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Abstract: Remote sensing images of nighttime lights (NTL) were successfully used at global and
regional scales for various applications, including studies on population, politics, economics, and
environmental protection. The Suomi National Polar-orbiting Partnership with the Visible Infrared
Imaging Radiometer Suite (NPP-VIIRS) NTL data has the advantages of high temporal resolution,
long coverage time series, and wide spatial range. The spatial resolution of the monthly and annual
composite data of NPP-VIIRS NTL is only 500 m, which hinders studies requiring higher resolution.
We propose a multi-source spatial variable and Multiscale Geographically Weighted Regression
(MGWR)-based method to achieve the downscaling of NPP-VIIRS NTL data. An MGWR downscaling
framework was implemented to obtain NTL data at 120 m resolution based on auxiliary data
representing socioeconomic or physical geographic attributes. The downscaled NTL data were
validated against LuoJia1-01 imagery based on the coefficient of determination (R2) and the root-
mean-square error (RMSE). The results suggested that the spatial resolution of the data was enhanced
after downscaling, and the MGWR-based downscaling results demonstrated higher R2 (R2 = 0.9141)
and lower RMSE than those of Geographically Weighted Regression and Random Forest-based
algorithms. Additionally, MGWR can reveal the different relationships between multiple auxiliary
and NTL data. Therefore, this study demonstrates that the spatial resolution of NPP-VIIRS NTL data
is improved from 500 m to 120 m upon downscaling, thereby facilitating NTL-based applications.

Keywords: spatial downscaling; NTL data; Multiscale Geographic Weighted Regression; NPP-VIIRS

1. Introduction

Remote sensing images of nighttime light (NTL) can intuitively reflect differences in
human activities at night and are widely used in multiscale urban research, such as the
estimation of socioeconomic indicators [1–4], detection of urban areas [5–8], and identi-
fication of urban spatial structures [9–12]. High-precision NTL data facilitates the study
of urban problems at a finer spatial scale. For example, some high spatial resolution
NTL data can extract urban interior elements [13] and were confirmed to have higher
accuracy when studying urbanization index construction [14] and impervious surface
extraction [15,16]. Currently, commonly used NTL data include data acquired by the De-
fense Meteorological Satellite Program Operational Linescan System (DMSP-OLS), Suomi
National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS)
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Day-Night Band (DNB), Earth Remote Observation Satellite-B (EROS-B), LuoJia1-01, and
Jilin1-03B (JL1-3B) [17–19]. However, these available data are still insufficient for studying
human activities with satisfactory spatiotemporal resolution. Due to the limitations of
satellite launch costs and the technical conditions of satellite sensors, it is hard to obtain
remote sensing images with fine spatial and temporal resolutions using a single satellite
sensor [20]. Table 1 lists some basic parameters of commonly used NTL data. Among them,
NPP-VIIRS NTL data are characterized by wide coverage, a short revisit period, a long
time span, and easy access. However, the individual pixel size of NPP-VIIRS NTL data is
much larger than those of data on roads, buildings, or even blocks. Therefore, it is difficult
to use these data to study the fine details of the urban nighttime economy, urban vitality,
and light sources. LuoJia1-01, EROS-B, and JL1-3B data have finer spatial resolution than
NPP-VIIRS NTL data, but have limitations such as difficulty in obtaining data, a short time
span, and low temporal resolution. Therefore, it is necessary to downscale the NPP-VIIRS
data to increase their spatial resolution for more detailed NTL-based applications.

Table 1. Sensors and basic parameters of NTL data.

Remote Sensing
Platform Available Time Data Products Spatial

Resolution (m)
Temporal

Resolution

DMSP-OLS 1992–2013 Stable lights ~1000 1 year

NPP-VIIRS
April 2012–present Monthly cloud-free composites 500 1 month

19 January 2012–present Nightly mosaics 750 1 day
EROS-B 2013–present Raw data 0.7 ordering
JL1-3B January 2017–present Raw data 0.92 ordering

LuoJia1-01 June 2018–2019 Raw data ~130 15 days

Currently, downscaling methods for remote sensing images mainly include image
fusion- and statistical regression-based methods. Image fusion-based methods involve first
building image pairs between high and low-spatial resolution images and then extracting
detailed spatial information and spatial-temporal variation information from them. Finally,
remote sensing images with a high spatiotemporal resolution are generated based on this
detailed information [21,22]. Commonly used image fusion-based methods include the Spa-
tial and Temporal Adaptive Reflectance Fusion Model (STARFM) [23], the Spatial-Temporal
Adaptive Algorithm for mapping Reflectance Change (STAARCH) [24], the Enhanced
Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) [25], and other
improved algorithms [26–28]. These methods can obtain detailed spatial texture using little
auxiliary data. However, these methods do not consider the radiation transmission process
of remote sensing information and thus do not have a clear physical mechanism [29]. Sta-
tistical regression-based downscaling methods were proposed based on the principle that
there is an unchanged relation between image values and surface physical factors under
different spatial resolutions (named ‘constant relational scale’ theory) [30,31]. Statistical
regression-based methods introduce different statistical regression models to apply the
low-resolution fitting relation to the high-resolution fitting. This process enhances the
detailed texture of low-resolution images with the help of surface physical factors extracted
from auxiliary data and guarantees the consistency of spectral information before and
after downscaling [32,33]. Due to the excellent performance in downscaling, many sta-
tistical regression-based downscaling methods, including Disaggregation Procedure for
Radiometric Surface Temperature (DisTrad) [34], Thermal sHARPening (TsHARP) [35],
High-resolution Urban Thermal Sharpener (HUTS) [36], and Multiple Linear Regression
(MLR) [37], were proposed and are widely used.

Chen [38] used vegetation indices and autoencoder models to increase the spatial
resolution of DMSP-OLS NTL data. However, vegetation indices could not fully reflect the
spatial variation of NTL data. Ye [39] adopted the statistical regression-based downscaling
method to increase the resolution of NTL data and utilized Geographically Weighted
Regression (GWR) to achieve the downscaling of monthly composite NTL data from NPP-
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VIIRS. However, GWR does not consider the spatial heterogeneity of each factor, resulting
in models that do not reveal the spatial scales of different influences. Traditional GWR
makes up for the limitation of the global regression model, which cannot capture the
spatial non-stationary relationship between variables, by embedding the spatial location
information of multiple variables [40]. However, the spatially non-stationary relationship
between covariates and response variables interacts at different spatial scales [41]. NTL
data have different heterogeneities and scales of different influences; the effect sizes are
similar within a certain range but vary significantly beyond that range. Unlike GWR,
Multiscale Geographic Weighted Regression (MGWR) uses a multi-bandwidth approach,
which can produce a more realistic and useful spatial process model.

According to previous studies, numerous factors, including land cover characteristics
and socioeconomic indicators, are associated with the spatial variation of NTL at different
scales [42]. Among them, high-resolution land cover features can be represented by some
indices, such as the normalized vegetation index (NDVI) [43], normalized building index
(NDBI) [44], and land surface temperature (LST) [18,45]. Statistical data such as the gross
domestic product (GDP), population, and energy consumption are not suitable as auxil-
iary variables for downscaling due to their low spatial resolution [46]. Fortunately, road
distribution and point of interest (POI) density have certain socioeconomic properties and
higher spatiotemporal resolution, which has been proven to be closely related to human
activities at the pixel level [47].

Therefore, we propose a spatial downscaling model based on MGWR and multi-source
spatial variables to downscale NPP-VIIRS monthly cloud-free DNB composite (NPP-VIIRS
NTL) data from 500 m to 120 m. The NPP-VIIRS NTL data in use are produced using
average radiance composite images and exclude any data impacted by stray light. MGWR
was chosen because it can distinguish the local, regional, and global relationship processes
between different variables and can better reflect the scale differences for each covariate
on the mechanisms of NTL [40,41,48,49]. Considering the relevance and availability of
the data, we chose NDVI, NDBI, LST, land use and land cover change (LUCC), road
density data, and POI data as auxiliary variables to represent land cover characteristics and
socioeconomic indicator attributes [42,50]. LuoJia1-01 NTL remote sensing image was used
as the actual reference to verify the NTL downscaling accuracy. Random Forest (RF) and
GWR were used to quantify the comparison based on the same influencing factors. We also
demonstrated using the ‘constant relational scale’ theory to show that MGWR is feasible
for NTL data downscaling applications.

2. Study Area and Data
2.1. Study Area

The study area is located in the main urban area of Beijing city center (Figure 1), which
is located between 39◦40′N–40◦20, 116◦00′E–116◦40′E. Beijing is the highly populated
capital of China. In 2021, the permanent population of Beijing reached 21.886 million,
making it one of the three cities with a high population concentration in China. The western
and northern parts of Beijing are mountainous and hilly, with a relatively small population
and concentrated distribution [51]. The central city of Beijing is on the flat southeast terrain,
where 91% of the population resides. Scientific and technological industrial parks, higher
education and scientific research institutions, commercial, administrative, and cultural
centers are distributed here. In the core functional area of the capital, a high concentration
of heritage sites and low-rise buildings are found. In the urban function expansion area,
there are not only universities and high-rise residential areas with a high concentration
of the population but also plains and mountains with a relatively sparse population. The
central city of Beijing has substantial differences in population density, uneven development
between the townships and streets, and strong spatial heterogeneity. It is a key area for
research on population distribution, urban development, and the nighttime economy [52].
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Figure 1. Map of the study areas (zoomed-in Beijing city center, red voxes) and NTL datasets.
(a,b) Overall spatial distributions of the NPP-VIIRS NTL data (September 2018) and LuoJia1-01 NTL
data (September 2018).

2.2. Data Description

In this study, data from social media and remote sensing were both used. The datasets
utilized in this investigation are described below, and Table 2 includes a summary of the
key remote sensing data parameters.

(1) The NPP-VIIRS monthly cloud-free DNB composite data from September 2018 was
downloaded from the Earth Observation Group, Payne Institute for Public Policy,
Colorado School of Mines (https://eogdata.mines.edu/download_dnb_composites.
html, accessed on 1 April 2022) [53,54]. The observations impacted by lightning, lunar
illumination, and stray light were pre-corrected, and the cloud cover was filtered. The
monthly NTL series is run globally using two different configurations [53,55]. The
first excludes any data impacted by stray light. The second includes these data if the
radiance values have undergone the stray-light correction procedure. Here we have
chosen the former because our study area is at a low latitude and is less affected by
stray light from the poles, and the corrected data are of lower quality. The spatial
resolution of the data is 500 m.

https://eogdata.mines.edu/download_dnb_composites.html
https://eogdata.mines.edu/download_dnb_composites.html
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(2) The LuoJia1-01 image was utilized to verify the downscaled NTL data as it has a
comparable spectral range to that of the NPP-VIIRS NTL output (Table 2). The LuoJia1-
01 images offer a higher spatial resolution and a wider spectral range than the NPP-
VIIRS NTL data, further enabling applications at a finer scale [56,57]. The geometric
corrected LuoJia1-01 NTL data employed in the study have a resolution of 130 m and
were collected from the high-resolution Earth Observation System of Hubei Data and
Application Center High Score Tube Platform (http://www.hbeos.org.cn, accessed
on 1 April 2022). To avoid the cloud cover noise in LuoJia1-01 data, we screened the
cloud-free September 2018 data according to the recorded weather conditions and
calculated the average value as the true NTL value. We used bilinear interpolation to
resample the data at a resolution of 120 m.

(3) Landsat 8 data were obtained from the United States Geological Survey (USGS) Earth
Explorer website (https://earthexplorer.usgs.gov/, accessed on 10 April 2022) to
calculate the NDVI, NDBI, and LST for extracting surface cover features. There are
two sensors on Landsat 8: Operational Land Imager (OLI) and Thermal Infrared
Sensor (TIRS), which include 11 spectral bands (9 OLI and 2 TIRS bands) (Table 2). To
ensure clear imagery, we selected Landsat 8 OLI/TIRS imagery with less than 1.5%
cloud cover from August–September 2018 [58].

(4) The Chinese Academy of Sciences Resource and Environmental Science and Statistics
Center (https://www.resdc.cn, accessed on 10 April 2022) provided the road network
and LUCC data, which can distinguish the ground cover. For the provided road
network vector data, we calculated the road density by constructing a 30 m × 30 m
regular grid to generate a road density map with a 30-m resolution. LUCC data
were generated using Landsat 8 data through visual interpretation. The LUCC data
comprise 30-m resolution raster data and include six land categories: cultivated land,
forest land, grassland, water area, unused land, and construction land.

(5) POI represents various functional facilities in a city from a spatial perspective, such as
the government, schools, offices, shopping malls, and banks. POI includes attribute
and point location information, such as the name, category, longitude, and latitude. It
has a large data volume, timeliness, wide-coverage, easy access, and a high level of
accuracy [51]. As a feature that provides various city services, POI exists in real-time,
is continuously updated for each area, and can describe the current regional functions
and attributes of cities [56]. In this study, POI data were obtained from the Baidu API
interface (http://lbsyun.baidu.com, accessed on 10 April 2022).

Table 2. Attributes of data used in this study.

Data Type Data Acquisition Time Spatial Resolution (m) Wavelengths (µm) Data Format

Landsat 8 OLI
Landsat 8 TIRS August–September 2018 30

100
0.43–1.38

10.60–12.51 GeoTIFF

NPP-VIIRS Monthly
cloud-free DNB composite September 2018 500 0.5–0.9 GeoTIFF

LuoJia1-01 September 2018 130 0.46–0.98 GeoTIFF
LUCC 2018 30 / GeoTIFF

Road density September 2018 120 / GeoTIFF
POI September 2018 / / ShapeFile

3. Methods

The research goal of this study is to generate NTL data with a spatial resolution of
120 m based on the NPP-VIIRS NTL data and other related data. This goal is achieved
through the following three stages (Figure 2):

(a) Data preprocessing: NDVI, NDBI, and LST were derived from Landsat 8, and the orig-
inal LuoJia1-01 data were processed using radiometric correction and unit conversion
for further comparison;

http://www.hbeos.org.cn
https://earthexplorer.usgs.gov/
https://www.resdc.cn
http://lbsyun.baidu.com
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(b) Model training: Through model fitting and estimation, an MGWR-based downscaling
step was implemented to statically downscale NTL data to a spatial resolution of
120 m;

(c) Accuracy verification: The accuracy of the downscaled NTL data was evaluated by
comparing them with LuoJia1-01 NTL data with a higher spatial resolution, and the
MGWR method was compared with the GWR and RF methods.

Remote Sens. 2022, 14, 6400  6  of  21 
 

 

Table 2. Attributes of data used in this study. 

Data Type  Data Acquisition Time  Spatial Resolution (m)  Wavelengths (μm)  Data Format 

Landsat 8 OLI 

Landsat 8 TIRS 
August–September 2018 

30 

100 

0.43–1.38 

10.60–12.51 
GeoTIFF 

NPP‐VIIRS Monthly 

cloud‐free DNB composite 
September 2018  500  0.5–0.9  GeoTIFF 

LuoJia1‐01  September 2018  130  0.46–0.98  GeoTIFF 

LUCC  2018  30  /  GeoTIFF 

Road density  September 2018  120  /  GeoTIFF 

POI  September 2018  /  /  ShapeFile 

3. Methods 

The research goal of this study is to generate NTL data with a spatial resolution of 

120 m based on the NPP‐VIIRS NTL data and other related data. This goal  is achieved 

through the following three stages (Figure 2): 

(a) Data preprocessing: NDVI, NDBI, and LST were derived  from Landsat 8, and  the 

original LuoJia1‐01 data were processed using radiometric correction and unit con‐

version for further comparison; 

(b) Model training: Through model fitting and estimation, an MGWR‐based downscaling 

step was implemented to statically downscale NTL data to a spatial resolution of 120 

m; 

(c) Accuracy verification: The accuracy of the downscaled NTL data was evaluated by 

comparing them with LuoJia1‐01 NTL data with a higher spatial resolution, and the 

MGWR method was compared with the GWR and RF methods. 

 

Figure 2. The proposed methodology for spatial downscaling of NTL data using MGWR. 

   

Figure 2. The proposed methodology for spatial downscaling of NTL data using MGWR.

3.1. Processing Imagery

NDVI (30 m), NDBI (30 m), and LST (30 m) at a fine spatial resolution were calculated
using Landsat 8 OLI/TIRS band data. The following formulas were used to compute the
NDVI and NDBI [59].

The near-infrared reflectance (b5) to the red band (b4) reflectance ratio was used to
determine the NDVI:

NDVI =
ρNIR − ρR
ρNIR + ρR

(1)

The ratio of the reflectance in the red band (b6) to the near-infrared reflectance (b5)
was used to calculate the NDBI:

NDBI =
ρSWI1 − ρNIR

ρSWI1 + ρNIR
(2)

Surface temperature is a crucial indicator for keeping track of the ecological environ-
ment as it directly affects land, air moisture, and the atmosphere. The LST was calculated
using the atmospheric correction approach [60,61]. The basic principle of the atmospheric
correction method is to subtract the influence of the atmosphere on the surface thermal
radiation from the total thermal radiation observed by the satellite sensor to obtain the
surface thermal radiation intensity, which is then converted into the corresponding surface
temperature. The thermal infrared radiance value received by the satellite sensor is com-
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posed of three parts: the upward radiance of the atmosphere I ↑ , the true radiance of the
ground reaching the satellite sensor after passing through the atmosphere; after reaching
the ground, the downward radiant energy of the atmosphere I ↓ reflected the energy [62].

LST =
K2

In( K1
B(TS)

+ 1)
− 273 (3)

B(TS) =
L− I ↑ −τ × (1− ε)I ↓

ε× τ
(4)

where I ↑ , and I ↓ are the upward and downward radiance of the atmosphere, respectively;
τ is the transmittance of the atmosphere in the thermal infrared band; and K1, K2 are the
calibration coefficients, which were obtained from the Atmospheric Correction Parameter
Calculator (https://atmcorr.gsfc.nasa.gov, accessed on 10 June 2022) provided by the
National Aeronautics and Space Administration (NASA). The imaging time, latitude, and
longitude of the imaging center were input into the calculator to obtain I ↑ , I ↓ , τ, K1, and
K2. In this study, K1 = 774.89W/(m 2 · sr · µm), and K2 = 1321.08K.

The NDVI threshold method proposed by Sobrino was used to calculate ε.

ε = 0.004PV + 0.986, (5)

where PV is the vegetation coverage, calculated using the following formula:

PV =
NDVI−NDVISoil

NDVIVeg −NDVISoil
(6)

Among them, NDVI is the normalized vegetation index; NDVISoil is the NDVI value
of completely bare soil or the area with no vegetation cover; and NDVIVeg is the NDVI
value for the pixel point completely covered by vegetation, i.e., the NDVI value of the
pure vegetation pixel. Based on the empirical values, NDVIVeg = 0.70, and NDVISoil = 0.05,
which implies that when the NDVI of a pixel is greater than 0.70, PV = 1; and when the
NDVI is less than 0.05, PV = 0.

The POI and road data acquired for this investigation were vector data. Road and POI
density were computed using ArcGIS 10.2 software and transformed into raster data to
simplify the calculation.

To reduce data volume, the original LuoJia1-01 data was represented by DN. The
calibration equation given by Zhang [18] between the actual radiance and the DN value is
as follows:

L =
√

DN310−10, (7)

where L is the adjusted absolute radiance value in W/(m2 · sr ·µm). However, the radiance
value, as reported in the NPP-VIIRS data, is the spectral response function weighed value
for the spectral range of 0.5–0.9 µm and is in the unit of nW/(cm2 · sr). To ensure the
comparability of the NTL data from these two sensors, the radiation units of LuoJia1-01
were converted into the radiation units of NPP-VIIRS using the following equation [63]:

L′ = ∆λ · L · 105, (8)

where ∆λ (520 nm) is the bandwidth of LuoJia1-01 and L′ is the converted radiance.
The WGS 84 UTM Zone 50N coordinate system was used to project all the data in this

study, ensuring that the geographic data coincided geographically without any offset.

3.2. MGWR

Local regression models such as GWR, Geographically and Temporally Weighted
Regression (GTWR), and Geographically Weighted Auto Regressive (GWAR) are based
on a constant bandwidth setting, limiting the bandwidth variation for each covariate,
thereby excluding their scaling differences. Given the limitations of traditional GWR,

https://atmcorr.gsfc.nasa.gov
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Fotheringham [40] proposed the MGWR and made improvements based on the statistical
inference of local parameters as proposed by Yu [48]. MGWR may discriminate between
local, regional, and global scale processes for numerous covariates by doing away with the
single bandwidth assumption of variables. Additionally, it generates processes similar to
real estate space [48]. The MGWR calculation formula is presented as follows:

yi =
k

∑
j=1

βbw j(ui, vi)xij + ε, (9)

where yi is the response variable; xij is a covariate; βbw j represents the jth local regression
coefficient with bandwidth bw; (ui, vi) represents the spatial location of the sample point;
and ε is the model regression residual. Unlike conventional GWR, each regression line in
MGWR is created using a local regression process and has a separate bandwidth setting.
Contrastingly, the bandwidth configurations of all covariates in conventional GWR are
identical. A generalized additive model, which can be written as follows, may be used to
describe the overall fit of the MGWR:

y =
k

∑
j=1

fi+ε, f j = βbw jxj, (10)

where y is the response variable; xj is the jth covariate; βbw j represents the jth local regres-
sion coefficient with bandwidth bw; and ε is the regression residual of the model.

The backward-fitting approach is primarily used to fit each smooth term in the model.
The final MGWR simulation is accomplished by successively determining the ideal band-
width for various variables, using the conventional GWR estimate as the initial configura-
tion. The parameter estimation is continuously updated until the coefficients iteratively
converge. In the iterative convergence process for the coefficients, the larger the number of
covariates, the more iterations are required for the model to converge [41]. The higher the
degree of multicollinearity between the covariates, the more iterations are required before
the model converges. The convergence phase of a local regression process will require
more iterations than a regional or global regression process. In this study, we used the
MGWR site package of the Python environment to construct the MGWR relationship model
between NPP-VIIRS NTL intensity and NDVI, NDBI, LUCC, road density, POI density,
LST, latitude, and longitude. When constructing a GWR model, the choice of spatially
weighted kernel function and the bandwidth is highly important, and an inappropriate
kernel function will lead to a poor data fit. If the bandwidth is too small, the data will be
too noisy; if the bandwidth is too large, more details will be sacrificed. In the process of
MGWR model building, the quadratic kernel function is most used, and Akaike Informa-
tion Criteria (AICc) are used for the selection criteria of the kernel function and bandwidth.
Simultaneously, the golden section algorithm searches for the optimal bandwidth [64].

3.3. Downscaling

To increase the spatial resolution of the NPP-VIIRS NTL images, we downscaled
them from 500 m to 120 m. The downscaling process is based on many auxiliary variable
sources, including latitude and longitude data, road density, POI density, NDVI, NDBI,
LUCC, and LST. These auxiliary variables were chosen by considering their correlation
with NTL intensity and data accessibility. We further describe the correlation between
each variable and NTL intensity in Table 3. These data can be used to downscale NTL
images because each of them can reflect some of the socioeconomic or physical geographic
information associated with NTL intensity. Given that the influence factors of NTL intensity
are complex, it is difficult to explain using a single data type in practice. Studies showed
that the quantitative relationship between NTL intensity and surface physical parameters
shows little change at different spatial resolutions [29]. According to the principle of the
‘constant relational scale’, NTL spatial downscaling can be performed by first building
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image pairs between high and low spatial resolution images and then applying it to high
spatial resolution and performing residual correction.

Table 3. Statistics of regression coefficients for MGWR simulation.

Auxiliary Variables NDVI NDBI LUCC Road Density POI Density LST Intercept

PCC −0.27 −0.12 0.17 0.28 0.29 0.15 /
Mean −0.951 −0.023 −0.004 0.070 0.387 0.023 2.148
STD −0.153 0.012 0.025 0.096 0.358 0.142 0.598
Min −2.086 −0.052 −0.135 −0.350 −1.219 −0.517 0.857

Median −1.036 −0.025 −0.001 0.059 0.306 0.012 2.039
Max −0.028 −0.003 0.065 0.912 2.474 1.705 4.240

NTL possesses non-stationary relationships with environmental factors at different
scales. The multiscale and spatial non-stationary interactions may be modeled using
MGWR, and the optimal scale at which these processes operate can also be determined.
Therefore, spatial downscaling of NPP-VIIRS NTL data was performed using MGWR
in this study. The specific technical route is shown in Figure 2. We used 500 m spatial
resolution data as training data to construct the MGWR model and 120 m spatial resolution
data as test data to obtain the downscaled NTL results. The LuoJia1-01 NTL data were used
as the actual NTL data to test the model accuracy and were not involved in the modeling.
The detailed downscaling conversion process is as follows:

(1) NDVI, NDBI, road density, POI density, LUCC, LST, latitude, and longitude informa-
tion were extracted at a 30-m resolution based on the Landsat 8 satellite imagery and
other auxiliary data. The bilinear interpolation method was used to aggregate the
spatial resolution to 120 m and 500 m;

(2) MGWR was used to construct the multiscale spatial non-stationary functional rela-
tionship between NPP-VIIRS and NDVI, NDBI, road density, POI density, LUCC, LST,
and the latitude and longitude information at a 500 m resolution:

N500 = f (NDVI500, NDBI500, Road500, POI500, LUCC500, LST500, Lon500, Lat500), (11)

where N500 is the NTL intensity estimated by the scale conversion function at the 500
m resolution scale; f (•) is the MGWR that converts the auxiliary variables to simulate
NTL; NDVI500, NDBI500, Road500, POI500, LUCC500, LST500, Lon500, and Lat500 are
auxiliary variables at 500 m resolution;

(3) Influenced by other surface physical parameters such as soil moisture, it is difficult
for the selected auxiliary variables to fully reflect the spatial heterogeneity of the NTL,
which is manifested as NTL residual information at low spatial resolution scales [65],
which is:

∆NS = NS − NS, (12)

where ∆NS is the NTL transformation residual at 500 m resolution; NS and NS are
the NTL data at a 500-m resolution and the NTL data estimated by the MGWR,
respectively. Assuming that the residuals are uniformly spatially distributed, we
further interpolated the transformed residuals to a resolution of 120 m using ordinary
kriging interpolation [66]. Ordinary kriging interpolation is a linear estimation of
regionalized variables. Assuming that the data are normally distributed, the expected
value of the regionalized variable is considered to be unknown, and the approximate
value of the to-be-interpolated point is obtained by determining the weight of the
sampling points around the to-be-interpolated point.

(4) According to the ‘constant relational scale’ principle, f (•) established at low spatial
resolution scales is still applicable at other spatial resolutions. Combined with the
transformed residuals after spatial interpolation, the NTL data downscaled to a 120-m
resolution is expressed as:
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N120 = f (NDVI120, NDBI120, Road120, POI120, LUCC120, LST120, Lon120, Lat120) + ∆NS, (13)

where N120 is the downscaled NTL data at a resolution of 120 m; f (•) is the MGWR
function that converts the auxiliary variables to NTL data; NDVI120, NDBI120, Road120,
POI120, LUCC120, LST120, Lon120, and Lat120 are the 120 m resolution auxiliary vari-
ables after spatial aggregation; and ∆NS is the 120 m resolution conversion residual
after spatial interpolation.

3.4. Validation and Method Comparison

We considered the LuoJia1-01 NTL remote sensing image data as the actual NTL data
and evaluated the performance of the downscaling model by comparing the downscaled
NTL data with the actual NTL data. The accuracy of downscaled NTL is mainly quantita-
tively evaluated using the root mean square error (RMSE) and the correlation coefficient
(R2). RMSE and R2 are quantitative indicators for evaluating the accuracy of the data, which
can be used to measure the degree of data deviation and the goodness of linear fit between
the predicted and true values. Among them, the smaller the RMSE values, the smaller the
error of the downscaled NTL data. The larger the R2 value, the higher the accuracy of the
downscaled NTL data. The calculation formulas of RMSE and R2 are expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(NSoi − NSei)
2, (14)

R2 =

n
∑

i=1
(Ni − µN)

2

n
∑

i=1
(Ni − µN)

2
, (15)

where NSoi is the real NTL value of the ith pixel; NSei is the NTL value simulated by the
downscaling method corresponding to the ith pixel; RMSE is the root mean square error;
n is the number of image elements involved in the evaluation. R2 is the coefficient of
determination; Ni and Ni represent the LuoJia1-01 NTL image value and the downscaled
NTL remote sensing image value, respectively; and µN represents the average value for the
LuoJia1-01 NTL value.

To further compare the advantages and disadvantages of MGWR, GWR and RF were
used to perform spatial downscaling analysis on the NPP-VIIRS NTL data based on the
same remote sensing data source and the downscaling process. The results were compared
to that of the LuoJia1-01 NTL data as well. The GWR and RF based downscaling was
implemented using the same auxiliary variables used for MGWR and are representative
in characterizing the relationships between variables, spatial non-smoothness, and non-
linear relationships.

The GWR regression function can be expressed as [67]:

yi = β0(ui, vi) +
k

∑
j=1

β j(ui, vi)xij + εi, (16)

where yi and xij are the dependent and jth independent variables at location i, respectively.
β(ui, vi) is the jth regression coefficient at location i, and εi is the stochastic error term. The
coefficient β is a function of the geographical location and can be estimated from weighted
least-squares values.

RF is an ensemble learning technique consisting of the aggregation of a large number
of decision trees, resulting in a reduction of variance compared to those of the single
decision trees. The RF regression function can be expressed as [67]:

yi = f (NDVI, NDBI, Road, POI, LUCC, LST, Lon, Lat). (17)
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Assuming that the relationship acquired via RF remained constant between coarse and
high resolutions, the RF-based downscaling results at a resolution of 120 m were calculated
and compared to those of LuoJia1-01 NTL values.

4. Results
4.1. Correlation Analysis of the Variables

Table 3 lists the Pearson correlation coefficient (PCC) values between the NPP-VIIRS
NTL data and auxiliary variables. The PCC ranged from −0.27 to 0.29, and the absolute
mean was 0.22. This indicates that the NTL value was not determined by a single variable,
whose value is affected simultaneously by multiple variables. Among these variables, the
PCC of the POI and road densities was high and indicated a positive effect, suggesting that
NTLs are closely related to human activities. The NDVI and NTL values are negatively
correlated because areas with high NDVI are covered with a large amount of vegetation,
which hinders the rise of NTL or reduced surface reflectivity. Simultaneously, LST was
positively correlated with NTL intensity because the LST reflects the urban heat island
environment, which is highly correlated with the expansion of buildings and impervious
surfaces during urbanization [22].

Table 3 also lists the statistics for each regression coefficient of the MGWR model. From
the absolute value of the regression coefficient of each auxiliary variable, the influence
intensity of the POI density was the largest among all the variables, which proves that
human activities play a key role in the distribution pattern of NTLs. The influence intensity
of NDVI and the road density was high, which largely determines the spatial differentiation
of NTL data, and the influence intensity for NDBI, LUCC, and LST was generally weak.

4.2. Accuracy Evaluation of the MGWR Model

Figure 3 displays the scatter plot between the downscaled NTL data and LuoJia1-01
NTL data. The results showed that MGWR had the highest precision, followed by GWR,
and RF had the lowest precision. The coefficient of determination (R2) for the MGWR model
was 0.9141 (the slope is close to 1), and RMSE was 16.87 nW/(cm 2 · sr) at the significant
level. The GWR had a relatively high R2 of 0.9085, but the RMSE was 1.7 times higher than
the MGWR (Figure 3b). The overall accuracy of the RF is low, but the RMSE value was only
slightly lower than that of the MGWR (Figure 3c). These results showed that the MGWR is
more robust than other algorithms under the same auxiliary variables and exhibits the best
downscaling accuracy.
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Figure 4 shows the original NPP-VIIRS NTL data, the downscaled NTL data predicted
by the three downscaling methods (MGWR, GWR, and RF), and the LuoJia1-01 NTL data
used for comparison. It shows that the spatial distribution of the NTL data downscaled
using the three methods was consistent with that of the original data and had the same
distribution as LuoJia1-01. Specifically, the MGWR algorithm could extract more NTL
spatial texture information, revealing the differences in NTL distribution within similar
ground cover types. Additionally, the GWR algorithm captured most of the NTL data in the
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original image, which objectively reflects the actual distribution of lights at night. However,
when the light values increased, the image elements lost many component features within
some regions, resulting in large errors and unclear textures. RF is not sensitive to spatial
location and cannot explain the spatial heterogeneity of complex landscapes. Hence it can
only roughly reveal the spatial distribution of NTL. The error of downscaling results was
the largest and generally high.
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To compare the performance of different downscaling methods more clearly, we
further selected two representative areas for more detailed visual analysis (Figure 5). In
both Beijing Capital International Airport (Figure 5a) and part of Central Beijing (Figure 5b),
the three downscaling methods considerably enhanced the spatial texture of the original
NTL data. However, there were still substantial differences in the details. MGWR depicted
the interior spatial textures of the suburbs and the central city in more detail. The spatial
differences of NTL data were also highly consistent with those of LuoJia1-01. We found
that MGWR-downscaled NTL data were more accurate than those obtained using other
methods in some areas with increased NTLs, such as airports. Compared with MGWR,
GWR showed similar downscaled results, although it smoothened out the detailed variation
in areas with increased high NTLs and clearly overestimated the NTL levels around the
airport. In areas with relatively large differences in surface coverage, such as the airport,
RF outperformed GWR. However, RF had the worst overall downscaled performance,
revealing only the approximate distribution of surface coverage, with abrupt transitional
changes between NTLs. Additionally, a problem of large-scale overestimation in the central
city existed. For suburban airports and central urban areas with large nighttime lighting
changes, MGWR can reveal more NTL radiation features, reflecting the NTL differentiation
caused by land cover changes and population activities and ensuring the downscaling of
NTL data.
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5. Discussion
5.1. Effect of MGWR Bandwidth on NTL Data Downscaling in the Study Area

The reason MGWR outperforms GWR is that by setting different bandwidths for each
auxiliary variable, MGWR allows processes to operate at different spatial scales based
on the characteristics of different variables. However, GWR assumes that all modeled
processes operate at the same spatial scale. Here we further confirmed that different
variables have different action scales by calculating the bandwidths of variables.

We employed the commonly used quadratic kernel function, AICc, and the golden
ratio to search for the optimal bandwidth. The optimal bandwidth can be used as the basis
for determining whether the influence of the corresponding variable of the independent
variable is at the global or local scale. Table 4 shows the difference in the action scale for
each auxiliary variable when it affects the spatial pattern differentiation of NTLs. The
larger the action scale, the greater the global influence of the corresponding variable of the
auxiliary variables, with contrasting local influence.

Table 4. Difference between GWR and MGWR bandwidth settings.

Auxiliary Variables NDVI NDBI LUCC Road Density POI Density LST Intercept

MGWR bandwidth 43 707 558 48 43 50 43
GWR bandwidth 70 70 70 70 70 70 70

Table 4 shows that the MGWR can be used to directly reflect the difference in the
action scales of different covariates, but classical GWR can only show the average value
of the action scales for each covariate. Through the estimation of the MGWR, we found
that the action scales for different factors were quite different. The bandwidths of 43 for
NDVI, POI, and Intercept indicate that the NTL intensity is sensitive to the response of
these auxiliary variables. Simultaneously, road density and LST are also sensitive (<50).
This phenomenon reflects that the NTL data of the main urban area of Beijing had high
spatial variation from one area to another. Contrastingly, the effects of NDBI and LUCC
on NTL were relatively stable, with effective scales of 707 and 558, respectively. This
suggests that building and land use types had prominent effects at any scale. The density
of buildings and the land use type determine the number of lights at night. The synergy of
land cover and urban construction affected the spatially differentiated characteristics of
NTLs, showing a relatively small scale of influence. The NDBI and LUCC encompass the
global scale for NTL images, which shows it is correct for many city boundary extraction
algorithms to use NTL data to increase their accuracy.
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Conclusively, compared with the traditional GWR, MGWR can better reveal the effects
of different auxiliary variables on the spatial distribution of NTL and the scale differences
of spatial heterogeneity. Therefore, it is of practical importance to use MGWR to explore
the spatial downscaling of NPP-VIIRS NTL.

5.2. Rationalization of Downscaling Based on MGWR

The quantitative relationship between NTL and impact factor varies less at different
spatial resolution scales, i.e., the relationship model between NTL and impact factor at low
spatial resolution is still applicable at a high spatial resolution [68]. In this study, spatial
downscaling of NPP-VIIRS NTL data was performed using MGWR, which is a statisti-
cal regression algorithm based on the ‘constant relational scale’ principle. However, the
‘constant relational scale’ principle has only been proven to be successfully applied to topo-
graphically homogeneous surfaces and areas with homogeneous land cover and has certain
conditions and limitations of applicability for heterogeneous landscape surfaces [65,69].
To verify if it is reasonable to use this principle in this study area, bilinear interpolation
was used to resample LuoJia1-01 NTL data and POI density data to 600, 480, 360, 240, and
120 m, and then calculated the correlation between LuoJia1-01 NTL brightness and POI
density at different resolutions [49,68].

As shown in Table 5, the differences in the coefficients and intercepts of the linear
relationship between NTL intensity and POI density increased as the differences in image
resolution increased. Particularly, when the spatial resolution was between 240 m and
480 m, the relationship between NTL intensity and POI density did not change much, and
the principle of ‘constant relational scale’ can be satisfied. Pixel points were selected in a
part of Central Beijing (Figure 5b) of the study area for analysis. Table 5 shows that the
linear relationship between NTL intensity and POI density differed at different resolution
scales. Generally, the relationship varied less in the central urban area than in the whole
study area. This confirms that the ‘constant relational scale’ principle has good application
performance in areas with uniform NTL.

Table 5. Difference between the regression relationships of NTL and POI data at various resolu-
tion scales.

Spatial
Resolution (m)

All Image Pixels Central City Pixels

Coefficient Intercept Coefficient Intercept

120 m 28.16 72.67 20.66 363.23
240 m 26.58 78.22 20.50 367.57
360 m 26.25 80.13 20.42 371.24
480 m 26.22 80.19 20.32 379.28
600 m 24.74 83.68 19.35 384.42

The principle of ‘constant relational scale’ was not feasible in the non-uniform areas
of the surface, and the quantitative relationship between NTL intensity and POI density
at 120 m and 600 m resolution scales was inconsistent. However, according to our results,
the impact of surface heterogeneity was not significant. The statistical MGWR regression
model proposed in this study based on the principle of ‘constant relational scale’ still greatly
increased the downscaling accuracy of the NPP-VIIRS NTL data in the study area.

5.3. Application of the MGWR Model in Other Cases

To prove the feasibility of the MGWR model in downscaling NTL data, we applied it
elsewhere in Beijing. The two cases we used for validation, Huairou (HR) and Fangshan
(FS), are shown in Figure 6. They are both located at the urban-rural border of Beijing and
have different spatial distribution characteristics from the NTL in the study area (Figure 1).
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Figure 6. Maps depicting the validation areas (HR and FS) and NTL datasets. (a,b) Overall spatial dis-
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Figures 7 and 8 show the downscaled NTL data for the validation regions of HR
and FS, respectively. It shows that the spatial distribution of the downscaled NTL data
completed by the three methods was consistent with that of the original data and had the
same distribution as LuoJia1-01. Here we unexpectedly found that MGWR was not only
more accurate overall than those of the other two methods but was also able to capture
small areas of bright spots in dark areas. Otherwise, the results of the three downscaling
methods showed characteristics consistent with the study area in the validation areas.
Therefore, the MGWR model has a degree of applicability in different regions.
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September 2018).
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(a) LuoJia-01, (b) NPP/VIIRS, (c) MGWR, (d) GWR, (e) RF. (Spatial resolution: 500 m; study period:
September 2018).

5.4. Strengths and Limitations

The spatial resolution of the NPP-VIIRS NTL data was refined in this study, enabling
further applications requiring higher spatial resolution. The strengths of the study are
as follows:

(1) The multivariate-based MGWR method better described the spatial variation of NTL
data than the GWR and RF methods. The downscaled NTL images showed higher
spatial resolution than the original NTL data in terms of more detailed information
and sharper boundaries;

(2) Due to the pronounced spatial heterogeneity scale differences of various influencing
factors on the distribution of NTLs, it was difficult for global statistical regression and
classical GWR models to reveal the spatial heterogeneity scale effects between the
NTLs and auxiliary variables. The proposed MGWR downscaling model improved
the classical GWR method by allowing individual auxiliary variables to have different
bandwidth settings according to the range of influence scales. Therefore, it can provide
a more realistic and effective description of the spatial process and better explain the
effects of different auxiliary variables on the spatial variation of NTLs;

(3) The MGWR proposed in this study mainly uses eight auxiliary variables: NDVI,
NDBI, road density, POI density, LUCC, LST, latitude, and longitude, which strongly
correlated with the NTL data. For the spatial downscaling of the NTLs, the construc-
tion of the relational model and the selection of the auxiliary variables were directly
related to whether accurate and reliable high-spatial-resolution NTL data could be
obtained. By capturing the different auxiliary variables of various auxiliary variables
on the NTL distribution, MGWR avoids the introduction of excessive noise and bias
in constructing the NTL conversion function and provides technical support for the
accurate realization of downscaling NTL data.

Our study is meaningful for increasing the spatial resolution of NPP-VIIRS NTL data,
although some shortcomings and scope for future work still exist.
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(1) When using remote sensing images as auxiliary data to downscale the NPP-VIIRS
NTL data, the time difference between the different satellite transits will affect the
downscaling accuracy. In this study, we removed the temporal error by averaging
the multi-temporal Landsat 8 OLI and NPP-VIIRS NTL sensor data, although some
uncertainty when predicting high-resolution NTL data may exist. When there is no
auxiliary information, such as in Landsat satellite data, to perform downscaling in
the study area, spatiotemporal fusion or reconstruction of corresponding auxiliary
data is necessary for the spatial downscaling of NPP-VIIRS NTL data [70]. This
condition increases the difficulty of the operation and may introduce some errors in
data fusion or reconstruction. In the future, we will consider calibrating MGWR with
more models.

(2) Based on statistical regression, the downscaling process is not only considerably
affected by the regression model but was also closely related to the land cover type
and the state of the atmospheric environment. Therefore, to develop an NTL data
downscaling model with greater applicability, selecting more study areas and periods
is necessary for future testing.

6. Conclusions

NPP-VIIRS NTL data are considered the most suitable data for assessing demographic
and socioeconomic characteristics, although their full potential is limited by their coarse
spatial resolution. According to the principle of ‘constant relational scale’, we proposed
a downscaling framework based on the MGWR. To our best knowledge, it is the first to
propose a framework to downscale NTL data based on auxiliary variables and the GWR
method to a finer resolution of 120 m. We compared the downscaled image with the
LuoJia1-01 image to validate the downscaling accuracy. To evaluate the goodness of fit,
MGWR was compared with two representative methods, GWR and RF.

The main results generated were as follows: (1) Among all the auxiliary variables, the
POI density attained the highest correlation with the NTL value, with the highest PCC
value of 0.29. (2) The results of downscaling via MGWR exhibited higher R2 (0.91 vs. 0.90
vs. 0.87) and lower RMSE (29.00 vs. 17.57 vs. 16.87 nW/cm2/sr) compared with the results
of GWR and RF algorithms, indicating enhancement of the spatial resolution of the data
after downscaling. (3) MGWR captured the effects of multiple auxiliary variables on NTL
distribution by setting different bandwidths and avoided introducing excessive noise and
bias in the process of constructing NTL transformation functions, which provides technical
support for obtaining accurate downscaled NTL data. Therefore, the NTL spatial down-
scaling method based on MGWR used in this study can increase the texture information
of low-spatial-resolution NTL data and ensure the accuracy and spatial consistency of the
downscaled NTL data. For research fields involving the estimation of population distri-
bution, social economy, and urban development and planning, this method can provide
reliable high-spatial-resolution NTL remote sensing datasets.
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