantifying how the prediction performance varies depending on the time depths of the
input historical shoreline data and the time horizons of predicted shorelines. This is a
methodological innovation with the potential for forecasting applications to other deltas
and vulnerable shorelines globally. While empirical results are specific to the project’s study
area, results can inform the region’s shoreline forecasting ability and associated mitigation
and adaptation strategies.

The specific objectives of this study are to (1) assess how coastal erosion/accretion
varies spatially and temporally, (2) measure how predictive performance varies over space
and time, (3) examine how successful the empirical forecasting of future shoreline positions
is, (4) evaluate how well alternative extrapolation methods of shoreline prediction perform,
and (5) identify what time depths of historical predictor shorelines and what time horizons
of future predicted shorelines yield the best predictive performance.

2. Materials and Methods
2.1. Study Area

The study area is located along the eastern bank of the lower Meghna River, near the
Bay of Bengal (Figure 1). This part of the delta is morphologically very dynamic in nature.
The Meghna River is an alluvial meandering river which confluences with the Padma
River at the upstream of our study area. Its shoreline spans the coastal upazilas (local
administrative regions equivalent to US counties) of Chandpur and Lakshmipur, districts
of Bangladesh. The upazilas are the second lowest tier of administrative unit. According to
the population census of 2011, more than two million people live in the study area’s six
upazilas. Most households depend on agriculture or fishing for their livelihoods [30,31].
This study covers more than 85 km of shoreline along the eastern bank of the lower Meghna
Estuary. According to previous studies [11,12], this part of the estuary is highly vulnerable
to coastal erosion due to the heavy discharge of sediment flow from the upstream of one
of the largest deltas in the world, named the Ganges–Brahmaputra–Meghna (GBM) delta.
People living in this low-lying coast are very close to the sea level with an average elevation
of 5 m.
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Figure 1. Study area—the eastern bank of lower Meghna River region in Bangladesh. 
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Figure 1. Study area—the eastern bank of lower Meghna River region in Bangladesh.

2.2. Data

This study analyzed satellite data for a period of 34 years from 1988 to 2021. Multi-
temporal Landsat satellite data was obtained from the USGS Earth Explorer website (https:
//earthexplorer.usgs.gov/, accessed on 2 May 2021). Landsat imagery is widely used for
quantification of coastal erosion [10,11,32,33]. In order to obtain cloud-free imagery, satellite
images were selected and downloaded for the dry season winter months (December to
February) every year. A detailed description of the imagery used can be found in Table A1
of Appendix A.

2.3. Methods

In this study, shoreline prediction performance was analyzed using the aforemen-
tioned Landsat time-series data of 1988–2021. Satellite images were processed using ArcGIS
Pro software. The Digital Shoreline Analysis System (DSAS) was used to calculate shoreline
change rates, and simple extrapolation and the Kalman filter method were used to predict
future shoreline positions. First, images were preprocessed using ArcGIS Pro. Second, an-
nual shoreline positions were extracted (e.g., vector shorelines) and shoreline uncertainties
were assessed. Third, using DSAS, shoreline change rates were calculated. Finally, shoreline
change rates were used to predict future shoreline positions and prediction accuracy was
assessed. A detailed diagram of the work flow used in this study can be found in Figure 2.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Figure 2. Flowchart of the methodology followed to conduct this study.

2.3.1. Shoreline Extraction

To extract annual shorelines, the Modified Normalized Difference Water Index (MNDWI)
were used as an input with other Landsat bands. The middle infrared (MIR) and green
bands are used to create this index which enhances the ability to distinguish between open
water features while suppressing/removing other noises, such as built-up land, vegetation,
and soil noise [34]. MNDWI is defined as:

MNDWI = (Green − MIR)/(Green + MIR) (1)

The MNDWI value ranges from −1 to 1, where water pixels approach to 1, and are
easily distinguishable from other pixels. It is a widely used method to separate water
and non-water pixels. After getting the index, the ISO cluster unsupervised classification
was used to classify the images into 10 classes. In this process, we used red, green, blue,
and MIR bands, along with MNDWI as an input. After obtaining the initial ISO cluster
classification output layer, the output layers were reclassified into two classes, water and
non-water via visual interpretation. The land–water interface defining shoreline was then
converted to a vector digital shoreline employing a smoothing algorithm. Results yielded
annual dry season shorelines for every year from 1988 to 2021.
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2.3.2. Shoreline Uncertainty

The accurate estimation of shoreline errors and uncertainties is necessary. The accuracy
of the shoreline movement estimation is affected by several factors. This study assessed
and accounted for four uncertainty terms provided by Hapke et al. [35].

Shoreline uncertainty was assessed using the following equation:

Utotal =
√

Ug2 + Up2 + Ud2 + Ut2 (2)

where, Utotal = total uncertainty, Ug = georeferencing uncertainty, Up = pixel uncertainty,
Ud = digitizing uncertainty, and Ut = uncertainty associated with tide.

Georeferencing uncertainty (Ug) of the Landsat imagery used varied from 3.5 m to
7.3 m. This information was obtained from the metadata provided with the imagery. Pixel
uncertainty (Up) is related to the pixel resolution of the imagery. All imagery we used
had a 30 m resolution. That said, the pixel uncertainty (Up) was 30 m for all the images
used in this study. The uncertainty related to the manual digitizing of shorelines from
visual inspection is typically defined as digitizing uncertainty (Ud). Since we used the
automated shoreline digitization method, our digitizing uncertainty (Ud) value is 0. To
assess uncertainty due to tidal variation (Ut), we adopted the same approach used in our
previous research [12]. Six different shorelines were derived for the dry season of 2000
using Landsat imagery. We found that the tidal levels ranged from 0.8 m to 2.8 m for
the dates/times of the analyzed images. To measure the shoreline position difference,
depending on the tide level, fifteen different combinations of shorelines for each transect
were quantified. Our calculation suggested that the mean tidal difference was 0.97 m.
We used regression analysis to reveal the shoreline uncertainty. Our analysis of shoreline
uncertainty exhibits 1 m tidal difference, resulting in a 7 m shoreline shift. As a result,
we applied a tidal uncertainty of 7 m. A detailed summary of the shoreline uncertainty
assessment can be found in Table 1.

Table 1. Summary statistics of different parameters used in shoreline uncertainty assessment.

Georeferencing
Uncertainty (Ug)

Pixel
Uncertainty (Up)

Digitizing
Uncertainty (Ud)

Tidal
Uncertainty (Ut)

Total
Uncertainty (Utotal)

Minimum 3.54 30 0 5.60 30.72
Maximum 7.34 30 0 19.60 36.58

Mean 4.72 30 0 7.32 32.27

All units are in meters.

2.3.3. Shoreline Change Rates Calculation

Shoreline change rates were calculated using the DSAS (Digital Shoreline Analysis
System), a software package for the quantification of shoreline movement developed by
United States Geological Survey [25]. The EPR, LRR, and WLR were used to calculate
the shoreline change rates at a 95% confidence interval. The EPR rate is calculated by
dividing the distance of shoreline movement by the time period between the oldest and the
most recent shoreline [29], yielding a change rate in units of meters per year. EPR is one
of the most widely used methods for shoreline change rate calculation [23,36]. The LRR
rate is calculated by fitting a least-squares regression line to all shoreline points for digital
transects that are cast orthogonal from an offshore or onshore baseline to the mapped
shorelines. With the x-axis being time (e.g., year), and the y-axis being the distance from
the baseline to the observed shorelines, the regression coefficient and its uncertainty is an
estimate of the true shoreline change rate and its associated uncertainty. This method is
applied to the set of transects such that each transect obtains a transect-specific shoreline
change rate and uncertainty value. In practice, it is common to use a transect spacing of
50 m; the spacing adopted here resulted in 1551 transects spanning the ~85 km shoreline of
the study areas. Similarly, the WLR rate is calculated by fitting a least-squares regression
line to all shoreline points for each transect by taking into consideration the uncertainty
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values associated with measurement [29]. In a weighted linear regression, the more reliable
data are given greater emphasis or weight towards determining a best-fit line. The weight
(w) is defined as a function of the variance in the uncertainty of the measurement (e).

w = 1/e2 (3)

where, e is shoreline uncertainty value.

2.3.4. Shoreline Prediction and Temporal Strategy

For the shoreline prediction, we have used both simple extrapolation and Kalman
filter methods, which take shoreline change rates as input, such as the EPR, LRR, and WLR.
Prediction involves a general two-step process. For the simple extrapolation of historical
rates, ArcGIS, via relevant geoprocessing tools, was used. We also calculated the advanced
form of extrapolation using the Kalman filter method using the DSAS software. In short,
for each of the 1551 digital transects, a “terminal shoreline position”, which is the x, y
location of the intersection of the transect with an empirically mapped digital shoreline
(e.g., shoreline derived from Landsat) for the year from which a future shoreline position
prediction is made, is shifted either onshore or offshore depending on the empirically
derived shoreline change rate which may be either positive or negative indicating shoreline
accretion or erosion. In this way, a predicted future shoreline position along each transect
for a defined time horizon into the future is produced.

Important to this research is the establishment of a temporal strategy to predict future
shorelines. This is important to satisfy our goal and the innovation of evaluating how
prediction performance varies over time and space. Our strategy required consideration
of both the time depth of historical shorelines (e.g., how many years of annual input
shorelines) used to quantify historically observed shoreline change rates and the time
horizon for future prediction shorelines (e.g., how far out in the future to predict). We used
time depths of 5, 10, and 15 years in the past and time horizons of 1, 5, 10, and 20 years into
the future.

As described below, we used the LRR rates for all shoreline predictions using both the
simple extrapolation and Kalman filter methods. In the case of Kalman filter prediction, we
could not predict future shoreline positions using 5-year time depth data due to technical
issues with the DSAS, though we were able to do so for 10 year and 15-year time depth data.
A large dataset was generated in combination of four different methods of prediction, three
different time depths and four different time horizons. Approximately 300k observations
were produced at the transect level through the above combinations where digital transects
at 50 m spacing were cast orthogonal from a digital baseline such that transects intersected
the shorelines at approximately 90 degrees. Through our previous research [11] and
personal observation, we found that the central zone of our study produced some noise in
generating data due to the nature of the complexity of erosion and accretion in this region.
As a result, we state that some transects at the central region will result in large rates of
shoreline positional change that are statistical outliers. We, therefore, trimmed to remove
these outliers from the data. Based on empirical data inspection, we excluded transects
with change rates exceeding 500 m/year. Through this process, we removed approximately
2.4% of the observations from the final data analysis.

2.3.5. Prediction Performance Metric

Empirical prediction of future shorelines requires metrics to evaluate prediction ac-
curacy. Prior research [21,26,27] has used the root mean square error metric (RMSE) to
measure prediction accuracy, a common measure of accuracy assessment across science
domains. The RMSE is the standard deviation of the residuals (prediction error). To assess
the prediction accuracy, this study used RMSE as a performance metric. RMSE is applied
to individual transects. The study area contains 1551 transects at a 50-m spacing that
are roughly equally distributed into three regions following prior research of this study
area [11], the north, central, and south zones. A basic building block of RMSE is to quantify
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the difference in meters between a predicted and an observed shoreline position. The
difference in position along the transect between the predicted and observed shoreline
position can be either negative or positive. RMSE is defined as:

RMSE =

√
∑N

i=1(yi − ŷi) 2

N
(4)

where, yi is the actual shoreline position, ŷi is the predicted shoreline position, and N is the
total number of observations.

3. Results
3.1. Correlation of Different Shoreline Erosion Rates

In this study, the EPR, LRR, and WLR methods were used to calculate shoreline change
rates. Figure 3 reveals patterns of spatio-temporal correlation of shoreline rates between
different methods used. Our results suggest that among the methods used, the LRR and
WLR rates are highly positively correlated (>99%) for all time depths and regions. Since
the LRR and WLR rates are highly correlated, a similar pattern of correlation between EPR
vs. LRR and EPR vs. WLR were observed. Our analysis also suggests that correlation
values varied over time and space. The correlation between EPR and LRR rates ranged
from 0.7–1 (5 y time depth), 0.62–1 (10 y time depth), and 0.54–1 (15 y time depth). Most
of the years, the correlation between the EPR and LRR were found to be strong (>0.7) for
all regions, although a small number of observations had moderate (0.5–0.7) correlation
values. These fluctuations in correlation values might be related to the way EPR and LRR
rates are calculated. The EPR rates use only the beginning and end year shorelines while
calculating the shoreline movement. On the other hand, the LRR rates use all the available
shorelines to calculate shoreline change rates.

3.2. Spatio-Temporal Variation in Shoreline Change Rates

Figure 4 presents the LRR rates of shoreline movement over time and space. We
present results calculated using the LRR rates but not the WLR rates due to the very high
correlation of LRR and WLR. The LRR rates were also chosen over the WLR rates to align
with the beta forecasting (Kalman filtering) used in the later part of the study to assess
the prediction accuracy. Additionally, we excluded the EPR rates, since it only uses two
specific shorelines to calculate the change rate. The LRR and WLR rates were found to be
more sophisticated because they use all the shorelines available to calculate the rate.

Among the regions, north and south region experienced primarily erosion while
central region experienced mostly accretion over the studied period (1988–2021) (Figure 4;
Appendix B). The LRR rates suggest that the central region experienced the highest average
accretion rates (Figure 4a) in the years 1996–1998. During these years, average accretion
rates were 177 m. On the other hand, the north and south regions experienced erosion most
of the years. The highest rates of erosion were 109 m for the north region and 173 m for the
south region in the years 2011 and 2015, respectively.

Among the time depths of data used, the distribution of the erosion/accretion rates
suggest that the 15 years’ time depth data produced the lowest accretion/erosion rates for
all regions compared to the 5 years and 10 years of data used in the model. This is likely
due to the higher time depth smoothing out finer scale temporal variability compared to
lower time depth. The highest rates of accretion (265 m) were found to be in the year 1998
when 10 years’ time depth data used. On the other hand, the highest rates of average
erosion (207 m) were found to be in the year 2014 for 5 years’ time depth.
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Figure 3. Spatio-temporal pattern of the Pearson correlation (r) values between different methods
used to calculate historical shoreline change rates: (a) 5 years’ time depth EPR vs. LRR, (b) 10 years’
time depth EPR vs. LRR, (c) 15 years’ time depth EPR vs. LRR, (d) 5 years’ time depth EPR vs. WLR,
(e) 10 years’ time depth EPR vs. WLR, (f) 15 years’ time depth EPR vs. WLR, (g) 5 years’ time depth
LRR vs. WLR, (h) 10 years’ time depth LRR vs. WLR, and (i) 15 years’ time depth LRR vs. WLR.

3.3. Spatio-Temporal Variation in Shoreline Prediction Performance
3.3.1. One-Year Shoreline Prediction Performance

Figure 5 reveals the spatio-temporal dynamics of 1-year prediction accuracy; e.g., pre-
dicting future shorelines one year into the future beyond a terminal date shoreline. The
prediction accuracy of 1 year in the future was much better for the north and south regions
compared to the central region. Our results suggest that among the regions studied, the
RMSE values were lower in the recent years compared to the prior years for the north
and south regions. On the other hand, the RMSE values fluctuated (62–2065 m) over time
starting from the year 2007 for the central region. For this region, the prediction performed
better in the prior years (before 2007) compared to the recent years. Due to the noisy nature
of RMSE values for the different years in the central region, we have excluded the line
showing the fluctuations in RMSE values. Removing the lines for central region in the plots
(Figure 5) help in comparing with the RMSE values in the other figures.
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In comparison of the RMSE values for different time depths used, this study found that
the 5 years’ time depth data performed best in the south region while 10 and 15 years’ time
depth data performed well in the north region. The average RMSE value was lowest (114 m)
for the north region, while 15 years of time depth data used. The highest average RMSE
values were found for the central regions, which can be explained due to the complex,
noisy, and more highly variable nature of this region’s shoreline. The average RMSE values
ranged from 556–640 m for this region. While combining the RMSE values for the different
regions using all time depths, this study found that the north region had the lowest error
(147 m) in predicting 1 year in the future. On the other hand, the highest RMSE value
(585 m) was found for the central region.

3.3.2. Five-Year Shoreline Prediction Performance

Similar to 1-year prediction, the LRR rates were utilized to predict shoreline positions
5 years into the future. Figure 6 illustrates the spatio-temporal pattern of the shoreline
prediction performance using RMSE values. The prediction performance was again much
better for the north and south regions compared to the central region for all different time
depths used in this study. We believe that the RMSE values were much higher for the
central region due to its complex nature and higher accretion rates over time.
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We found that the north region had the lowest average RMSE value (111 m/year)
over other the two regions followed by the south region (137 m/year) while combining
all time depth data. The average RMSE value of different time depth data suggest that
the north region had the lowest average RMSE value (101 m/year) using 15 years’ time
depth. The aggregation of all regions’ RMSE values suggest that the lowest (194 m/year)
and highest (208 m/year) values were found when 5 years’ and 15 years’ time depth data
was used, respectively.
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3.3.3. Ten-Year Shoreline Prediction Performance

Using normal extrapolation and the Kalman filter method, shoreline positions were
predicted for 10 years into the future and accuracy was assessed for all regions and different
time depths (Figure 7). Our results suggest that, irrespective of the methods and time depths
of the data used, the north and south regions performed better in predicting future shoreline
positions compared to the central region. As already mentioned in the previous sections,
this might be due to the complex nature of the shoreline movement in the central region.
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Figure 7. Variations in RMSE values of the LRR rates in predicting 10 years in the future calculated:
(a) 5 years’ time depth, (b) 10 years’ time depth, (c) 15 years’ time depth, (d) 10 years’ time depth
(Kalman), and (e) 15 years’ time depth (Kalman).

In comparison between the LRR rates and Kalman filter predictions, our analysis sug-
gests that the LRR rates outperformed the Kalman filter method of prediction. The RMSE
values were found to be much lower when the LRR rates were used in prediction. While us-
ing the LRR rates for all depths, the lowest average RMSE value was found to be 106 m/year
for the north region, while the highest value was found to be 252 m/year for the south
region. On the other hand, for the Kalman filter method, the lowest and highest average
RMSE value was 197 m/year and 503 m/year for north and south region respectively.
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In terms of time depths used, the prediction accuracy was found to be much higher
for the increased number of shorelines used for both the LRR rates and the Kalman filter
method. The lowest average RMSE value was found to be 149 and 260 m/year for the LRR
rates and Kalman filter method while 15 years of shoreline data was used in the model.
This clearly indicates that higher numbers of shorelines yield higher accuracies. Results
also indicate that the simple extrapolation outperformed than the Kalman filter method.

3.3.4. Twenty-Year Shoreline Prediction Performance

Figure 8 shows the spatio-temporal dynamics of shoreline prediction accuracy for
20 years in the future. Similar to the 10 years’ prediction, both the LRR rates and Kalman
filtering methods were used to predict shoreline positions. Like 10 years prediction, simple
extrapolation performed better than Kalman filter prediction. Results show that the average
RMSE value of the LRR rates was 161 m/year while the value for Kalman filter method
was 321 m/year.
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Among the regions, and for the other different time horizons, the north and central
regions performed better in predicting future shoreline positions. The average RMSE for the
north, central, and south regions were found to be 123, 257, and 161 m/year, respectively,
when the LRR rates were used. With the Kalman filter prediction, it was 150 m/year for
the north, 647 m/year for the central, and 165 m/year for the south region.

The average RMSE value for 5 years’ time depth (156 m/year) were found to be the
lowest among all depths used in predicting shorelines 20 years in the future. In comparison,
between simple extrapolation and the Kalman filter prediction, it was found that the RMSE
value was almost doubled for the Kalman method compared to the LRR rates. This result
clearly suggests that the normal extrapolation outperformed the Kalman filter method in
predicting 20 years into the future.
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4. Discussion

In this study, the performance of future shoreline predictions was assessed using
satellite imagery from 1988 to 2021. Approximately 85 km of the shoreline along the eastern
bank of the lower Meghna River region in Bangladesh was used as the case in this study.
The entire shoreline was divided into three zones based on their distinct rates of shoreline
erosion and accretion. Previous research found that the north and south regions experienced
extreme erosion over the last three decades, while the central region experienced dominant
accretion [11,37], a finding we replicate here.

Our results suggest that the performance of shoreline predictions varied over time
and space. It also varied by different methods used to predict future shoreline positions.
The predictions performed best with relatively higher number of shorelines used as input
to derive shoreline change rates. A clear finding is that higher time depth in estimating
the shoreline change rates is preferable. Our analysis of RMSE for the prediction of future
shoreline positions suggests that prediction performed better for the near future compared
to distant. To come up with this conclusion, we compared the average RMSE values for
the north and south regions (all time depths) of the 1 and 5 years (near future) to the mean
of the 10 and 20 year values (distant future). Our results suggest that the average RMSE
value for near future (138 m/year) was lower than the distant future (152 m/year). Thus,
prediction for shorter time horizons is preferable, at least for this region and the statistical
empirical methods employed. Among our study’s three defined regions, the north and
south regions performed better in predicting future shoreline positions compared to the
central region. This is understandable due to the complex and generally “noisy” form
in terms of shoreline data mapping in the last decade in the central region of the study
area. Our results also suggest that the simple extrapolation outperformed the Kalman
filter method for the future shoreline prediction. The average RMSE values for simple
extrapolation (128 m/year) were found to be much lower than the Kalman filter method
(185 m/year).

Many studies have used DSAS to predict future shoreline positions. However, very few
studies have assessed the performance of different methods used in predicting shoreline
movement with the relatively rich temporal time series employed here. A recent study
by Ciritci and Turk [21] used the DSAS model to compare the prediction accuracy of the
Kalman filter and other statistical methods, such as the EPR, LRR, and WLR, using a future
prediction time horizon of 10 and 20 years. They found that while using the Kalman filter
method, the 10-year shoreline prediction provided a higher accuracy over the 20-year
prediction. This result is aligned with our findings that the accuracy of the prediction is
generally higher for the near future compared to the distant. They also found that among
the EPR, LRR, and WLR methods, WLR provided more accurate results compared to the
others. However, our finding suggests that the Kalman filter method underperformed
compared to the simple extrapolation runs counter to prior findings. The possible reason
behind this might be related to the nature of the shoreline and the severity and magnitude
of the erosion rates in this region. Future research might analyze how the prediction
performance varies over different regions with different shoreline change rates.

Compared to much of the coastal erosion literature, this work drew from a 34-year
time series of satellite-derived shorelines at annual temporal resolution. This time depth
enabled us to employ a temporal design strategy expected to yield a robust characterization
of the space-time erosion patterns. It also enabled us to empirically assess the performance
of future shoreline position predictions by quantifying how prediction performance varies
depending on the time depths of the input historical shoreline data and the time horizons
of predicted shorelines.

Though the location of this study is coastal Bangladesh, this is a methodological
innovation with the potential for forecasting applications to other deltas and vulnerable
shorelines globally. While empirical results are specific to the project’s study area, results
can inform the region’s shoreline forecasting ability and the associated mitigation and
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adaptation strategies. This study also has implications in better planning and management
of the lower Meghna River region of Bangladesh.

This study used the empirical data derived from satellite imagery to predict future
shoreline positions. However, shorelines are heavily influenced by sediment transportation,
local rainfall and floods, cyclones, and sea level rise. It is predicted that due to global
warming and the resultant sea level rise, coastal erosion will increase in the future [38].
Since this study did not consider these influences in predicting future shoreline positions,
this study has limitations. Further study is needed to consider the influence of the above-
mentioned factors and to engage more deeply with comparison of the simple extrapolation
method vs. the Kalman filter method for predicting future shorelines. While the empirical
predictive methods used in this study may not be able to account for the physically process-
based factors contributing to coastal erosion and accretion, they may be useful to inform
both local residents and policy makers to plan of future impacts of shoreline change [39].

Due to the extreme rates of shoreline change in this region, we believe the errors are
seen to be generally larger than the other similar studies around the world. Due to high
errors, this kind of method might not be well suited to predicting shorelines in this region.
However, we found that the error was much lower for the northern and southern regions
compared to the central region. Further studies might need to assess how the prediction
performance varies based on the shoreline change rates. A study on the Puri Coast of India
by Mukhopadhyay et al. [40] found that the RMSE value to be 51.34 m when EPR rates
were used. However, they didn’t mention the actual rate of erosion. Another study in the
same coast found that the mean erosion rate was 16.33 m/year during 1990–2015 [41]. This
indicates that the RMSE value was much higher for this coast compared to the actual erosion
rates. It might be related to the long-term prediction of the coastal shoreline movement. As
such, we suggest predicting for the near future (e.g., 1 year, 5 years) due to the high error in
future shoreline prediction.

The tools used in this study do come with limitations. The DSAS tool used for
future shoreline positions may not be ideal for all data types, locations and patterns of
shoreline change [22,29]. Future researchers and those in applied practice should be
cognizant of the methodological limitations when using competing shoreline change rates
and future shoreline prediction models. A clear message and contribution of this work
is that shoreline change rates and the resulting future shoreline positional prediction can
vary depending on: (1) choice of change rate used, (2) choice of time depth used to derive
change rates, (3) choice of time horizon for predicting future shorelines, (4) the time period
in which rates are derived and future shoreline positions are predicted, and (5) the regional
locations for which rates, predictions, and time periods are employed. In conclusion, both
methodological considerations of rates and prediction methods along with considerations
of time and space variability must be considered.

5. Conclusions

This study was carried out to assess the performance of empirical forecasting of future
shoreline positions. To do so, this study used the eastern bank of the lower Meghna River
in Bangladesh as the case site. This area is well evident to be one of the most erosion-
prone areas in the world. This study adopted a data-driven approach to predict future
shoreline positions using various statistical methods by examining past shoreline change
rates at a 95% confidence interval (CI). Using different time depths of shoreline rates,
methods of erosion rate calculation, and predicting future shoreline positions for different
time horizons, this study assessed the prediction performance of different combinations.
This study concludes that the higher the number of shorelines used in calculating and
predicting shoreline the better the performance is. It was revealed that the prediction
accuracy is generally higher for the near future (138 m/year) compared to the distant future
(152 m/year). Our results also suggest that the normal extrapolation method (128 m/year)
of prediction outperformed the Kalman filter method (185 m/year) in predicting future
shoreline positions. However, it is important to determine the historical change rates and
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predict future shoreline positions for the long-term planning and management of coastal
areas. It is critically important because future climate change is likely to exacerbate coastal
erosion globally.
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Appendix A

Table A1. Datasets used in the study.

Image Date Representative Year Satellite Path/Row Resolution (m)

19 February 1988 1988 Landsat 5 137/44 30
21 February 1989 1989 Landsat 5 137/44 30

7 January 1990 1990 Landsat 5 137/44 30
15 March 1991 1991 Landsat 5 137/44 30

12 December 1991 1992 Landsat 5 137/44 30
30 December 1992 1993 Landsat 5 137/44 30

2 January 1994 1994 Landsat 5 137/44 30
21 January 1995 1995 Landsat 5 137/44 30
9 February 1996 1996 Landsat 5 137/44 30
26 January 1997 1997 Landsat 5 137/44 30

14 February 1998 1998 Landsat 5 137/44 30
17 February 1999 1999 Landsat 5 137/44 30
20 February 2000 2000 Landsat 5 137/44 30

5 January 2001 2001 Landsat 5 137/44 30
1 February 2002 2002 Landsat 7 137/44 30

2 December 2002 2003 Landsat 7 137/44 30
13 December 2003 2004 Landsat 5 137/44 30
15 December 2004 2005 Landsat 5 137/44 30

4 February 2006 2006 Landsat 5 137/44 30
22 January 2007 2007 Landsat 5 137/44 30

16 December 2007 2008 Landsat 7 137/44 30
3 January 2009 2009 Landsat 7 137/44 30

30 January 2010 2010 Landsat 5 137/44 30
1 January 2011 2011 Landsat 5 137/44 30

28 January 2012 2012 Landsat 7 137/44 30
14 January 2013 2013 Landsat 7 137/44 30

24 December 2013 2014 Landsat 8 137/44 30
25 November 2014 2015 Landsat 8 137/44 30
30 December 2015 2016 Landsat 8 137/44 30

1 January 2017 2017 Landsat 8 137/44 30
4 January 2018 2018 Landsat 8 137/44 30
7 January 2019 2019 Landsat 8 137/44 30

10 January 2020 2020 Landsat 8 137/44 30
27 December 2020 2021 Landsat 8 137/44 30
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Figure A1. Decadal shoreline movement in the eastern bank of the lower Meghna River region in
Bangladesh: (a) 1990–1999, (b) 2000–2009, (c) 2010–2019. In the map, positive values indicate accretion
and negative values indicate erosion.
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